library("tidyverse")
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
t2_cases <- filter(table2, type == "cases") %>%
rename(cases = count) %>%
arrange(country, year)
t2_population <- filter(table2, type == "population") %>%
rename(population = count) %>%
arrange(country, year)
t2_cases_per_cap <- tibble(
year = t2_cases$year,
country = t2_cases$country,
cases = t2_cases$cases,
population = t2_population$population
) %>%
mutate(cases_per_cap = (cases / population) * 10000) %>%
select(country, year, cases_per_cap)
t2_cases_per_cap <- t2_cases_per_cap %>%
mutate(type = "cases_per_cap") %>%
rename(count = cases_per_cap)
bind_rows(table2, t2_cases_per_cap) %>%
arrange(country, year, type, count)
## # A tibble: 18 x 4
## country year type count
## <chr> <int> <chr> <dbl>
## 1 Afghanistan 1999 cases 7.45e+2
## 2 Afghanistan 1999 cases_per_cap 3.73e-1
## 3 Afghanistan 1999 population 2.00e+7
## 4 Afghanistan 2000 cases 2.67e+3
## 5 Afghanistan 2000 cases_per_cap 1.29e+0
## 6 Afghanistan 2000 population 2.06e+7
## 7 Brazil 1999 cases 3.77e+4
## 8 Brazil 1999 cases_per_cap 2.19e+0
## 9 Brazil 1999 population 1.72e+8
## 10 Brazil 2000 cases 8.05e+4
## 11 Brazil 2000 cases_per_cap 4.61e+0
## 12 Brazil 2000 population 1.75e+8
## 13 China 1999 cases 2.12e+5
## 14 China 1999 cases_per_cap 1.67e+0
## 15 China 1999 population 1.27e+9
## 16 China 2000 cases 2.14e+5
## 17 China 2000 cases_per_cap 1.67e+0
## 18 China 2000 population 1.28e+9