setwd("~/Desktop")
library(ggplot2)
library(broom)
mut1=read.table(text="weight    length  feeding_amount  feeding_duration
1.381   1.093   1.386   1.273
1.313   0.805   1.427   1.307
1.2 0.965   1.231   1.186
1.277   1.101   1.282   1.499
1.285   1.005   1.36    0.923
1.263   0.815   1.332   1.138
1.34    0.937   1.22    0.932
1.428   1.072   1.392   1.832
1.031   1.075   1.202   1.192
1.333   1.105   1.29    1.091
1.126   1.197   1.209   1.234
1.325   0.942   1.204   1.287
1.226   1.161   1.373   1.21
1.396   1.054   1.174   1.199
1.125   0.988   1.464   1.05
1.287   1.106   1.328   1.694
1.205   1.098   1.331   0.934
1.137   1.069   1.523   1.932
1.079   1.083   1.101   1.166
1.245   1.021   1.18    1.171
1.362   0.982   1.359   1.076
1.207   0.911   1.46    0.939
1.116   1.015   1.142   1.177
1.214   1.047   1.397   1.312
1.173   1.093   1.221   1.141
1.176   1.085   1.344   1.443
1.209   1.302   1.387   0.932
1.165   1.225   1.09    0.968
1.19    1.137   1.545   1.152
1.189   1.097   1.396   1.157",header=T,sep="\t")
mut2=read.table(text="weight    length  feeding_amount  feeding_duration
1.093   1.031   1.392   0.729
1.046   1.108   0.99    0.893
1.103   0.925   0.489   0.765
0.901   0.975   0.698   1.189
0.904   0.82    0.892   1.129
0.893   1.008   1.051   1.038
1.06    0.811   0.949   0.793
1.039   0.9 0.633   1.468
1.076   0.851   0.946   1.4
1.124   0.799   1.135   0.834
1.105   0.893   0.902   1.323
1.164   1.07    1.096   1.221
1.304   1.037   1.082   0.712
0.736   1.007   1.088   1.233
0.955   0.925   0.802   1.32
1.076   1.086   0.693   1.118
1.118   1.115   0.783   1.3
0.97    0.787   0.884   0.984
1.031   0.852   0.925   1.247
1.28    1.089   0.665   0.707
0.936   0.943   0.778   0.722
0.926   1.114   0.779   1.028
1.106   1.004   1.1 0.932
1.144   1.011   1.113   1.355
1.005   1.035   0.819   0.532
1.08    1.049   1.087   0.939
0.919   1.152   0.882   0.679
0.916   0.849   1.238   0.764
0.936   0.844   0.984   0.764
1.015   0.952   1.121   1.343",header=T,sep="\t")
mut3=read.table(text="weight    length  feeding_amount  feeding_duration
0.959   1.023   0.980   1.291
1.139   0.937   0.724   0.769
1.212   1.022   1.041   1.026
1.187   0.910   0.852   0.618
1.059   1.040   0.851   1.530
1.074   0.947   1.017   0.888
0.861   0.961   0.924   0.937
0.926   0.909   0.892   1.900
0.960   1.034   0.925   1.349
0.881   0.831   1.008   1.168
0.900   1.081   0.952   0.929
1.029   1.023   0.765   0.925
1.120   0.844   0.871   1.202
0.913   0.903   1.091   1.186
0.866   0.982   1.193   1.409
1.007   1.011   0.747   1.674
1.061   1.036   1.097   1.001
1.065   1.064   1.210   0.784
1.054   0.931   1.085   1.372
1.001   0.850   1.303   1.027
0.995   0.960   0.783   1.304
0.884   1.024   0.933   0.930
0.915   0.854   1.019   1.114
0.846   1.143   0.923   1.983
0.993   1.029   0.736   1.192
0.942   1.098   1.099   1.200
1.090   1.027   1.109   1.208
1.009   0.958   1.264   1.727
1.088   0.860   1.261   0.686
0.915   1.046   0.834   0.944",header=T,sep="\t")
mut4=read.table(text="weight    length  feeding_amount  feeding_duration
1.303   1.035   1.626   2.349
1.38    0.978   1.574   1.109
1.347   1.014   1.536   1.393
1.422   1.12    1.646   1.183
1.237   1.015   1.52    0.976
1.347   0.965   1.73    1.197
1.351   0.989   1.553   1.939
1.44    0.925   1.821   0.54
1.52    1.051   1.591   0.997
1.115   1.166   1.6 1.106
1.432   0.935   1.493   0.883
1.287   1.005   1.545   2.594
1.093   1.108   1.666   1.743
1.308   1.11    1.514   1.938
1.299   0.931   1.399   2.809
1.337   1.177   1.562   0.957
1.378   1.149   1.509   1.002
1.124   1.208   1.935   1.106
1.354   1.047   1.386   0.54
1.203   0.811   1.228   1.293
1.401   1.119   1.457   1.119
1.238   1.039   1.536   0.796
1.351   1.101   1.753   1.273
1.345   0.972   1.327   0.966
1.473   1.191   1.505   1.015
1.253   0.876   1.34    1.32
1.304   1.328   1.288   0.564
1.261   0.993   1.501   2.302
1.304   1.106   1.627   1.017
1.202   1.148   1.506   1.31",header=T,sep="\t")
wt=1
#weight
sample_IDs=c("mutant1","mutant2","mutant3","mutant4")
metric=rep("weight",4)
var="weight"
m1=mut1$weight
m2=mut2$weight
m3=mut3$weight
m4=mut4$weight
mutant1=data.frame(group=rep("mutant1",30),value=m1)
mutant2=data.frame(group=rep("mutant2",30),value=m2)
mutant3=data.frame(group=rep("mutant3",30),value=m3)
mutant4=data.frame(group=rep("mutant4",30),value=m4)
df=rbind(mutant1,mutant2,mutant3,mutant4)
hist(df[,2], main=var, xlab="Ratio")

dev.copy(png,"Q2_weight_hist.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
ggplot(df,aes(x=group,y=value,color=group)) + scale_x_discrete(labels=c("1","2","3","4"))+labs(title=var,x=NULL,y="Ratio",color="BDNF mutant") + scale_color_manual(labels=c("1","2","3","4"),values=c("red","blue","orange","green")) +geom_point()+ geom_point(stat="summary",color="black",size=4, shape=18)+geom_errorbar(stat="summary",width=.5)+theme(text=element_text(size=24,face="bold"))
## No summary function supplied, defaulting to `mean_se()`
## No summary function supplied, defaulting to `mean_se()`

dev.copy(png,"Q2_weight.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
shapiro.test(df$value)
## 
##  Shapiro-Wilk normality test
## 
## data:  df$value
## W = 0.98032, p-value = 0.0763
m1=tidy(shapiro.test(mutant1$value))
m2=tidy(shapiro.test(mutant2$value))
m3=tidy(shapiro.test(mutant3$value))
m4=tidy(shapiro.test(mutant4$value))
pval_shapiro.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(t.test(mutant1$value,mu=wt)) 
m2=tidy(t.test(mutant2$value,mu=wt)) 
m3=tidy(t.test(mutant3$value,mu=wt)) 
m4=tidy(t.test(mutant4$value,mu=wt)) 
pval_t.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(wilcox.test(mutant1$value,mu=wt,exact=FALSE))
m2=tidy(wilcox.test(mutant2$value,mu=wt, exact=FALSE))
m3=tidy(wilcox.test(mutant3$value,mu=wt, exact=FALSE))
m4=tidy(wilcox.test(mutant4$value,mu=wt, exact=FALSE))
pval_w.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
number.tests=rep(4,4)
padj.t_bonferroni=pval_t.test*number.tests
padj.w_bonferroni=pval_w.test*number.tests
weight_pvalues=cbind(sample_IDs,metric,pval_shapiro.test,pval_t.test,padj.t_bonferroni,pval_w.test,padj.w_bonferroni)
colnames(weight_pvalues)=c("sample_ID","metric","pval_shapiro.test","pval_t.test","padj.t_bonferroni","pval_w.test","padj.w_bonferroni")
#length
sample_IDs=c("mutant1","mutant2","mutant3","mutant4")
metric=rep("length",4)
var="length"
m1=mut1$length
m2=mut2$length
m3=mut3$length
m4=mut4$length
mutant1=data.frame(group=rep("mutant1",30),value=m1)
mutant2=data.frame(group=rep("mutant2",30),value=m2)
mutant3=data.frame(group=rep("mutant3",30),value=m3)
mutant4=data.frame(group=rep("mutant4",30),value=m4)
df=rbind(mutant1,mutant2,mutant3,mutant4)
hist(df[,2], main=var, xlab="Ratio")

dev.copy(png,"Q2_length_hist.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
ggplot(df,aes(x=group,y=value,color=group)) + scale_x_discrete(labels=c("1","2","3","4"))+labs(title=var,x=NULL,y="Ratio",color="BDNF mutant") + scale_color_manual(labels=c("1","2","3","4"),values=c("red","blue","orange","green")) +geom_point()+ geom_point(stat="summary",color="black",size=4, shape=18)+geom_errorbar(stat="summary",width=.5)+theme(text=element_text(size=24,face="bold"))
## No summary function supplied, defaulting to `mean_se()`
## No summary function supplied, defaulting to `mean_se()`

dev.copy(png,"Q2_length.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
shapiro.test(df$value)
## 
##  Shapiro-Wilk normality test
## 
## data:  df$value
## W = 0.98514, p-value = 0.2116
m1=tidy(shapiro.test(mutant1$value))
m2=tidy(shapiro.test(mutant2$value))
m3=tidy(shapiro.test(mutant3$value))
m4=tidy(shapiro.test(mutant4$value))
pval_shapiro.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(t.test(mutant1$value,mu=wt)) 
m2=tidy(t.test(mutant2$value,mu=wt)) 
m3=tidy(t.test(mutant3$value,mu=wt)) 
m4=tidy(t.test(mutant4$value,mu=wt)) 
pval_t.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(wilcox.test(mutant1$value,mu=wt,exact=FALSE))
m2=tidy(wilcox.test(mutant2$value,mu=wt, exact=FALSE))
m3=tidy(wilcox.test(mutant3$value,mu=wt, exact=FALSE))
m4=tidy(wilcox.test(mutant4$value,mu=wt, exact=FALSE))
pval_w.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
number.tests=rep(4,4)
padj.t_bonferroni=pval_t.test*number.tests
padj.w_bonferroni=pval_w.test*number.tests
length_pvalues=cbind(sample_IDs,metric,pval_shapiro.test,pval_t.test,padj.t_bonferroni,pval_w.test,padj.w_bonferroni)
colnames(length_pvalues)=c("sample_ID","metric","pval_shapiro.test","pval_t.test","padj.t_bonferroni","pval_w.test","padj.w_bonferroni")
#feeding_amount
sample_IDs=c("mutant1","mutant2","mutant3","mutant4")
metric=rep("feeding_amount",4)
var="feeding amount"
m1=mut1$feeding_amount
m2=mut2$feeding_amount
m3=mut3$feeding_amount
m4=mut4$feeding_amount
mutant1=data.frame(group=rep("mutant1",30),value=m1)
mutant2=data.frame(group=rep("mutant2",30),value=m2)
mutant3=data.frame(group=rep("mutant3",30),value=m3)
mutant4=data.frame(group=rep("mutant4",30),value=m4)
df=rbind(mutant1,mutant2,mutant3,mutant4)
hist(df[,2], main=var, xlab="Ratio")

dev.copy(png,"Q2_feeding_amount_hist.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
ggplot(df,aes(x=group,y=value,color=group)) + scale_x_discrete(labels=c("1","2","3","4"))+labs(title=var,x=NULL,y="Ratio",color="BDNF mutant") + scale_color_manual(labels=c("1","2","3","4"),values=c("red","blue","orange","green")) +geom_point()+ geom_point(stat="summary",color="black",size=4, shape=18)+geom_errorbar(stat="summary",width=.5)+theme(text=element_text(size=24,face="bold"))
## No summary function supplied, defaulting to `mean_se()`
## No summary function supplied, defaulting to `mean_se()`

dev.copy(png,"Q2_feeding_amount.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
shapiro.test(df$value)
## 
##  Shapiro-Wilk normality test
## 
## data:  df$value
## W = 0.98745, p-value = 0.3364
m1=tidy(shapiro.test(mutant1$value))
m2=tidy(shapiro.test(mutant2$value))
m3=tidy(shapiro.test(mutant3$value))
m4=tidy(shapiro.test(mutant4$value))
pval_shapiro.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(t.test(mutant1$value,mu=wt)) 
m2=tidy(t.test(mutant2$value,mu=wt)) 
m3=tidy(t.test(mutant3$value,mu=wt)) 
m4=tidy(t.test(mutant4$value,mu=wt)) 
pval_t.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(wilcox.test(mutant1$value,mu=wt,exact=FALSE))
m2=tidy(wilcox.test(mutant2$value,mu=wt, exact=FALSE))
m3=tidy(wilcox.test(mutant3$value,mu=wt, exact=FALSE))
m4=tidy(wilcox.test(mutant4$value,mu=wt, exact=FALSE))
pval_w.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
number.tests=rep(4,4)
padj.t_bonferroni=pval_t.test*number.tests
padj.w_bonferroni=pval_w.test*number.tests
feeding_amount_pvalues=cbind(sample_IDs,metric,pval_shapiro.test,pval_t.test,padj.t_bonferroni,pval_w.test,padj.w_bonferroni)
colnames(feeding_amount_pvalues)=c("sample_ID","metric","pval_shapiro.test","pval_t.test","padj.t_bonferroni","pval_w.test","padj.w_bonferroni")
#feeding_duration
sample_IDs=c("mutant1","mutant2","mutant3","mutant4")
metric=rep("feeding_duration",4)
var="feeding duration"
m1=mut1$feeding_duration
m2=mut2$feeding_duration
m3=mut3$feeding_duration
m4=mut4$feeding_duration
mutant1=data.frame(group=rep("mutant1",30),value=m1)
mutant2=data.frame(group=rep("mutant2",30),value=m2)
mutant3=data.frame(group=rep("mutant3",30),value=m3)
mutant4=data.frame(group=rep("mutant4",30),value=m4)
df=rbind(mutant1,mutant2,mutant3,mutant4)
hist(df[,2], main=var, xlab="Ratio")

dev.copy(png,"Q2_feeding_duration_hist.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
ggplot(df,aes(x=group,y=value,color=group)) + scale_x_discrete(labels=c("1","2","3","4"))+labs(title=var,x=NULL,y="Ratio",color="BDNF mutant") + scale_color_manual(labels=c("1","2","3","4"),values=c("red","blue","orange","green")) +geom_point()+ geom_point(stat="summary",color="black",size=4, shape=18)+geom_errorbar(stat="summary",width=.5)+theme(text=element_text(size=24,face="bold"))
## No summary function supplied, defaulting to `mean_se()`
## No summary function supplied, defaulting to `mean_se()`

dev.copy(png,"Q2_feeding_duration.png")
## quartz_off_screen 
##                 3
dev.off()
## quartz_off_screen 
##                 2
shapiro.test(df$value)
## 
##  Shapiro-Wilk normality test
## 
## data:  df$value
## W = 0.89064, p-value = 6.706e-08
m1=tidy(shapiro.test(mutant1$value))
m2=tidy(shapiro.test(mutant2$value))
m3=tidy(shapiro.test(mutant3$value))
m4=tidy(shapiro.test(mutant4$value))
pval_shapiro.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(t.test(mutant1$value,mu=wt)) 
m2=tidy(t.test(mutant2$value,mu=wt)) 
m3=tidy(t.test(mutant3$value,mu=wt)) 
m4=tidy(t.test(mutant4$value,mu=wt)) 
pval_t.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
m1=tidy(wilcox.test(mutant1$value,mu=wt,exact=FALSE))
m2=tidy(wilcox.test(mutant2$value,mu=wt, exact=FALSE))
m3=tidy(wilcox.test(mutant3$value,mu=wt, exact=FALSE))
m4=tidy(wilcox.test(mutant4$value,mu=wt, exact=FALSE))
pval_w.test=rbind(m1$p.value,m2$p.value,m3$p.value,m4$p.value)
number.tests=rep(4,4)
padj.t_bonferroni=pval_t.test*number.tests
padj.w_bonferroni=pval_w.test*number.tests
feeding_duration_pvalues=cbind(sample_IDs,metric,pval_shapiro.test,pval_t.test,padj.t_bonferroni,pval_w.test,padj.w_bonferroni)
colnames(feeding_duration_pvalues)=c("sample_ID","metric","pval_shapiro.test","pval_t.test","padj.t_bonferroni","pval_w.test","padj.w_bonferroni")
#concatenate results
Q2.result=rbind(weight_pvalues,length_pvalues,feeding_amount_pvalues,feeding_duration_pvalues)
Q2.result.csv=write.csv(Q2.result, "~/Desktop/Q2.result.csv")