# create country wave variable
ess_qog2 <- ess_qog2 %>%
unite(country_wave, c(country_name, name), remove = FALSE)
knitr::kable(table(ess_qog2$country_name, ess_qog2$name))
| ESS1 | ESS2 | ESS3 | ESS4 | ESS5 | ESS6 | ESS7 | ESS8 | ESS9 | |
|---|---|---|---|---|---|---|---|---|---|
| Albania | 0 | 0 | 0 | 0 | 0 | 1201 | 0 | 0 | 0 |
| Austria | 2257 | 2256 | 2405 | 0 | 0 | 0 | 1795 | 2010 | 2499 |
| Belgium | 1899 | 1778 | 1798 | 1760 | 1704 | 1869 | 1769 | 1766 | 1767 |
| Bulgaria | 0 | 0 | 1400 | 2230 | 2434 | 2260 | 0 | 0 | 2198 |
| Croatia | 0 | 0 | 0 | 1484 | 1649 | 0 | 0 | 0 | 1810 |
| Cyprus | 0 | 0 | 995 | 1215 | 1083 | 1116 | 0 | 0 | 781 |
| Czechia | 1360 | 3026 | 0 | 2018 | 2386 | 2009 | 2148 | 2269 | 2398 |
| Denmark | 1506 | 1487 | 1505 | 1610 | 1576 | 1650 | 1502 | 0 | 1572 |
| Estonia | 0 | 1989 | 1517 | 1661 | 1793 | 2380 | 2051 | 2019 | 1904 |
| Finland | 2000 | 2022 | 1896 | 2195 | 1878 | 2197 | 2087 | 1925 | 1755 |
| France | 1503 | 1806 | 1986 | 2073 | 1728 | 1968 | 1917 | 2070 | 2010 |
| Germany | 2919 | 2870 | 2916 | 2751 | 3031 | 2958 | 3045 | 2852 | 2358 |
| Greece | 2566 | 2406 | 0 | 2072 | 2715 | 0 | 0 | 0 | 0 |
| Hungary | 1685 | 1498 | 1518 | 1544 | 1561 | 2014 | 1698 | 1614 | 1661 |
| Iceland | 0 | 579 | 0 | 0 | 0 | 752 | 0 | 880 | 861 |
| Ireland | 2046 | 2286 | 1800 | 1764 | 2576 | 2628 | 2390 | 2757 | 2216 |
| Israel | 2499 | 0 | 0 | 2490 | 2294 | 2508 | 2562 | 2557 | 0 |
| Italy | 1207 | 1529 | 0 | 0 | 0 | 960 | 0 | 2626 | 2745 |
| Latvia | 0 | 0 | 1960 | 1980 | 0 | 0 | 0 | 0 | 918 |
| Lithuania | 0 | 0 | 0 | 0 | 1677 | 2109 | 2250 | 2122 | 1835 |
| Luxembourg | 1552 | 1635 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Montenegro | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1200 |
| Netherlands | 2364 | 1881 | 1889 | 1778 | 1829 | 1845 | 1919 | 1681 | 1673 |
| Norway | 2036 | 1760 | 1750 | 1549 | 1548 | 1624 | 1436 | 1545 | 1406 |
| Poland | 2110 | 1716 | 1721 | 1619 | 1751 | 1898 | 1615 | 1694 | 1500 |
| Portugal | 1511 | 2052 | 2222 | 2367 | 2150 | 2151 | 1265 | 1270 | 1055 |
| Romania | 0 | 0 | 2139 | 2146 | 0 | 0 | 0 | 0 | 0 |
| Russia | 0 | 0 | 2437 | 2512 | 2595 | 2484 | 0 | 2430 | 0 |
| Serbia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2043 |
| Slovakia | 0 | 1512 | 1766 | 1810 | 1856 | 1847 | 0 | 0 | 1083 |
| Slovenia | 1519 | 1442 | 1476 | 1286 | 1403 | 1257 | 1224 | 1307 | 1318 |
| Spain | 1729 | 1663 | 1876 | 2576 | 1885 | 1889 | 1925 | 1958 | 1668 |
| Sweden | 1999 | 1948 | 1927 | 1830 | 1497 | 1847 | 1791 | 1551 | 1539 |
| Switzerland | 2040 | 2141 | 1804 | 1819 | 1506 | 1493 | 1532 | 1525 | 1542 |
| Turkey | 0 | 1856 | 0 | 2416 | 0 | 0 | 0 | 0 | 0 |
| Ukraine | 0 | 2031 | 2002 | 1845 | 1931 | 2178 | 0 | 0 | 0 |
| United Kingdom | 2052 | 1897 | 2394 | 2352 | 2422 | 2286 | 2264 | 1959 | 2204 |
# create group mean centered macro variables
ess_qog2 <- ess_qog2 %>%
group_by(country_name) %>%
mutate(gti_c = mean(voh_gti, na.rm = T),
gti_t = voh_gti - gti_c,
gdp_c = mean(mad_gdppc, na.rm = T),
gpd_t = mad_gdppc - gdp_c,
unemployment_c = mean(wdi_unempilo, na.rm = T),
unemployment_t = wdi_unempilo - unemployment_c) %>%
ungroup()
# variables used in analysis
ess_qog_final <- ess_qog2 %>%
select(trstprl,
trstplt,
trstprt,
trstlgl,
trstplc,
agea,
#agea_z,
gender_dummy,
income_dummy,
education_dummy,
winlose,
gti_c,
gti_t,
gdp_c,
gpd_t,
unemployment_c,
unemployment_t,
essround,
country_name,
country_wave,
all_rounds)
#descr(ess_qog_final, stats = c("mean", "sd", "min", "max", "n" ), transpose = TRUE, headings = FALSE)
dfSummary(ess_qog_final, plain.ascii = FALSE, style = "grid",
graph.magnif = 0.75, valid.col = FALSE, tmp.img.dir = "/tmp"
)
## temporary images written to 'C:\tmp'
Dimensions: 435203 x 20
Duplicates: 3153
| No | Variable | Label | Stats / Values | Freqs (% of Valid) | Graph | Missing |
|---|---|---|---|---|---|---|
| 1 | trstprl [numeric] |
Trust in country’s parliament | Mean (sd) : 4.4 (2.6) min < med < max: 0 < 5 < 10 IQR (CV) : 4 (0.6) |
11 distinct values | 12230 (2.81%) |
|
| 2 | trstplt [numeric] |
Trust in politicians | Mean (sd) : 3.5 (2.4) min < med < max: 0 < 3 < 10 IQR (CV) : 4 (0.7) |
11 distinct values | 9363 (2.15%) |
|
| 3 | trstprt [numeric] |
Trust in political parties | Mean (sd) : 3.4 (2.4) min < med < max: 0 < 3 < 10 IQR (CV) : 4 (0.7) |
11 distinct values | 52897 (12.15%) |
|
| 4 | trstlgl [numeric] |
Trust in the legal system | Mean (sd) : 5.1 (2.7) min < med < max: 0 < 5 < 10 IQR (CV) : 4 (0.5) |
11 distinct values | 11927 (2.74%) |
|
| 5 | trstplc [numeric] |
Trust in the police | Mean (sd) : 5.9 (2.6) min < med < max: 0 < 6 < 10 IQR (CV) : 4 (0.4) |
11 distinct values | 5639 (1.3%) |
|
| 6 | agea [numeric] |
Age of respondent, calculated | Mean (sd) : 48.2 (18.6) min < med < max: 13 < 48 < 123 IQR (CV) : 30 (0.4) |
96 distinct values | 1998 (0.46%) |
|
| 7 | gender_dummy [numeric] |
Min : 0 Mean : 0.5 Max : 1 |
0 : 234145 (53.8%) 1 : 200723 (46.2%) |
335 (0.08%) |
||
| 8 | income_dummy [character] |
1. Comfortable 2. Difficult |
308884 (71.0%) 126319 (29.0%) |
0 (0%) |
||
| 9 | education_dummy [character] |
1. Basic education 2. Higher level education |
317666 (73.0%) 117537 (27.0%) |
0 (0%) |
||
| 10 | winlose [numeric] |
Mean (sd) : 0.5 (0.5) min < med < max: 0 < 1 < 1 IQR (CV) : 1 (1) |
0.00 : 114651 (49.0%) 0.33!: 493 ( 0.2%) 0.50 : 384 ( 0.2%) 0.67!: 741 ( 0.3%) 1.00 : 117768 (50.3%) ! rounded |
201166 (46.22%) |
||
| 11 | gti_c [numeric] |
Mean (sd) : 1.7 (1.8) min < med < max: 0 < 1 < 6.2 IQR (CV) : 2.3 (1) |
36 distinct values | 3187 (0.73%) |
||
| 12 | gti_t [numeric] |
Mean (sd) : 0 (0.8) min < med < max: -2.1 < -0.1 < 3.2 IQR (CV) : 0.7 (8532532045024685) |
189 distinct values | 3187 (0.73%) |
||
| 13 | gdp_c [numeric] |
Mean (sd) : 33449.2 (13272.4) min < med < max: 9592 < 33999.5 < 74819.4 IQR (CV) : 17093.5 (0.4) |
37 distinct values | 0 (0%) |
||
| 14 | gpd_t [numeric] |
Mean (sd) : 0 (3230.5) min < med < max: -15978.9 < 225.8 < 13235.4 IQR (CV) : 2785.2 (1424256512302300) |
228 distinct values | 0 (0%) |
||
| 15 | unemployment_c [numeric] |
Mean (sd) : 7.9 (2.7) min < med < max: 3.7 < 7.5 < 16.2 IQR (CV) : 3.2 (0.3) |
37 distinct values | 0 (0%) |
||
| 16 | unemployment_t [numeric] |
Mean (sd) : 0 (2.6) min < med < max: -7.7 < -0.1 < 8.6 IQR (CV) : 2.4 (-20544551037071344) |
228 distinct values | 0 (0%) |
||
| 17 | essround [numeric] |
Mean (sd) : 5 (2.5) min < med < max: 1 < 5 < 9 IQR (CV) : 4 (0.5) |
1 : 42359 ( 9.7%) 2 : 49066 (11.3%) 3 : 47099 (10.8%) 4 : 56752 (13.0%) 5 : 52458 (12.0%) 6 : 53378 (12.3%) 7 : 40185 ( 9.2%) 8 : 44387 (10.2%) 9 : 49519 (11.4%) |
0 (0%) |
||
| 18 | country_name [character] |
1. Germany 2. Ireland 3. United Kingdom 4. Finland 5. Czechia 6. Spain 7. France 8. Netherlands 9. Belgium 10. Portugal [ 27 others ] |
25700 ( 5.9%) 20463 ( 4.7%) 19830 ( 4.6%) 17955 ( 4.1%) 17614 ( 4.0%) 17169 ( 3.9%) 17061 ( 3.9%) 16859 ( 3.9%) 16110 ( 3.7%) 16043 ( 3.7%) 250399 (57.5%) |
0 (0%) |
||
| 19 | country_wave [character] |
1. Germany_ESS7 2. Germany_ESS5 3. Czechia_ESS2 4. Germany_ESS6 5. Germany_ESS1 6. Germany_ESS3 7. Germany_ESS2 8. Germany_ESS8 9. Ireland_ESS8 10. Germany_ESS4 [ 220 others ] |
3045 ( 0.7%) 3031 ( 0.7%) 3026 ( 0.7%) 2958 ( 0.7%) 2919 ( 0.7%) 2916 ( 0.7%) 2870 ( 0.7%) 2852 ( 0.7%) 2757 ( 0.6%) 2751 ( 0.6%) 406078 (93.3%) |
0 (0%) |
||
| 20 | all_rounds [numeric] |
Min : 0 Mean : 0.6 Max : 1 |
0 : 179379 (41.2%) 1 : 255824 (58.8%) |
0 (0%) |
# standardize all continuous covariates
ess_qog_final <- ess_qog_final %>%
mutate(
agea_z = r2sd(agea),
gti_c_z = r2sd(gti_c),
gti_t_z = r2sd(gti_t),
gdp_c_z = r2sd(gdp_c),
gpd_t_z = r2sd(gpd_t),
unemployment_c_z = r2sd(unemployment_c),
unemployment_t_z = r2sd(unemployment_t)
)
# null model full sample minus kosovo
# trust in parliament
if (file.exists("prl_null.rds")) {
prl_null <- readRDS("prl_null.rds")
} else {
prl_null <- lmer(trstprl ~
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(prl_null, file = "prl_null.rds")
}
# trust in politicians
if (file.exists("plt_null.rds")) {
plt_null <- readRDS("plt_null.rds")
} else {
plt_null <- lmer(trstplt ~
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(plt_null, file = "plt_null.rds")
}
# trust in parties
if (file.exists("prt_null.rds")) {
prt_null <- readRDS("prt_null.rds")
} else {
prt_null <- lmer(trstprt ~
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(prt_null, file = "prt_null.rds")
}
# trust in legal system
if (file.exists("lgl_null.rds")) {
lgl_null <- readRDS("lgl_null.rds")
} else {
lgl_null <- lmer(trstlgl ~
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(lgl_null, file = "lgl_null.rds")
}
# trust in police
if (file.exists("plc_null.rds")) {
plc_null <- readRDS("plc_null.rds")
} else {
plc_null <- lmer(trstplc ~
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(plc_null, file = "plc_null.rds")
}
# VarCorr(parl_mod0) %>% as_data_frame() %>%
# mutate(icc=vcov/sum(vcov)) %>%
# select(grp, vcov, icc)
#
# VarCorr(politicians_mod0) %>% as_data_frame() %>%
# mutate(icc=vcov/sum(vcov)) %>%
# select(grp, vcov, icc)
#
# VarCorr(parties_mod0) %>% as_data_frame() %>%
# mutate(icc=vcov/sum(vcov)) %>%
# select(grp, vcov, icc)
#
# VarCorr(legal_mod0) %>% as_data_frame() %>%
# mutate(icc=vcov/sum(vcov)) %>%
# select(grp, vcov, icc)
#
# VarCorr(police_mod0) %>% as_data_frame() %>%
# mutate(icc=vcov/sum(vcov)) %>%
# select(grp, vcov, icc)
tab_model(prl_null, plt_null, prt_null, lgl_null, plc_null)
|
Trust in country’s parliament |
Trust in politicians |
Trust in political parties |
Trust in the legal system | Trust in the police | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.26 | 3.90 – 4.61 | <0.001 | 3.36 | 3.04 – 3.67 | <0.001 | 3.33 | 3.02 – 3.65 | <0.001 | 4.90 | 4.50 – 5.30 | <0.001 | 5.74 | 5.36 – 6.12 | <0.001 |
| Random Effects | |||||||||||||||
| σ2 | 5.61 | 4.85 | 4.72 | 5.88 | 5.57 | ||||||||||
| τ00 | 0.26 country_wave | 0.17 country_wave | 0.16 country_wave | 0.17 country_wave | 0.15 country_wave | ||||||||||
| 1.15 country_name | 0.92 country_name | 0.92 country_name | 1.51 country_name | 1.38 country_name | |||||||||||
| ICC | 0.20 | 0.18 | 0.19 | 0.22 | 0.22 | ||||||||||
| N | 230 country_wave | 230 country_wave | 208 country_wave | 230 country_wave | 230 country_wave | ||||||||||
| 37 country_name | 37 country_name | 37 country_name | 37 country_name | 37 country_name | |||||||||||
| Observations | 422973 | 425840 | 382306 | 423276 | 429564 | ||||||||||
| Marginal R2 / Conditional R2 | 0.000 / 0.201 | 0.000 / 0.184 | 0.000 / 0.186 | 0.000 / 0.222 | 0.000 / 0.216 | ||||||||||
#show.ci = FALSE,
#p.style = "stars")
# small model full sample minus kosovo
# trust in parliament
if (file.exists("prl_small.rds")) {
prl_small <- readRDS("prl_small.rds")
} else {
prl_small <- lmer(trstprl ~
gti_c_z + gti_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(prl_small, file = "prl_small.rds")
}
# trust in politicians
if (file.exists("plt_small.rds")) {
plt_small <- readRDS("plt_small.rds")
} else {
plt_small <- lmer(trstplt ~
gti_c_z + gti_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(plt_small, file = "plt_small.rds")
}
# trust in parties
if (file.exists("prt_small.rds")) {
prt_small <- readRDS("prt_small.rds")
} else {
prt_small <- lmer(trstprt ~
gti_c_z + gti_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(prt_small, file = "prt_small.rds")
}
# trust in legal system
if (file.exists("lgl_small.rds")) {
lgl_small <- readRDS("lgl_small.rds")
} else {
lgl_small <- lmer(trstlgl ~
gti_c_z + gti_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(lgl_small, file = "lgl_small.rds")
}
# trust in police
if (file.exists("plc_small.rds")) {
plc_small <- readRDS("plc_small.rds")
} else {
plc_small <- lmer(trstplc ~
gti_c_z + gti_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(plc_small, file = "plc_small.rds")
}
tab_model(prl_small, plt_small, prt_small, lgl_small, plc_small)
|
Trust in country’s parliament |
Trust in politicians |
Trust in political parties |
Trust in the legal system | Trust in the police | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.54 | 4.13 – 4.95 | <0.001 | 3.56 | 3.20 – 3.92 | <0.001 | 3.40 | 3.04 – 3.75 | <0.001 | 4.92 | 4.48 – 5.36 | <0.001 | 5.60 | 5.18 – 6.02 | <0.001 |
| gti_c_z | 0.28 | -0.42 – 0.98 | 0.438 | -0.08 | -0.71 – 0.54 | 0.792 | -0.10 | -0.72 – 0.53 | 0.768 | 0.41 | -0.40 – 1.22 | 0.326 | 0.01 | -0.77 – 0.80 | 0.971 |
| gti_t_z | 0.11 | -0.03 – 0.24 | 0.121 | 0.12 | 0.00 – 0.23 | 0.042 | 0.11 | -0.00 – 0.22 | 0.060 | 0.12 | 0.02 – 0.23 | 0.025 | -0.08 | -0.17 – 0.00 | 0.059 |
| essround [2] | -0.22 | -0.50 – 0.06 | 0.120 | -0.18 | -0.41 – 0.04 | 0.115 | -0.14 | -0.36 – 0.08 | 0.203 | -0.12 | -0.30 – 0.06 | 0.203 | |||
| essround [3] | -0.24 | -0.52 – 0.05 | 0.100 | -0.22 | -0.45 – 0.02 | 0.069 | -0.04 | -0.26 – 0.17 | 0.696 | -0.03 | -0.26 – 0.19 | 0.765 | -0.09 | -0.27 – 0.09 | 0.345 |
| essround [4] | -0.37 | -0.64 – -0.10 | 0.008 | -0.29 | -0.52 – -0.07 | 0.011 | -0.12 | -0.33 – 0.09 | 0.269 | -0.11 | -0.32 – 0.11 | 0.338 | -0.10 | -0.28 – 0.07 | 0.254 |
| essround [5] | -0.59 | -0.86 – -0.31 | <0.001 | -0.43 | -0.66 – -0.20 | <0.001 | -0.28 | -0.49 – -0.07 | 0.009 | -0.19 | -0.40 – 0.03 | 0.093 | -0.06 | -0.23 – 0.12 | 0.524 |
| essround [6] | -0.63 | -0.91 – -0.35 | <0.001 | -0.49 | -0.72 – -0.26 | <0.001 | -0.33 | -0.55 – -0.12 | 0.002 | -0.21 | -0.43 – 0.01 | 0.062 | 0.06 | -0.12 – 0.24 | 0.510 |
| essround [7] | -0.39 | -0.68 – -0.10 | 0.008 | -0.38 | -0.62 – -0.14 | 0.002 | -0.21 | -0.44 – 0.02 | 0.073 | -0.06 | -0.29 – 0.17 | 0.620 | 0.15 | -0.04 – 0.34 | 0.112 |
| essround [8] | -0.16 | -0.45 – 0.14 | 0.295 | -0.17 | -0.41 – 0.07 | 0.172 | -0.01 | -0.24 – 0.22 | 0.918 | 0.17 | -0.06 – 0.40 | 0.144 | 0.51 | 0.32 – 0.70 | <0.001 |
| essround [9] | -0.10 | -0.38 – 0.18 | 0.472 | -0.06 | -0.30 – 0.17 | 0.589 | 0.07 | -0.14 – 0.29 | 0.507 | 0.28 | 0.05 – 0.50 | 0.015 | 0.60 | 0.42 – 0.78 | <0.001 |
| Random Effects | |||||||||||||||
| σ2 | 5.61 | 4.85 | 4.73 | 5.88 | 5.57 | ||||||||||
| τ00 | 0.22 country_wave | 0.15 country_wave | 0.14 country_wave | 0.14 country_wave | 0.09 country_wave | ||||||||||
| 1.12 country_name | 0.89 country_name | 0.91 country_name | 1.53 country_name | 1.45 country_name | |||||||||||
| ICC | 0.19 | 0.18 | 0.18 | 0.22 | 0.22 | ||||||||||
| N | 228 country_wave | 228 country_wave | 207 country_wave | 228 country_wave | 228 country_wave | ||||||||||
| 36 country_name | 36 country_name | 36 country_name | 36 country_name | 36 country_name | |||||||||||
| Observations | 420217 | 422916 | 380832 | 420327 | 426430 | ||||||||||
| Marginal R2 / Conditional R2 | 0.009 / 0.199 | 0.005 / 0.181 | 0.005 / 0.186 | 0.009 / 0.228 | 0.008 / 0.223 | ||||||||||
#show.ci = FALSE,
#p.style = "stars"
#)
# full model full sample minus kosovo
# trust in parliament
if (file.exists("prl_full.rds")) {
prl_full <- readRDS("prl_full.rds")
} else {
prl_full <- lmer(trstprl ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(prl_full, file = "prl_full.rds")
}
# trust in politicians
if (file.exists("plt_full.rds")) {
plt_full <- readRDS("plt_full.rds")
} else {
plt_full <- lmer(trstplt ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(plt_full, file = "plt_full.rds")
}
# trust in parties
if (file.exists("prt_full.rds")) {
prt_full <- readRDS("prt_full.rds")
} else {
prt_full <- lmer(trstprt ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(prt_full, file = "prt_full.rds")
}
# trust in legal system
if (file.exists("lgl_full.rds")) {
lgl_full <- readRDS("lgl_full.rds")
} else {
lgl_full <- lmer(trstlgl ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(lgl_full, file = "lgl_full.rds")
}
# trust in police
if (file.exists("plc_full.rds")) {
plc_full <- readRDS("plc_full.rds")
} else {
plc_full <- lmer(trstplc ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), ess_qog_final)
saveRDS(plc_full, file = "plc_full.rds")
}
tab_model(prl_full, plt_full, prt_full, lgl_full, plc_full)
|
Trust in country’s parliament |
Trust in politicians |
Trust in political parties |
Trust in the legal system | Trust in the police | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 5.23 | 4.89 – 5.56 | <0.001 | 4.23 | 3.96 – 4.50 | <0.001 | 3.96 | 3.71 – 4.21 | <0.001 | 5.48 | 5.14 – 5.83 | <0.001 | 6.07 | 5.75 – 6.39 | <0.001 |
|
Age of respondent,calculated |
-0.02 | -0.04 – -0.01 | 0.003 | 0.06 | 0.05 – 0.08 | <0.001 | -0.04 | -0.05 – -0.02 | <0.001 | -0.18 | -0.19 – -0.16 | <0.001 | 0.23 | 0.22 – 0.25 | <0.001 |
| gender dummy | 0.09 | 0.07 – 0.10 | <0.001 | -0.05 | -0.06 – -0.03 | <0.001 | -0.02 | -0.04 – -0.01 | 0.001 | 0.02 | 0.00 – 0.03 | 0.022 | -0.15 | -0.17 – -0.14 | <0.001 |
| income dummy: Difficult | -0.55 | -0.57 – -0.54 | <0.001 | -0.51 | -0.52 – -0.49 | <0.001 | -0.47 | -0.48 – -0.45 | <0.001 | -0.54 | -0.56 – -0.53 | <0.001 | -0.50 | -0.52 – -0.48 | <0.001 |
|
education dummy: Higher level education |
0.46 | 0.44 – 0.48 | <0.001 | 0.24 | 0.22 – 0.26 | <0.001 | 0.17 | 0.16 – 0.19 | <0.001 | 0.43 | 0.41 – 0.45 | <0.001 | 0.14 | 0.12 – 0.16 | <0.001 |
| gti c z | 0.17 | -0.32 – 0.66 | 0.490 | -0.14 | -0.52 – 0.23 | 0.462 | -0.15 | -0.54 – 0.23 | 0.441 | 0.32 | -0.22 – 0.86 | 0.243 | -0.06 | -0.58 – 0.46 | 0.820 |
| gti t z | -0.00 | -0.12 – 0.11 | 0.956 | 0.04 | -0.06 – 0.13 | 0.469 | 0.03 | -0.07 – 0.12 | 0.576 | 0.05 | -0.05 – 0.15 | 0.314 | -0.10 | -0.18 – -0.01 | 0.031 |
| gdp c z | 1.17 | 0.60 – 1.74 | <0.001 | 1.06 | 0.63 – 1.50 | <0.001 | 1.05 | 0.60 – 1.49 | <0.001 | 1.41 | 0.78 – 2.03 | <0.001 | 1.68 | 1.08 – 2.29 | <0.001 |
| gpd t z | 0.59 | 0.41 – 0.77 | <0.001 | 0.45 | 0.30 – 0.60 | <0.001 | 0.48 | 0.30 – 0.65 | <0.001 | 0.32 | 0.17 – 0.48 | <0.001 | 0.03 | -0.10 – 0.17 | 0.624 |
| unemployment c z | -0.05 | -0.59 – 0.49 | 0.857 | -0.31 | -0.72 – 0.10 | 0.139 | -0.32 | -0.74 – 0.10 | 0.139 | -0.24 | -0.83 – 0.35 | 0.426 | 0.19 | -0.38 – 0.76 | 0.511 |
| unemployment t z | -0.20 | -0.33 – -0.07 | 0.002 | -0.18 | -0.29 – -0.07 | 0.001 | -0.22 | -0.34 – -0.10 | <0.001 | -0.10 | -0.22 – 0.01 | 0.076 | -0.02 | -0.11 – 0.08 | 0.766 |
| as.factor(essround)2 | -0.35 | -0.59 – -0.12 | 0.004 | -0.29 | -0.49 – -0.09 | 0.005 | -0.21 | -0.42 – -0.00 | 0.046 | -0.12 | -0.30 – 0.07 | 0.214 | |||
| as.factor(essround)3 | -0.63 | -0.89 – -0.37 | <0.001 | -0.52 | -0.74 – -0.31 | <0.001 | -0.26 | -0.44 – -0.08 | 0.005 | -0.26 | -0.49 – -0.03 | 0.024 | -0.13 | -0.33 – 0.07 | 0.203 |
| as.factor(essround)4 | -0.96 | -1.23 – -0.69 | <0.001 | -0.75 | -0.98 – -0.52 | <0.001 | -0.49 | -0.69 – -0.30 | <0.001 | -0.44 | -0.68 – -0.20 | <0.001 | -0.16 | -0.37 – 0.05 | 0.130 |
| as.factor(essround)5 | -1.04 | -1.32 – -0.75 | <0.001 | -0.75 | -0.98 – -0.51 | <0.001 | -0.48 | -0.68 – -0.27 | <0.001 | -0.46 | -0.71 – -0.21 | <0.001 | -0.12 | -0.34 – 0.10 | 0.278 |
| as.factor(essround)6 | -1.11 | -1.40 – -0.82 | <0.001 | -0.82 | -1.07 – -0.58 | <0.001 | -0.55 | -0.76 – -0.34 | <0.001 | -0.50 | -0.76 – -0.24 | <0.001 | 0.00 | -0.23 – 0.23 | 0.998 |
| as.factor(essround)7 | -1.02 | -1.33 – -0.71 | <0.001 | -0.83 | -1.09 – -0.58 | <0.001 | -0.55 | -0.78 – -0.32 | <0.001 | -0.44 | -0.71 – -0.16 | 0.002 | 0.06 | -0.18 – 0.29 | 0.648 |
| as.factor(essround)8 | -0.92 | -1.23 – -0.61 | <0.001 | -0.74 | -1.00 – -0.48 | <0.001 | -0.48 | -0.71 – -0.25 | <0.001 | -0.29 | -0.56 – -0.01 | 0.042 | 0.39 | 0.15 – 0.63 | 0.002 |
| as.factor(essround)9 | -1.08 | -1.42 – -0.75 | <0.001 | -0.80 | -1.08 – -0.53 | <0.001 | -0.59 | -0.83 – -0.34 | <0.001 | -0.30 | -0.59 – -0.01 | 0.046 | 0.46 | 0.20 – 0.71 | <0.001 |
| Random Effects | |||||||||||||||
| σ2 | 5.51 | 4.79 | 4.68 | 5.77 | 5.50 | ||||||||||
| τ00 | 0.15 country_wave | 0.11 country_wave | 0.09 country_wave | 0.12 country_wave | 0.09 country_wave | ||||||||||
| 0.53 country_name | 0.31 country_name | 0.33 country_name | 0.66 country_name | 0.62 country_name | |||||||||||
| ICC | 0.11 | 0.08 | 0.08 | 0.12 | 0.11 | ||||||||||
| N | 228 country_wave | 228 country_wave | 207 country_wave | 228 country_wave | 228 country_wave | ||||||||||
| 36 country_name | 36 country_name | 36 country_name | 36 country_name | 36 country_name | |||||||||||
| Observations | 418225 | 420924 | 379194 | 418351 | 424405 | ||||||||||
| Marginal R2 / Conditional R2 | 0.107 / 0.205 | 0.110 / 0.180 | 0.109 / 0.182 | 0.124 / 0.228 | 0.127 / 0.226 | ||||||||||
#show.ci = FALSE,
#p.style = "stars")
plot_model(prl_full)
plot_model(plt_full)
plot_model(prt_full)
plot_model(lgl_full)
plot_model(plc_full)
if (file.exists("prl_full_subset.rds")) {
prl_full_subset <- readRDS("prl_full_subset.rds")
} else {
prl_full_subset <- lmer(trstprl ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(prl_full_subset, file = "prl_full_subset.rds")
}
if (file.exists("plt_full_subset.rds")) {
plt_full_subset <- readRDS("plt_full_subset.rds")
} else {
plt_full_subset <- lmer(trstplt ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(plt_full_subset, file = "plt_full_subset.rds")
}
if (file.exists("prt_full_subset.rds")) {
prt_full_subset <- readRDS("prt_full_subset.rds")
} else {
prt_full_subset <- lmer(trstprt ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(prt_full_subset, file = "prt_full_subset.rds")
}
if (file.exists("lgl_full_subset.rds")) {
lgl_full_subset <- readRDS("lgl_full_subset.rds")
} else {
lgl_full_subset <- lmer(trstlgl ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(lgl_full_subset, file = "lgl_full_subset.rds")
}
if (file.exists("plc_full_subset.rds")) {
plc_full_subset <- readRDS("plc_full_subset.rds")
} else {
plc_full_subset <- lmer(trstplc ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(plc_full_subset, file = "plc_full_subset.rds")
}
tab_model(prl_full_subset, plt_full_subset, prt_full_subset, lgl_full_subset, plc_full_subset)
|
Trust in country’s parliament |
Trust in politicians |
Trust in political parties |
Trust in the legal system | Trust in the police | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 5.03 | 4.61 – 5.46 | <0.001 | 4.17 | 3.76 – 4.57 | <0.001 | 3.83 | 3.42 – 4.24 | <0.001 | 5.11 | 4.67 – 5.56 | <0.001 | 5.89 | 5.52 – 6.26 | <0.001 |
|
Age of respondent,calculated |
-0.11 | -0.13 – -0.09 | <0.001 | -0.01 | -0.02 – 0.01 | 0.406 | -0.14 | -0.15 – -0.12 | <0.001 | -0.29 | -0.31 – -0.28 | <0.001 | 0.20 | 0.18 – 0.22 | <0.001 |
| gender dummy | 0.14 | 0.12 – 0.16 | <0.001 | -0.05 | -0.06 – -0.03 | <0.001 | -0.02 | -0.04 – -0.00 | 0.034 | 0.08 | 0.06 – 0.09 | <0.001 | -0.12 | -0.14 – -0.11 | <0.001 |
| income dummy: Difficult | -0.65 | -0.68 – -0.63 | <0.001 | -0.59 | -0.61 – -0.57 | <0.001 | -0.55 | -0.57 – -0.52 | <0.001 | -0.60 | -0.62 – -0.58 | <0.001 | -0.54 | -0.57 – -0.52 | <0.001 |
|
education dummy: Higher level education |
0.60 | 0.57 – 0.62 | <0.001 | 0.32 | 0.30 – 0.34 | <0.001 | 0.22 | 0.20 – 0.24 | <0.001 | 0.58 | 0.56 – 0.60 | <0.001 | 0.22 | 0.20 – 0.24 | <0.001 |
| gti c z | -0.09 | -0.95 – 0.78 | 0.842 | -0.03 | -0.88 – 0.83 | 0.952 | -0.02 | -0.92 – 0.88 | 0.962 | 0.14 | -0.82 – 1.10 | 0.777 | 0.03 | -0.77 – 0.83 | 0.950 |
| gti t z | 0.00 | -0.10 – 0.11 | 0.946 | 0.05 | -0.04 – 0.15 | 0.273 | 0.03 | -0.06 – 0.12 | 0.509 | 0.06 | -0.02 – 0.15 | 0.154 | -0.12 | -0.19 – -0.04 | 0.002 |
| gdp c z | 1.06 | 0.26 – 1.86 | 0.009 | 0.88 | 0.09 – 1.67 | 0.028 | 0.88 | 0.05 – 1.71 | 0.038 | 1.09 | 0.20 – 1.98 | 0.016 | 1.01 | 0.27 – 1.74 | 0.007 |
| gpd t z | 0.49 | 0.33 – 0.65 | <0.001 | 0.39 | 0.25 – 0.53 | <0.001 | 0.41 | 0.25 – 0.57 | <0.001 | 0.20 | 0.08 – 0.33 | 0.002 | -0.11 | -0.22 – 0.00 | 0.054 |
| unemployment c z | -0.20 | -0.99 – 0.59 | 0.620 | -0.54 | -1.32 – 0.23 | 0.171 | -0.58 | -1.41 – 0.24 | 0.163 | -0.46 | -1.34 – 0.42 | 0.304 | 0.10 | -0.63 – 0.83 | 0.792 |
| unemployment t z | -0.26 | -0.38 – -0.14 | <0.001 | -0.20 | -0.31 – -0.09 | <0.001 | -0.26 | -0.38 – -0.15 | <0.001 | -0.14 | -0.24 – -0.05 | 0.004 | -0.07 | -0.15 – 0.02 | 0.136 |
| as.factor(essround)2 | -0.45 | -0.69 – -0.22 | <0.001 | -0.36 | -0.57 – -0.16 | 0.001 | -0.14 | -0.33 – 0.05 | 0.143 | 0.05 | -0.12 – 0.21 | 0.559 | |||
| as.factor(essround)3 | -0.59 | -0.85 – -0.34 | <0.001 | -0.51 | -0.73 – -0.28 | <0.001 | -0.16 | -0.36 – 0.04 | 0.110 | -0.11 | -0.31 – 0.09 | 0.266 | 0.13 | -0.05 – 0.31 | 0.150 |
| as.factor(essround)4 | -0.83 | -1.10 – -0.55 | <0.001 | -0.68 | -0.92 – -0.44 | <0.001 | -0.37 | -0.58 – -0.16 | 0.001 | -0.21 | -0.42 – 0.00 | 0.055 | 0.16 | -0.03 – 0.35 | 0.105 |
| as.factor(essround)5 | -0.85 | -1.13 – -0.56 | <0.001 | -0.64 | -0.89 – -0.40 | <0.001 | -0.31 | -0.53 – -0.09 | 0.006 | -0.19 | -0.41 – 0.04 | 0.099 | 0.27 | 0.07 – 0.46 | 0.008 |
| as.factor(essround)6 | -0.85 | -1.14 – -0.55 | <0.001 | -0.64 | -0.90 – -0.38 | <0.001 | -0.30 | -0.53 – -0.07 | 0.011 | -0.15 | -0.38 – 0.08 | 0.208 | 0.40 | 0.20 – 0.61 | <0.001 |
| as.factor(essround)7 | -0.89 | -1.19 – -0.59 | <0.001 | -0.78 | -1.05 – -0.52 | <0.001 | -0.40 | -0.64 – -0.16 | 0.001 | -0.20 | -0.44 – 0.04 | 0.095 | 0.40 | 0.19 – 0.61 | <0.001 |
| as.factor(essround)8 | -0.78 | -1.09 – -0.48 | <0.001 | -0.71 | -0.98 – -0.43 | <0.001 | -0.34 | -0.59 – -0.10 | 0.007 | -0.10 | -0.35 – 0.14 | 0.420 | 0.73 | 0.51 – 0.94 | <0.001 |
| as.factor(essround)9 | -0.93 | -1.26 – -0.60 | <0.001 | -0.73 | -1.02 – -0.44 | <0.001 | -0.42 | -0.69 – -0.15 | 0.002 | -0.02 | -0.28 – 0.24 | 0.874 | 0.84 | 0.61 – 1.07 | <0.001 |
| Random Effects | |||||||||||||||
| σ2 | 5.12 | 4.52 | 4.34 | 5.29 | 4.84 | ||||||||||
| τ00 | 0.10 country_wave | 0.08 country_wave | 0.07 country_wave | 0.06 country_wave | 0.05 country_wave | ||||||||||
| 0.43 country_name | 0.42 country_name | 0.47 country_name | 0.54 country_name | 0.37 country_name | |||||||||||
| ICC | 0.09 | 0.10 | 0.11 | 0.10 | 0.08 | ||||||||||
| N | 135 country_wave | 135 country_wave | 120 country_wave | 135 country_wave | 135 country_wave | ||||||||||
| 15 country_name | 15 country_name | 15 country_name | 15 country_name | 15 country_name | |||||||||||
| Observations | 248176 | 250819 | 220983 | 249490 | 252863 | ||||||||||
| Marginal R2 / Conditional R2 | 0.113 / 0.196 | 0.114 / 0.202 | 0.120 / 0.217 | 0.121 / 0.211 | 0.071 / 0.145 | ||||||||||
#show.ci = FALSE
#p.style = "stars"
#)
plot_model(prl_full_subset)
plot_model(plt_full_subset)
plot_model(prt_full_subset)
plot_model(lgl_full_subset)
plot_model(plc_full_subset)
if (file.exists("prl_full_subset_wl.rds")) {
prl_full_subset_wl <- readRDS("prl_full_subset_wl.rds")
} else {
prl_full_subset_wl <- lmer(trstprl ~ agea_z + gender_dummy + income_dummy + education_dummy + winlose +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(prl_full_subset_wl, file = "prl_full_subset_wl.rds")
}
if (file.exists("plt_full_subset_wl.rds")) {
plt_full_subset_wl <- readRDS("plt_full_subset_wl.rds")
} else {
plt_full_subset_wl <- lmer(trstplt ~ agea_z + gender_dummy + income_dummy + education_dummy + winlose +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(plt_full_subset_wl, file = "plt_full_subset_wl.rds")
}
if (file.exists("prt_full_subset_wl.rds")) {
prt_full_subset_wl <- readRDS("prt_full_subset_wl.rds")
} else {
prt_full_subset_wl <- lmer(trstprt ~ agea_z + gender_dummy + income_dummy + education_dummy + winlose +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(prt_full_subset_wl, file = "prt_full_subset_wl.rds")
}
if (file.exists("lgl_full_subset_wl.rds")) {
lgl_full_subset_wl <- readRDS("lgl_full_subset_wl.rds")
} else {
lgl_full_subset_wl <- lmer(trstlgl ~ agea_z + gender_dummy + income_dummy + education_dummy + winlose +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(lgl_full_subset_wl, file = "lgl_full_subset_wl.rds")
}
if (file.exists("plc_full_subset_wl.rds")) {
plc_full_subset_wl <- readRDS("plc_full_subset_wl.rds")
} else {
plc_full_subset_wl <- lmer(trstplc ~ agea_z + gender_dummy + income_dummy + education_dummy + winlose +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(plc_full_subset_wl, file = "plc_full_subset_wl.rds")
}
if (file.exists("plc_full_subset.rds")) {
plc_full_subset <- readRDS("plc_full_subset.rds")
} else {
plc_full_subset <- lmer(trstplc ~ agea_z + gender_dummy + income_dummy + education_dummy +
gti_c_z + gti_t_z + gdp_c_z + gpd_t_z + unemployment_c_z + unemployment_t_z + as.factor(essround) +
(1|country_wave) + (1|country_name), data = subset(ess_qog_final, all_rounds == 1))
saveRDS(plc_full_subset, file = "plc_full_subset.rds")
}
tab_model(prl_full_subset_wl, plt_full_subset_wl, prt_full_subset_wl, lgl_full_subset_wl, plc_full_subset_wl)
|
Trust in country’s parliament |
Trust in politicians |
Trust in political parties |
Trust in the legal system | Trust in the police | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.84 | 4.40 – 5.27 | <0.001 | 4.03 | 3.62 – 4.45 | <0.001 | 3.77 | 3.35 – 4.19 | <0.001 | 4.97 | 4.50 – 5.43 | <0.001 | 5.78 | 5.40 – 6.15 | <0.001 |
|
Age of respondent,calculated |
-0.01 | -0.04 – 0.01 | 0.234 | 0.16 | 0.14 – 0.19 | <0.001 | 0.07 | 0.04 – 0.09 | <0.001 | -0.23 | -0.25 – -0.20 | <0.001 | 0.22 | 0.20 – 0.25 | <0.001 |
| gender dummy | 0.19 | 0.17 – 0.21 | <0.001 | -0.02 | -0.04 – 0.00 | 0.061 | 0.00 | -0.02 – 0.02 | 0.929 | 0.13 | 0.11 – 0.15 | <0.001 | -0.06 | -0.08 – -0.04 | <0.001 |
| income dummy: Difficult | -0.63 | -0.66 – -0.60 | <0.001 | -0.58 | -0.61 – -0.55 | <0.001 | -0.53 | -0.56 – -0.50 | <0.001 | -0.58 | -0.62 – -0.55 | <0.001 | -0.49 | -0.52 – -0.46 | <0.001 |
|
education dummy: Higher level education |
0.64 | 0.61 – 0.66 | <0.001 | 0.38 | 0.35 – 0.40 | <0.001 | 0.29 | 0.26 – 0.31 | <0.001 | 0.63 | 0.60 – 0.66 | <0.001 | 0.24 | 0.21 – 0.26 | <0.001 |
| winlose | 0.64 | 0.61 – 0.66 | <0.001 | 0.47 | 0.45 – 0.49 | <0.001 | 0.37 | 0.35 – 0.39 | <0.001 | 0.33 | 0.31 – 0.36 | <0.001 | 0.29 | 0.27 – 0.31 | <0.001 |
| gti c z | -0.05 | -0.91 – 0.81 | 0.909 | -0.02 | -0.86 – 0.82 | 0.967 | -0.04 | -0.94 – 0.86 | 0.930 | 0.17 | -0.84 – 1.18 | 0.746 | 0.03 | -0.76 – 0.82 | 0.936 |
| gti t z | -0.01 | -0.13 – 0.11 | 0.835 | 0.03 | -0.07 – 0.14 | 0.540 | 0.02 | -0.09 – 0.13 | 0.718 | 0.06 | -0.03 – 0.16 | 0.167 | -0.13 | -0.21 – -0.04 | 0.003 |
| gdp c z | 0.93 | 0.14 – 1.73 | 0.021 | 0.78 | 0.01 – 1.55 | 0.048 | 0.75 | -0.07 – 1.58 | 0.074 | 1.01 | 0.08 – 1.94 | 0.034 | 0.97 | 0.24 – 1.70 | 0.009 |
| gpd t z | 0.46 | 0.28 – 0.63 | <0.001 | 0.35 | 0.19 – 0.51 | <0.001 | 0.37 | 0.18 – 0.57 | <0.001 | 0.18 | 0.04 – 0.31 | 0.010 | -0.13 | -0.25 – -0.01 | 0.037 |
| unemployment c z | -0.22 | -1.01 – 0.56 | 0.575 | -0.55 | -1.31 – 0.22 | 0.159 | -0.61 | -1.43 – 0.21 | 0.146 | -0.56 | -1.49 – 0.36 | 0.231 | 0.12 | -0.60 – 0.84 | 0.741 |
| unemployment t z | -0.28 | -0.41 – -0.15 | <0.001 | -0.24 | -0.36 – -0.12 | <0.001 | -0.30 | -0.44 – -0.16 | <0.001 | -0.15 | -0.25 – -0.05 | 0.005 | -0.07 | -0.16 – 0.03 | 0.153 |
| as.factor(essround)2 | -0.44 | -0.70 – -0.19 | 0.001 | -0.35 | -0.59 – -0.12 | 0.003 | -0.10 | -0.30 – 0.10 | 0.329 | 0.09 | -0.09 – 0.27 | 0.316 | |||
| as.factor(essround)3 | -0.61 | -0.89 – -0.34 | <0.001 | -0.50 | -0.76 – -0.25 | <0.001 | -0.16 | -0.39 – 0.06 | 0.157 | -0.10 | -0.31 – 0.12 | 0.368 | 0.14 | -0.05 – 0.34 | 0.158 |
| as.factor(essround)4 | -0.89 | -1.19 – -0.59 | <0.001 | -0.72 | -0.99 – -0.45 | <0.001 | -0.42 | -0.66 – -0.17 | 0.001 | -0.23 | -0.46 – 0.00 | 0.052 | 0.14 | -0.07 – 0.35 | 0.179 |
| as.factor(essround)5 | -0.86 | -1.16 – -0.55 | <0.001 | -0.66 | -0.94 – -0.37 | <0.001 | -0.34 | -0.59 – -0.08 | 0.009 | -0.17 | -0.41 – 0.07 | 0.161 | 0.29 | 0.07 – 0.51 | 0.009 |
| as.factor(essround)6 | -0.90 | -1.23 – -0.58 | <0.001 | -0.71 | -1.00 – -0.41 | <0.001 | -0.36 | -0.63 – -0.10 | 0.008 | -0.16 | -0.41 – 0.09 | 0.211 | 0.39 | 0.16 – 0.61 | 0.001 |
| as.factor(essround)7 | -0.89 | -1.22 – -0.56 | <0.001 | -0.78 | -1.08 – -0.48 | <0.001 | -0.41 | -0.69 – -0.14 | 0.003 | -0.17 | -0.43 – 0.08 | 0.188 | 0.41 | 0.17 – 0.64 | 0.001 |
| as.factor(essround)8 | -0.79 | -1.13 – -0.44 | <0.001 | -0.69 | -1.01 – -0.38 | <0.001 | -0.35 | -0.64 – -0.06 | 0.017 | -0.09 | -0.35 – 0.18 | 0.527 | 0.73 | 0.49 – 0.97 | <0.001 |
| as.factor(essround)9 | -0.95 | -1.33 – -0.56 | <0.001 | -0.71 | -1.06 – -0.35 | <0.001 | -0.41 | -0.75 – -0.08 | 0.017 | 0.01 | -0.29 – 0.31 | 0.965 | 0.84 | 0.57 – 1.12 | <0.001 |
| Random Effects | |||||||||||||||
| σ2 | 4.80 | 4.27 | 4.10 | 4.99 | 4.35 | ||||||||||
| τ00 | 0.12 country_wave | 0.10 country_wave | 0.09 country_wave | 0.07 country_wave | 0.06 country_wave | ||||||||||
| 0.42 country_name | 0.40 country_name | 0.46 country_name | 0.60 country_name | 0.36 country_name | |||||||||||
| ICC | 0.10 | 0.11 | 0.12 | 0.12 | 0.09 | ||||||||||
| N | 132 country_wave | 132 country_wave | 117 country_wave | 132 country_wave | 132 country_wave | ||||||||||
| 15 country_name | 15 country_name | 15 country_name | 15 country_name | 15 country_name | |||||||||||
| Observations | 154238 | 154849 | 136240 | 154076 | 155224 | ||||||||||
| Marginal R2 / Conditional R2 | 0.126 / 0.214 | 0.121 / 0.214 | 0.122 / 0.227 | 0.132 / 0.234 | 0.074 / 0.156 | ||||||||||
#p.style = "stars")
plot_model(prl_full_subset_wl)
plot_model(plt_full_subset_wl)
plot_model(prt_full_subset_wl)
plot_model(lgl_full_subset_wl)
plot_model(plc_full_subset_wl)