I am interested to know how full-time and part-time respondents (employ_2019) differ their attitude towards their annual income. I will be comparing them based on how satisfied they are with their job (satisf_Job_2018), how satisifed they are with their annual income (satisf_Income_2018), and if they agree or disagree about the government having responsibility to reduce the income differences between people with lower income and people with higher income (diff_inc_2019), and their feeling towards welfare recipients (wr_2019).

In the above example, the employ_2019 variable will break up my respondents into two groups (full-time and part-time employees), and the other four variables represents the behavior/attitudes which I will be investigating as I compare full-time employees and part-time employees.

library(readr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## Warning in file(con, "r"): cannot open file '/var/db/timezone/zoneinfo/
## +VERSION': No such file or directory
Voter2019 <- read_csv("/Users/chelsyrodriguez/Downloads/Voter Data 2019.csv")
## 
## ── Column specification ────────────────────────────────────────────────────────
## cols(
##   .default = col_double(),
##   weight_18_24_2018 = col_logical(),
##   izip_2019 = col_character(),
##   housevote_other_2019 = col_character(),
##   senatevote_other_2019 = col_character(),
##   senatevote2_other_2019 = col_character(),
##   SenCand1Name_2019 = col_character(),
##   SenCand1Party_2019 = col_character(),
##   SenCand2Name_2019 = col_character(),
##   SenCand2Party_2019 = col_character(),
##   SenCand3Name_2019 = col_character(),
##   SenCand3Party_2019 = col_character(),
##   SenCand1Name2_2019 = col_character(),
##   SenCand1Party2_2019 = col_character(),
##   SenCand2Name2_2019 = col_character(),
##   SenCand2Party2_2019 = col_character(),
##   SenCand3Name2_2019 = col_character(),
##   SenCand3Party2_2019 = col_character(),
##   governorvote_other_2019 = col_character(),
##   GovCand1Name_2019 = col_character(),
##   GovCand1Party_2019 = col_character()
##   # ... with 108 more columns
## )
## ℹ Use `spec()` for the full column specifications.
## Warning: 800 parsing failures.
##  row               col           expected           actual                                                   file
## 2033 weight_18_24_2018 1/0/T/F/TRUE/FALSE .917710168467982 '/Users/chelsyrodriguez/Downloads/Voter Data 2019.csv'
## 2828 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.41022291345592 '/Users/chelsyrodriguez/Downloads/Voter Data 2019.csv'
## 4511 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.77501243840922 '/Users/chelsyrodriguez/Downloads/Voter Data 2019.csv'
## 7264 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.29486870319614 '/Users/chelsyrodriguez/Downloads/Voter Data 2019.csv'
## 7277 weight_18_24_2018 1/0/T/F/TRUE/FALSE 1.44972719707603 '/Users/chelsyrodriguez/Downloads/Voter Data 2019.csv'
## .... ................. .................. ................ ......................................................
## See problems(...) for more details.
head(Voter2019)
## # A tibble: 6 x 1,282
##   weight_2016 weight_2017 weight_panel_20… weight_latino_2… weight_18_24_20…
##         <dbl>       <dbl>            <dbl>            <dbl> <lgl>           
## 1       0.358       0.438            0.503               NA NA              
## 2       0.563       0.366            0.389               NA NA              
## 3       0.552       0.550            0.684               NA NA              
## 4       0.208      NA               NA                   NA NA              
## 5       0.334       0.346            0.322               NA NA              
## 6       0.207       0.148            0.594               NA NA              
## # … with 1,277 more variables: weight_overall_2018 <dbl>, weight_2019 <dbl>,
## #   weight1_2018 <dbl>, weight1_2019 <dbl>, weight2_2019 <dbl>,
## #   weight3_2019 <dbl>, cassfullcd <dbl>, vote2020_2019 <dbl>,
## #   trumpapp_2019 <dbl>, fav_trump_2019 <dbl>, fav_obama_2019 <dbl>,
## #   fav_hrc_2019 <dbl>, fav_sanders_2019 <dbl>, fav_putin_2019 <dbl>,
## #   fav_schumer_2019 <dbl>, fav_pelosi_2019 <dbl>, fav_comey_2019 <dbl>,
## #   fav_mueller_2019 <dbl>, fav_mcconnell_2019 <dbl>, fav_kavanaugh_2019 <dbl>,
## #   fav_biden_2019 <dbl>, fav_warren_2019 <dbl>, fav_harris_2019 <dbl>,
## #   fav_gillibrand_2019 <dbl>, fav_patrick_2019 <dbl>, fav_booker_2019 <dbl>,
## #   fav_garcetti_2019 <dbl>, fav_klobuchar_2019 <dbl>, fav_gorsuch_2019 <dbl>,
## #   fav_kasich_2019 <dbl>, fav_haley_2019 <dbl>, fav_bloomberg_2019 <dbl>,
## #   fav_holder_2019 <dbl>, fav_avenatti_2019 <dbl>, fav_castro_2019 <dbl>,
## #   fav_landrieu_2019 <dbl>, fav_orourke_2019 <dbl>,
## #   fav_hickenlooper_2019 <dbl>, fav_pence_2019 <dbl>, add_confirm_2019 <dbl>,
## #   izip_2019 <chr>, votereg_2019 <dbl>, votereg_f_2019 <dbl>,
## #   regzip_2019 <dbl>, region_2019 <dbl>, turnout18post_2019 <dbl>,
## #   tsmart_G2018_2019 <dbl>, tsmart_G2018_vote_type_2019 <dbl>,
## #   tsmart_P2018_2019 <dbl>, tsmart_P2018_party_2019 <dbl>,
## #   tsmart_P2018_vote_type_2019 <dbl>, housevote_2019 <dbl>,
## #   housevote_other_2019 <chr>, senatevote_2019 <dbl>,
## #   senatevote_other_2019 <chr>, senatevote2_2019 <dbl>,
## #   senatevote2_other_2019 <chr>, SenCand1Name_2019 <chr>,
## #   SenCand1Party_2019 <chr>, SenCand2Name_2019 <chr>,
## #   SenCand2Party_2019 <chr>, SenCand3Name_2019 <chr>,
## #   SenCand3Party_2019 <chr>, SenCand1Name2_2019 <chr>,
## #   SenCand1Party2_2019 <chr>, SenCand2Name2_2019 <chr>,
## #   SenCand2Party2_2019 <chr>, SenCand3Name2_2019 <chr>,
## #   SenCand3Party2_2019 <chr>, governorvote_2019 <dbl>,
## #   governorvote_other_2019 <chr>, GovCand1Name_2019 <chr>,
## #   GovCand1Party_2019 <chr>, GovCand2Name_2019 <chr>,
## #   GovCand2Party_2019 <chr>, GovCand3Name_2019 <chr>,
## #   GovCand3Party_2019 <chr>, inst_court_2019 <dbl>, inst_media_2019 <dbl>,
## #   inst_congress_2019 <dbl>, inst_justice_2019 <dbl>, inst_FBI_2019 <dbl>,
## #   inst_military_2019 <dbl>, inst_church_2019 <dbl>, inst_business_2019 <dbl>,
## #   Democrats_2019 <dbl>, Republicans_2019 <dbl>, Men_2019 <dbl>,
## #   Women_2019 <dbl>, wm_2019 <dbl>, ww_2019 <dbl>, bm_2019 <dbl>,
## #   bw_2019 <dbl>, hm_2019 <dbl>, hw_2019 <dbl>, rwm_2019 <dbl>,
## #   rww_2019 <dbl>, rbm_2019 <dbl>, rbw_2019 <dbl>, pwm_2019 <dbl>, …
Voter2019 %>%
  mutate(Employmentstatus = ifelse(employ_2019==1,"Full-time",
                                   ifelse(employ_2019==2,"Part-time","NA")),
         SatisfiedlifeJob = ifelse(satisf_Job_2018==1,"Very satisfied",
                           ifelse(satisf_Job_2018==2,"Somewhat satisfied",
                           ifelse(satisf_Job_2018==3,"Neither satisfied nor dissatisfied",
                           ifelse(satisf_Job_2018==4,"Somewhat dissatisfied","NA")))),
         SatisfiedlifeIncome = ifelse(satisf_Income_2018==1,"Very satisfied",
                                     ifelse(satisf_Income_2018==2,"Somewhat satisfied",
                                            ifelse(satisf_Income_2018==3,"Neither satisfied nor dissatisfied",
                                                   ifelse(satisf_Income_2018==4,"Somewhat dissatisfied",
                                                          ifelse(satisf_Income_2018==5,"Very dissatisfied","NA"))))),
         DifferenceIncome = ifelse(diff_inc_2019==1,"Strongly agree",
                                   ifelse(diff_inc_2019==2,"Somewhat agree",
                                          ifelse(diff_inc_2019==3,"Neither agree or disagree",
                                                 ifelse(diff_inc_2019==4,"Somewhat disagree",
                                                        ifelse(diff_inc_2019==5,"Strongly disagree",
                                                               ifelse(diff_inc_2019==8,"skipped","NA")))))),
         FeelingAboutWelfareRecipients = ifelse(wr_2019>100,NA,wr_2019))%>%
  select(Employmentstatus,SatisfiedlifeJob,SatisfiedlifeIncome,DifferenceIncome,FeelingAboutWelfareRecipients)%>%
  filter(Employmentstatus %in% c("Full-time","Part-time"))
## # A tibble: 3,394 x 5
##    Employmentstatus SatisfiedlifeJob SatisfiedlifeIn… DifferenceIncome
##    <chr>            <chr>            <chr>            <chr>           
##  1 Full-time        <NA>             <NA>             Strongly agree  
##  2 Full-time        Very satisfied   Neither satisfi… Strongly disagr…
##  3 Full-time        <NA>             <NA>             Somewhat agree  
##  4 Part-time        Neither satisfi… Very dissatisfi… Strongly agree  
##  5 Full-time        Very satisfied   Very satisfied   Somewhat agree  
##  6 Part-time        Neither satisfi… Somewhat dissat… Strongly agree  
##  7 Full-time        Somewhat satisf… Somewhat satisf… Strongly disagr…
##  8 Full-time        <NA>             <NA>             Strongly disagr…
##  9 Full-time        <NA>             <NA>             Strongly disagr…
## 10 Full-time        <NA>             <NA>             Somewhat disagr…
## # … with 3,384 more rows, and 1 more variable:
## #   FeelingAboutWelfareRecipients <dbl>