Introduction

This week, we’ll work out some Taylor Series expansions of popular functions.

For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion. Please submit your assignment as a R-Markdown document.

Function 1.

Taylor Series centered about \(k\) is given by the formula:
\[\begin{gather*} f(x) = f(k) + f'(k)(x-k) + \frac{f''(k)}{2!} + \cdot\cdot\cdot \\ = \sum_{n=0}^{\infty}\frac{f^{(n)}(k)}{n!}x^n \end{gather*}\]

If k=0 (centered about 0) it forms a Maclaurin Series:

\[\begin{gather*} 1 + x + x^2 + x^3 + \cdot\cdot\cdot \\ = \sum_{n = 0}^{\infty}x^n \ \ \ x \in (-1, 1) \end{gather*}\]

This forms a geometric series.

Function 2.

Any derivative of \(f(x) = e^x\) is \(e^x\)

Hence:
\(f^{(n)}(x)=e^x\)

When centered about 0:

\(f^{(n)}(0)=1\)

Using Maclaurin Series:

\[\begin{gather*} 1 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \cdot\cdot\cdot \\ = \sum_{n = 0}^{\infty}(-1)^{n+1}\frac{x^n}{n} = \sum_{n = 0}^{\infty}(-1)^{n-1}\frac{x^n}{n} \ \ \ x \in (-1, 1] \end{gather*}\]

\[\begin{gather*} 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdot\cdot\cdot \\ = \sum_{n = 0}^{\infty} \frac{x^n}{n!} \ \ \ x \in \mathbb{R} \end{gather*}\]

Function 3.

The first four derivatives of at \(x=0\):
\(f(x) = ln(x)\)\(f(0) = 0\)
\(f^{(1)}(x) = \frac{1}{1+x}\)\(f^{(1)}(0) = 1\)
\(f^{(2)}(x) = \frac{-1}{(1+x)^2}\)\(f^{(2)}(0) = -1\)
\(f^{(3)}(x) = \frac{2}{(1+x)^3}\)\(f^{(3)}(0) = 2\)
\(f^{(4)}(x) = \frac{-6}{(1+x)^4}\)\(f^{(4)}(0) = -6\)

At \(x=0\) Taylor’s Series becomes Maclaurin Series:

\[\begin{gather*} 0 + x - \frac{1}{2!}x^2 + \frac{2}{3!}x^3 - \frac{6}{4!}x^4 + \cdot\cdot\cdot \\ = \sum_{n = 0}^{\infty}(-1)^{n+1}\frac{x^n}{n} = \sum_{n = 0}^{\infty}(-1)^{n-1}\frac{x^n}{n} \ \ \ x \in (-1, 1] \end{gather*}\]