library(readxl)
ads=read_excel("E:\\Praktikum 11a.xlsx",sheet="Sheet1")
ads
## # A tibble: 12 x 2
## Y X
## <dbl> <dbl>
## 1 77 16
## 2 70 14
## 3 85 22
## 4 50 10
## 5 62 14
## 6 70 17
## 7 55 10
## 8 63 13
## 9 88 19
## 10 57 12
## 11 81 18
## 12 51 11
plot(ads$Y,ads$X,xlab="Biaya Iklan",ylab="Pendapatan",pch=19,main="Biaya Iklan vs Pendapatan")
reg_ganda=lm(Y~X,data=ads)
yduga=predict(reg_ganda)
sisa=residuals(reg_ganda)
std_sisa=rstandard(reg_ganda) #standardized residual
stud_sisa=rstudent(reg_ganda) #studentized residual
hist(sisa,breaks=10,main="Histogram Sisaan")
qqnorm(sisa,main="QQ Plot Sisaan")
abline(a=mean(sisa),b=sd(sisa),col="red")
##plot sisaan dan y duga
plot(yduga,sisa,xlab="Y duga",ylab="Sisaan",pch=19,main="Y duga vs Sisaan")
plot(yduga,std_sisa,xlab="Y duga",ylab="Sisaan Baku",pch=19,main="Y duga vs Sisaan Baku")
abline(0,0,col="red")
ads.weights=1/lm(abs(reg_ganda$residuals) ~ reg_ganda$fitted.values)$fitted.values^2
ads.lmw <- lm(Y ~ X,data = ads,weights = ads.weights)
summary.lm(ads.lmw)$coefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.300637 4.827736 3.583592 4.981868e-03
## X 3.421106 0.370310 9.238492 3.268919e-06