data_profe_3_1 <-
tibble(words = numeric(),
precision = numeric(),
pert = numeric())
for (i in files_3_1$nombres_3){
data_3_1 = read_excel(i,
col_names = FALSE) %>%
select(3,5,7) %>%
rename(words = "...3",
precision = "...5",
pert = "...7") %>%
mutate(metodo = i,
metodo = str_remove(metodo,
".xlsx"),
metodo = str_remove(metodo,
"data/"))
data_profe_3_1 <-
bind_rows(data_profe_3_1,
data_3_1)
}
data_profe_3_2 <-
tibble(words = numeric(),
precision = numeric(),
pert = numeric())
for (i in files_3_2$nombres_3){
data_3_2 = read_excel(i,
col_names = FALSE) %>%
select(1,3,5) %>%
rename(words = "...1",
precision = "...3",
pert = "...5") %>%
mutate(metodo = i,
metodo = str_remove(metodo,
".xlsx"),
metodo = str_remove(metodo,
"data/"))
data_profe_3_2 <-
bind_rows(data_profe_3_2,
data_3_2)
}
Unimos los dos archivos
Como los datos no tienen una distribución normal entonces se realiza la prueba de Kruskal Wallis para determinar si hay diferencias entre medianas.
kruskal.test(metodo ~ precision,
data_profe_3 )
Kruskal-Wallis rank sum test
data: metodo by precision
Kruskal-Wallis chi-squared = 1028.9,
df = 440, p-value < 2.2e-16
Como el p-valor es menor a 0.05 se rechaza la Ho. Por lo tanto, hay diferencias entre las medianas.
Ahora es necesario saber entre cuáles variables hay diferencias y para esto se utiliza un análisis pos hoc de comparaciones múltiples Pairwise Wilcox.
pairwise.wilcox.test(data_profe_3$precision,
data_profe_3$metodo,
p.adjust.method = "BH")
Pairwise comparisons using Wilcoxon rank sum test with continuity correction
data: data_profe_3$precision and data_profe_3$metodo
1_ENmatResPreRec_Hyb_vsm_UMBAQEtype
2_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.77654
3_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.93851
4_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.90264
5_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.67482
ENmatResPreRec_FT_vsm_UMBAQE 6.0e-05
ENmatResPreRec_MD_vsm_UMBAQE 2.8e-06
2_ENmatResPreRec_Hyb_vsm_UMBAQEtype
2_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
3_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.77976
4_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.76623
5_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.44392
ENmatResPreRec_FT_vsm_UMBAQE 2.2e-05
ENmatResPreRec_MD_vsm_UMBAQE 2.8e-06
3_ENmatResPreRec_Hyb_vsm_UMBAQEtype
2_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
3_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
4_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.89411
5_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.63140
ENmatResPreRec_FT_vsm_UMBAQE 6.0e-05
ENmatResPreRec_MD_vsm_UMBAQE 2.8e-06
4_ENmatResPreRec_Hyb_vsm_UMBAQEtype
2_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
3_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
4_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
5_ENmatResPreRec_Hyb_vsm_UMBAQEtype 0.77654
ENmatResPreRec_FT_vsm_UMBAQE 0.00014
ENmatResPreRec_MD_vsm_UMBAQE 4.2e-06
5_ENmatResPreRec_Hyb_vsm_UMBAQEtype
2_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
3_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
4_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
5_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
ENmatResPreRec_FT_vsm_UMBAQE 0.00041
ENmatResPreRec_MD_vsm_UMBAQE 2.9e-05
ENmatResPreRec_FT_vsm_UMBAQE
2_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
3_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
4_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
5_ENmatResPreRec_Hyb_vsm_UMBAQEtype -
ENmatResPreRec_FT_vsm_UMBAQE -
ENmatResPreRec_MD_vsm_UMBAQE 0.22244
P value adjustment method: BH