library("tidyverse")
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
pivot_longer(who, c(new_sp_m014:newrel_f65), names_to = "key", values_to = "cases") %>%
group_by(country, year) %>%
mutate(prop_missing = sum(is.na(cases)) / n()) %>%
filter(prop_missing > 0, prop_missing < 1)
## # A tibble: 195,104 x 7
## # Groups: country, year [3,484]
## country iso2 iso3 year key cases prop_missing
## <chr> <chr> <chr> <int> <chr> <int> <dbl>
## 1 Afghanistan AF AFG 1997 new_sp_m014 0 0.75
## 2 Afghanistan AF AFG 1997 new_sp_m1524 10 0.75
## 3 Afghanistan AF AFG 1997 new_sp_m2534 6 0.75
## 4 Afghanistan AF AFG 1997 new_sp_m3544 3 0.75
## 5 Afghanistan AF AFG 1997 new_sp_m4554 5 0.75
## 6 Afghanistan AF AFG 1997 new_sp_m5564 2 0.75
## 7 Afghanistan AF AFG 1997 new_sp_m65 0 0.75
## 8 Afghanistan AF AFG 1997 new_sp_f014 5 0.75
## 9 Afghanistan AF AFG 1997 new_sp_f1524 38 0.75
## 10 Afghanistan AF AFG 1997 new_sp_f2534 36 0.75
## # ... with 195,094 more rows