library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.3
library(e1071)
set.seed(1)
x1 <- runif(500) - 0.5
x2 <- runif(500) - 0.5
y <- 1 * (x1^2 - x2^2 > 0)
plot(x1, x2, xlab = "X1", ylab = "X2", col = (4 - y), pch = (3 - y))
logit.fit <- glm(y ~ x1 + x2, family = "binomial")
summary(logit.fit)
##
## Call:
## glm(formula = y ~ x1 + x2, family = "binomial")
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.179 -1.139 -1.112 1.206 1.257
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.087260 0.089579 -0.974 0.330
## x1 0.196199 0.316864 0.619 0.536
## x2 -0.002854 0.305712 -0.009 0.993
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 692.18 on 499 degrees of freedom
## Residual deviance: 691.79 on 497 degrees of freedom
## AIC: 697.79
##
## Number of Fisher Scoring iterations: 3
data <- data.frame(x1 = x1, x2 = x2, y = y)
probs <- predict(logit.fit, data, type = "response")
preds <- rep(0, 500)
preds[probs > 0.47] <- 1
plot(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1), pch = (3 - 1), xlab = "X1", ylab = "X2")
points(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0), pch = (3 - 0))
logitnl.fit <- glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), family = "binomial")
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(logitnl.fit)
##
## Call:
## glm(formula = y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), family = "binomial")
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -8.240e-04 -2.000e-08 -2.000e-08 2.000e-08 1.163e-03
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -102.2 4302.0 -0.024 0.981
## poly(x1, 2)1 2715.3 141109.5 0.019 0.985
## poly(x1, 2)2 27218.5 842987.2 0.032 0.974
## poly(x2, 2)1 -279.7 97160.4 -0.003 0.998
## poly(x2, 2)2 -28693.0 875451.3 -0.033 0.974
## I(x1 * x2) -206.4 41802.8 -0.005 0.996
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6.9218e+02 on 499 degrees of freedom
## Residual deviance: 3.5810e-06 on 494 degrees of freedom
## AIC: 12
##
## Number of Fisher Scoring iterations: 25
probs <- predict(logitnl.fit, data, type = "response")
preds <- rep(0, 500)
preds[probs > 0.47] <- 1
plot(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1), pch = (3 - 1), xlab = "X1", ylab = "X2")
points(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0), pch = (3 - 0))
data$y <- as.factor(data$y)
svm.fit <- svm(y ~ x1 + x2, data, kernel = "linear", cost = 0.01)
preds <- predict(svm.fit, data)
plot(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0), pch = (3 - 0), xlab = "X1", ylab = "X2")
points(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1), pch = (3 - 1))
data$y <- as.factor(data$y)
svmnl.fit <- svm(y ~ x1 + x2, data, kernel = "radial", gamma = 1)
preds <- predict(svmnl.fit, data)
plot(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0), pch = (3 - 0), xlab = "X1", ylab = "X2")
points(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1), pch = (3 - 1))
SVM with non-linear kernel and logistic regression with interaction terms are sufficient for finding non-linear decision boundaries.
var <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)
Auto$mpglevel <- as.factor(var)
set.seed(1)
tune.out <- tune(svm, mpglevel ~ ., data = Auto, kernel = "linear", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100, 1000)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1
##
## - best performance: 0.01025641
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-02 0.07653846 0.03617137
## 2 1e-01 0.04596154 0.03378238
## 3 1e+00 0.01025641 0.01792836
## 4 5e+00 0.02051282 0.02648194
## 5 1e+01 0.02051282 0.02648194
## 6 1e+02 0.03076923 0.03151981
## 7 1e+03 0.03076923 0.03151981
set.seed(1)
tune.out <- tune(svm, mpglevel ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100), degree = c(2, 3, 4)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost degree
## 100 2
##
## - best performance: 0.3013462
##
## - Detailed performance results:
## cost degree error dispersion
## 1 1e-02 2 0.5511538 0.04366593
## 2 1e-01 2 0.5511538 0.04366593
## 3 1e+00 2 0.5511538 0.04366593
## 4 5e+00 2 0.5511538 0.04366593
## 5 1e+01 2 0.5130128 0.08963366
## 6 1e+02 2 0.3013462 0.09961961
## 7 1e-02 3 0.5511538 0.04366593
## 8 1e-01 3 0.5511538 0.04366593
## 9 1e+00 3 0.5511538 0.04366593
## 10 5e+00 3 0.5511538 0.04366593
## 11 1e+01 3 0.5511538 0.04366593
## 12 1e+02 3 0.3446154 0.09821588
## 13 1e-02 4 0.5511538 0.04366593
## 14 1e-01 4 0.5511538 0.04366593
## 15 1e+00 4 0.5511538 0.04366593
## 16 5e+00 4 0.5511538 0.04366593
## 17 1e+01 4 0.5511538 0.04366593
## 18 1e+02 4 0.5511538 0.04366593
set.seed(1)
tune.out <- tune(svm, mpglevel ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost gamma
## 100 0.01
##
## - best performance: 0.01282051
##
## - Detailed performance results:
## cost gamma error dispersion
## 1 1e-02 1e-02 0.55115385 0.04366593
## 2 1e-01 1e-02 0.08929487 0.04382379
## 3 1e+00 1e-02 0.07403846 0.03522110
## 4 5e+00 1e-02 0.04852564 0.03303346
## 5 1e+01 1e-02 0.02557692 0.02093679
## 6 1e+02 1e-02 0.01282051 0.01813094
## 7 1e-02 1e-01 0.21711538 0.09865227
## 8 1e-01 1e-01 0.07903846 0.03874545
## 9 1e+00 1e-01 0.05371795 0.03525162
## 10 5e+00 1e-01 0.02820513 0.03299190
## 11 1e+01 1e-01 0.03076923 0.03375798
## 12 1e+02 1e-01 0.03583333 0.02759051
## 13 1e-02 1e+00 0.55115385 0.04366593
## 14 1e-01 1e+00 0.55115385 0.04366593
## 15 1e+00 1e+00 0.06384615 0.04375618
## 16 5e+00 1e+00 0.05884615 0.04020934
## 17 1e+01 1e+00 0.05884615 0.04020934
## 18 1e+02 1e+00 0.05884615 0.04020934
## 19 1e-02 5e+00 0.55115385 0.04366593
## 20 1e-01 5e+00 0.55115385 0.04366593
## 21 1e+00 5e+00 0.49493590 0.04724924
## 22 5e+00 5e+00 0.48217949 0.05470903
## 23 1e+01 5e+00 0.48217949 0.05470903
## 24 1e+02 5e+00 0.48217949 0.05470903
## 25 1e-02 1e+01 0.55115385 0.04366593
## 26 1e-01 1e+01 0.55115385 0.04366593
## 27 1e+00 1e+01 0.51794872 0.05063697
## 28 5e+00 1e+01 0.51794872 0.04917316
## 29 1e+01 1e+01 0.51794872 0.04917316
## 30 1e+02 1e+01 0.51794872 0.04917316
## 31 1e-02 1e+02 0.55115385 0.04366593
## 32 1e-01 1e+02 0.55115385 0.04366593
## 33 1e+00 1e+02 0.55115385 0.04366593
## 34 5e+00 1e+02 0.55115385 0.04366593
## 35 1e+01 1e+02 0.55115385 0.04366593
## 36 1e+02 1e+02 0.55115385 0.04366593
svm.linear <- svm(mpglevel ~ ., data = Auto, kernel = "linear", cost = 1)
svm.poly <- svm(mpglevel ~ ., data = Auto, kernel = "polynomial", cost = 100, degree = 2)
svm.radial <- svm(mpglevel ~ ., data = Auto, kernel = "radial", cost = 100, gamma = 0.01)
plotpairs = function(fit) {
for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {
plot(fit, Auto, as.formula(paste("mpg~", name, sep = "")))
}
}
plotpairs(svm.linear)
plotpairs(svm.poly)
plotpairs(svm.radial)
8. This problem involves the OJ data set which is part of the ISLR package.
set.seed(1)
train <- sample(nrow(OJ), 800)
OJ.train <- OJ[train, ]
OJ.test <- OJ[-train, ]
svm.linear <- svm(Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.01)
summary(svm.linear)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.01)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 0.01
##
## Number of Support Vectors: 435
##
## ( 219 216 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred <- predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 420 65
## MM 75 240
(75 + 65) / (420 + 240 + 75 + 65)
## [1] 0.175
test.pred <- predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 153 15
## MM 33 69
(33+ 15)/(153+69+33+15)
## [1] 0.1777778
set.seed(2)
tune.out <- tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(cost = 10^seq(-2, 1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1.778279
##
## - best performance: 0.1675
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.17625 0.04059026
## 2 0.01778279 0.17625 0.04348132
## 3 0.03162278 0.17125 0.04604120
## 4 0.05623413 0.17000 0.04005205
## 5 0.10000000 0.17125 0.04168749
## 6 0.17782794 0.17000 0.04090979
## 7 0.31622777 0.17125 0.04411554
## 8 0.56234133 0.17125 0.04084609
## 9 1.00000000 0.17000 0.04090979
## 10 1.77827941 0.16750 0.03782269
## 11 3.16227766 0.16750 0.03782269
## 12 5.62341325 0.16750 0.03545341
## 13 10.00000000 0.17000 0.03736085
svm.linear <- svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = tune.out$best.parameter$cost)
train.pred <- predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 423 62
## MM 69 246
(69 + 62) / (423 + 246 + 69 + 62)
## [1] 0.16375
test.pred <- predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 156 12
## MM 29 73
(29 + 12) / (156 + 73 + 29 + 12)
## [1] 0.1518519
svm.radial <- svm(Purchase ~ ., kernel = "radial", data = OJ.train)
summary(svm.radial)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 373
##
## ( 188 185 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred <- predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 441 44
## MM 77 238
(77+44)/(441+238+77+44)
## [1] 0.15125
test.pred <- predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 151 17
## MM 33 69
(33 + 17) / (151 + 69 + 33 + 17)
## [1] 0.1851852
set.seed(2)
tune.out <- tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1
##
## - best performance: 0.1725
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.39375 0.03240906
## 2 0.01778279 0.39375 0.03240906
## 3 0.03162278 0.34750 0.05552777
## 4 0.05623413 0.19250 0.03016160
## 5 0.10000000 0.19500 0.03782269
## 6 0.17782794 0.18000 0.04048319
## 7 0.31622777 0.17250 0.03809710
## 8 0.56234133 0.17500 0.04124790
## 9 1.00000000 0.17250 0.03162278
## 10 1.77827941 0.17750 0.03717451
## 11 3.16227766 0.18375 0.03438447
## 12 5.62341325 0.18500 0.03717451
## 13 10.00000000 0.18750 0.03173239
svm.radial <- svm(Purchase ~ ., kernel = "radial", data = OJ.train, cost = tune.out$best.parameter$cost)
summary(svm.radial)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial", cost = tune.out$best.parameter$cost)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 373
##
## ( 188 185 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred <- predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 441 44
## MM 77 238
(77+44)/(441+238+77+44)
## [1] 0.15125
test.pred <- predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 151 17
## MM 33 69
(33+17)/(151+69+17+33)
## [1] 0.1851852
svm.poly <- svm(Purchase ~ ., kernel = "polynomial", data = OJ.train, degree = 2)
summary(svm.poly)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "polynomial",
## degree = 2)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 1
## degree: 2
## coef.0: 0
##
## Number of Support Vectors: 447
##
## ( 225 222 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred <- predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 449 36
## MM 110 205
(110+36)/(449+205+110+36)
## [1] 0.1825
test.pred <- predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 153 15
## MM 45 57
(45+15)/(153+57+15+45)
## [1] 0.2222222
set.seed(2)
tune.out <- tune(svm, Purchase ~ ., data = OJ.train, kernel = "polynomial", degree = 2, ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 3.162278
##
## - best performance: 0.18
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.39000 0.03670453
## 2 0.01778279 0.37000 0.03395258
## 3 0.03162278 0.36375 0.03197764
## 4 0.05623413 0.34500 0.03291403
## 5 0.10000000 0.32125 0.03866254
## 6 0.17782794 0.24750 0.03322900
## 7 0.31622777 0.20250 0.04073969
## 8 0.56234133 0.20250 0.03670453
## 9 1.00000000 0.19625 0.03910900
## 10 1.77827941 0.19125 0.03586723
## 11 3.16227766 0.18000 0.04005205
## 12 5.62341325 0.18000 0.04133199
## 13 10.00000000 0.18125 0.03830162
svm.poly <- svm(Purchase ~ ., kernel = "polynomial", degree = 2, data = OJ.train, cost = tune.out$best.parameter$cost)
summary(svm.poly)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "polynomial",
## degree = 2, cost = tune.out$best.parameter$cost)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 3.162278
## degree: 2
## coef.0: 0
##
## Number of Support Vectors: 385
##
## ( 197 188 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred <- predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 451 34
## MM 90 225
(90+34)/(451+34+90+225)
## [1] 0.155
test.pred <- predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 154 14
## MM 41 61
(41+14)/(154+61+41+14)
## [1] 0.2037037
radial basis kernel seems to have minimum misclassification error on both train and test data.