Introduction

I am interested in how Republicans and Democrats (partyreg_baseline) differ about the immigrants. I will be comparing them based on:

  • immi_naturalize_2019: How they favor or oppose provide a legal way for illegal immigrants already in the United States to become U.S. citizens?

  • immi_makedifficult_2019: What they think it should be easier or harder for foreigners to immigrate to the US legally than it is currently?

  • immi_muslim_2019: How they favor or oppose temporarily banning Muslims immigrants from other countries from entering the United States?

  • ft_immig_2017: How they feel abouts immigrants?

Import Data

Loading the necessary packages. Importing data into R and named it Voter_Data.

library(readr)
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
Voter_Data = read_csv("/Users/sakif/Desktop/Data 333/Voter Data 2019.csv")
## 
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## cols(
##   .default = col_double(),
##   weight_18_24_2018 = col_logical(),
##   izip_2019 = col_character(),
##   housevote_other_2019 = col_character(),
##   senatevote_other_2019 = col_character(),
##   senatevote2_other_2019 = col_character(),
##   SenCand1Name_2019 = col_character(),
##   SenCand1Party_2019 = col_character(),
##   SenCand2Name_2019 = col_character(),
##   SenCand2Party_2019 = col_character(),
##   SenCand3Name_2019 = col_character(),
##   SenCand3Party_2019 = col_character(),
##   SenCand1Name2_2019 = col_character(),
##   SenCand1Party2_2019 = col_character(),
##   SenCand2Name2_2019 = col_character(),
##   SenCand2Party2_2019 = col_character(),
##   SenCand3Name2_2019 = col_character(),
##   SenCand3Party2_2019 = col_character(),
##   governorvote_other_2019 = col_character(),
##   GovCand1Name_2019 = col_character(),
##   GovCand1Party_2019 = col_character()
##   # ... with 108 more columns
## )
## ℹ Use `spec()` for the full column specifications.
## Warning: 800 parsing failures.
##  row               col           expected           actual                                                file
## 2033 weight_18_24_2018 1/0/T/F/TRUE/FALSE .917710168467982 '/Users/sakif/Desktop/Data 333/Voter Data 2019.csv'
## 2828 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.41022291345592 '/Users/sakif/Desktop/Data 333/Voter Data 2019.csv'
## 4511 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.77501243840922 '/Users/sakif/Desktop/Data 333/Voter Data 2019.csv'
## 7264 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.29486870319614 '/Users/sakif/Desktop/Data 333/Voter Data 2019.csv'
## 7277 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.44972719707603 '/Users/sakif/Desktop/Data 333/Voter Data 2019.csv'
## .... ................. .................. ................ ...................................................
## See problems(...) for more details.
Voter_Data
## # A tibble: 9,548 x 1,282
##    weight_2016 weight_2017 weight_panel_20… weight_latino_2… weight_18_24_20…
##          <dbl>       <dbl>            <dbl>            <dbl> <lgl>           
##  1       0.358       0.438            0.503               NA NA              
##  2       0.563       0.366            0.389               NA NA              
##  3       0.552       0.550            0.684               NA NA              
##  4       0.208      NA               NA                   NA NA              
##  5       0.334       0.346            0.322               NA NA              
##  6       0.207       0.148            0.594               NA NA              
##  7       0.456       0.378           NA                   NA NA              
##  8       1.05        0.993            0.965               NA NA              
##  9       0.478       1.03            NA                   NA NA              
## 10       0.417       0.377            0.516               NA NA              
## # … with 9,538 more rows, and 1,277 more variables: weight_overall_2018 <dbl>,
## #   weight_2019 <dbl>, weight1_2018 <dbl>, weight1_2019 <dbl>,
## #   weight2_2019 <dbl>, weight3_2019 <dbl>, cassfullcd <dbl>,
## #   vote2020_2019 <dbl>, trumpapp_2019 <dbl>, fav_trump_2019 <dbl>,
## #   fav_obama_2019 <dbl>, fav_hrc_2019 <dbl>, fav_sanders_2019 <dbl>,
## #   fav_putin_2019 <dbl>, fav_schumer_2019 <dbl>, fav_pelosi_2019 <dbl>,
## #   fav_comey_2019 <dbl>, fav_mueller_2019 <dbl>, fav_mcconnell_2019 <dbl>,
## #   fav_kavanaugh_2019 <dbl>, fav_biden_2019 <dbl>, fav_warren_2019 <dbl>,
## #   fav_harris_2019 <dbl>, fav_gillibrand_2019 <dbl>, fav_patrick_2019 <dbl>,
## #   fav_booker_2019 <dbl>, fav_garcetti_2019 <dbl>, fav_klobuchar_2019 <dbl>,
## #   fav_gorsuch_2019 <dbl>, fav_kasich_2019 <dbl>, fav_haley_2019 <dbl>,
## #   fav_bloomberg_2019 <dbl>, fav_holder_2019 <dbl>, fav_avenatti_2019 <dbl>,
## #   fav_castro_2019 <dbl>, fav_landrieu_2019 <dbl>, fav_orourke_2019 <dbl>,
## #   fav_hickenlooper_2019 <dbl>, fav_pence_2019 <dbl>, add_confirm_2019 <dbl>,
## #   izip_2019 <chr>, votereg_2019 <dbl>, votereg_f_2019 <dbl>,
## #   regzip_2019 <dbl>, region_2019 <dbl>, turnout18post_2019 <dbl>,
## #   tsmart_G2018_2019 <dbl>, tsmart_G2018_vote_type_2019 <dbl>,
## #   tsmart_P2018_2019 <dbl>, tsmart_P2018_party_2019 <dbl>,
## #   tsmart_P2018_vote_type_2019 <dbl>, housevote_2019 <dbl>,
## #   housevote_other_2019 <chr>, senatevote_2019 <dbl>,
## #   senatevote_other_2019 <chr>, senatevote2_2019 <dbl>,
## #   senatevote2_other_2019 <chr>, SenCand1Name_2019 <chr>,
## #   SenCand1Party_2019 <chr>, SenCand2Name_2019 <chr>,
## #   SenCand2Party_2019 <chr>, SenCand3Name_2019 <chr>,
## #   SenCand3Party_2019 <chr>, SenCand1Name2_2019 <chr>,
## #   SenCand1Party2_2019 <chr>, SenCand2Name2_2019 <chr>,
## #   SenCand2Party2_2019 <chr>, SenCand3Name2_2019 <chr>,
## #   SenCand3Party2_2019 <chr>, governorvote_2019 <dbl>,
## #   governorvote_other_2019 <chr>, GovCand1Name_2019 <chr>,
## #   GovCand1Party_2019 <chr>, GovCand2Name_2019 <chr>,
## #   GovCand2Party_2019 <chr>, GovCand3Name_2019 <chr>,
## #   GovCand3Party_2019 <chr>, inst_court_2019 <dbl>, inst_media_2019 <dbl>,
## #   inst_congress_2019 <dbl>, inst_justice_2019 <dbl>, inst_FBI_2019 <dbl>,
## #   inst_military_2019 <dbl>, inst_church_2019 <dbl>, inst_business_2019 <dbl>,
## #   Democrats_2019 <dbl>, Republicans_2019 <dbl>, Men_2019 <dbl>,
## #   Women_2019 <dbl>, wm_2019 <dbl>, ww_2019 <dbl>, bm_2019 <dbl>,
## #   bw_2019 <dbl>, hm_2019 <dbl>, hw_2019 <dbl>, rwm_2019 <dbl>,
## #   rww_2019 <dbl>, rbm_2019 <dbl>, rbw_2019 <dbl>, pwm_2019 <dbl>, …

Recoding Data

The partyreg_baseline variable will break up my respondents into two groups (Democrat & Republican), and the other four variables represent the behaviors/attitudes which I will be investigating as I compare republicans to democrats. So I will do the following recoding to make the new variable called Immigrants_Data. Where it will be on two groups, where it will show their behaviors/attitude about immigrants.

Immigrants_Data = Voter_Data %>%
  mutate(Political_Party = ifelse(partyreg_baseline == 1 , "Democrat",
                           ifelse(partyreg_baseline == 2, "Republican", NA)),
         Immigrants_Naturalize = ifelse(immi_naturalize_2019 == 1, "Favor",
                                 ifelse(immi_naturalize_2019 == 2, "Oppose",
                                 ifelse(immi_naturalize_2019 == 8, "Don't know", NA))),
         Immigrants_Hardness = ifelse(immi_makedifficult_2019 == 1, "Much easier",
                               ifelse(immi_makedifficult_2019 == 3, "No change",
                               ifelse(immi_makedifficult_2019 == 5, "Much harder",
                               ifelse(immi_makedifficult_2019 == 8, "Don't know", NA)))),
         Banning_Muslims = ifelse(immi_muslim_2019 == 1, "Strongly favor",
                           ifelse(immi_muslim_2019 == 4, "Strongly oppose",
                           ifelse(immi_muslim_2019 == 8, "Don't know", NA))),
         Feeling_About_Immigrants = ifelse(ft_immig_2017 > 100, NA, ft_immig_2017)) %>%
  select(Political_Party, Immigrants_Naturalize, Immigrants_Hardness, Banning_Muslims, Feeling_About_Immigrants) %>%
  filter(!is.na(Political_Party), !is.na(Immigrants_Naturalize), !is.na(Immigrants_Hardness), !is.na(Banning_Muslims), !is.na(Feeling_About_Immigrants))

Immigrants_Data
## # A tibble: 897 x 5
##    Political_Party Immigrants_Natu… Immigrants_Hard… Banning_Muslims
##    <chr>           <chr>            <chr>            <chr>          
##  1 Democrat        Favor            No change        Strongly oppose
##  2 Democrat        Favor            Much easier      Strongly oppose
##  3 Democrat        Favor            Much easier      Strongly oppose
##  4 Democrat        Favor            No change        Strongly oppose
##  5 Republican      Oppose           Much harder      Strongly favor 
##  6 Republican      Don't know       Much harder      Strongly favor 
##  7 Democrat        Favor            Much easier      Strongly oppose
##  8 Republican      Favor            Much easier      Don't know     
##  9 Republican      Oppose           Much harder      Strongly favor 
## 10 Democrat        Favor            Much easier      Strongly oppose
## # … with 887 more rows, and 1 more variable: Feeling_About_Immigrants <dbl>