rm(list = ls())
library(dplyr)
library(data.table)
library(readxl)
library(tidyverse)
library(knitr)
library(kableExtra)
library(reshape2)
library(ggplot2)
library(plotly)
library(gt)
library(tiff)
library(grid)

# some plotting utility functions

layout_3x5 <- function(
  gg, x = -0.15, y = -0.06, 
  x_legend=1.05, y_legend=0.95, 
  mar=list(l=50, r=150)){
  # The 1 and 2 goes into the list that contains the options for the x and y axis labels respectively
  gg[['x']][['layout']][['annotations']][[1]][['y']] <- x
  gg[['x']][['layout']][['annotations']][[2]][['x']] <- y
  gg[['x']][['layout']][['annotations']][[12]][['x']] <- x_legend
  gg[['x']][['layout']][['legend']][['y']] <- y_legend
  gg[['x']][['layout']][['legend']][['x']] <- x_legend
  gg %>% layout(margin = mar)
}

layout_3x3 <- function(
  gg, x = -0.15, y = -0.06, 
  x_legend=1.05, y_legend=0.95, 
  mar=list(l=50, r=150)){
  # The 1 and 2 goes into the list that contains the options for the x and y axis labels respectively
  gg[['x']][['layout']][['annotations']][[1]][['y']] <- x
  gg[['x']][['layout']][['annotations']][[2]][['x']] <- y
  gg[['x']][['layout']][['annotations']][[6]][['x']] <- x_legend
  gg[['x']][['layout']][['legend']][['y']] <- y_legend
  gg[['x']][['layout']][['legend']][['x']] <- x_legend
  gg %>% layout(margin = mar)
}

layout_3x1 <- function(
  gg, x = -0.08, y = -0.06, 
  x_legend=1.05, y_legend=0.95, 
  mar=list(l=50, r=150)){
  # The 1 and 2 goes into the list that contains the options for the x and y axis labels respectively
  gg[['x']][['layout']][['annotations']][[1]][['y']] <- x
  gg[['x']][['layout']][['annotations']][[2]][['x']] <- y
  gg[['x']][['layout']][['annotations']][[6]][['x']] <- x_legend
  gg[['x']][['layout']][['legend']][['y']] <- y_legend
  gg[['x']][['layout']][['legend']][['x']] <- x_legend
  gg %>% layout(margin = mar)
}

layout_1x2 <- function(
  gg, x = -0.08, y = -0.08, 
  x_legend=1.05, y_legend=0.95, 
  mar=list(l=50, r=150)){
  # The 1 and 2 goes into the list that contains the options for the x and y axis labels respectively
  gg[['x']][['layout']][['annotations']][[1]][['y']] <- x
  gg[['x']][['layout']][['annotations']][[2]][['x']] <- y
  gg[['x']][['layout']][['annotations']][[5]][['x']] <- x_legend
  gg[['x']][['layout']][['legend']][['y']] <- y_legend
  gg[['x']][['layout']][['legend']][['x']] <- x_legend
  gg %>% layout(margin = mar)
}

Back to Outline

Introduction

This report summarizes the parameters and targets used for simulating the ADAP and PDAP dynamics.

The parameters and targets constructed here are based on WADOH DAP participation data. The script is based on code and data sources originally developed by ZK (see Parameters and targets.Rmd).

  • DAP data used here was originally constructed on the secure terminal server by ZK
  • DataManagment.R performs the data cleaning
  • DAPoutputs.R performs the data analysis

Data

We read in data from

  • WApopdata for population totals
  • WHAMP survey for prep.targets, art.targets, dap.targets
  • ZK’s ADAP and PDAP analyses (after race/region names updating)
# NOTE: MOST VARIABLE CONSTRUCTION IS DONE IN THIS CHUNK

# We now construct some of the variables that ZK constructed in the last
# chunk of her Parameters and targets.Rmd.

# But there are modifications to vars in chunks below, so the final updated
# versions of adap_data and pdap_data should be saved at the end.

#### Updated WApopdata ----
msm.pop.totals_2014 <- WApopdata::msm.pop.totals_2014
msm.pop.totals_2015 <- WApopdata::msm.pop.totals_2015
msm.pop.totals_2016 <- WApopdata::msm.pop.totals_2016
msm.pop.totals_2017 <- WApopdata::msm.pop.totals_2017
msm.pop.totals_2018 <- WApopdata::msm.pop.totals_2018
msm.pop.totals_2019 <- WApopdata::msm.pop.totals_2019


#### DOH on ART estimate ----
misc_targets <- readr::read_csv(here::here("Data", "Targets",
                                           "misc_targets.csv"))
doh.on.art <- misc_targets$Value[misc_targets$Name == "on_art.df"]


#### WHAMP survey target objects ----
w.prepTargets <- readRDS(here::here("Data", "Targets", "prepTargets.RDS"))
w.artTargets <- readRDS(here::here("Data", "Targets", "artTargets.RDS"))
w.dapFractions <- readRDS(here::here("Data", "Params", "WhampDAPparam.RDS"))

# construct WHAMP ADAP frac of ART users for comparison to DOH DAP estimate
whamp_adap_frac <- w.dapFractions$adap.frac$art
semean = sqrt(whamp_adap_frac*(1-whamp_adap_frac)/
                w.dapFractions$adap.frac$n.art)
adap.lb <- whamp_adap_frac - 2*semean
adap.ub <- whamp_adap_frac + 2*semean

# construct WHAMP PDAP frac of PrEP users for comparison to DOH DAP estimate
whamp_pdap_frac <- w.dapFractions$pdap.frac$prep
semean = sqrt(whamp_pdap_frac*(1-whamp_pdap_frac)/
                w.dapFractions$pdap.frac$n.prep)
pdap.lb <- whamp_pdap_frac - 2*semean
pdap.ub <- whamp_pdap_frac + 2*semean


#### ZK's original DAP datafiles, after fixing the race/region names ----
#### using: source(here::here("MakeData", "MM", "Scripts", "update_dap_data.R"))

orig_adap_data <- readRDS(here::here("Data", "Clean", "DAPdata",
                                     "adap_data.rds"))
orig_pdap_data <- readRDS(here::here("Data", "Clean", "DAPdata",
                                     "pdap_data.rds"))

# Re-organize and update the ZK objects
# Goal is to get consistent naming and caps across ADAP and PDAP data
# and to add the DOH DAP fraction estimates

## ADAP ----

# from last chunk of ZK's rmd, to get something to hold the
# list element order, will be overwritten after transforming the
# adap_demog data later
init.demog <- orig_adap_data$adap_demog[enrollYear == 1] 

# Rename
adap_data <- list(demog = orig_adap_data$adap_demog,
                  init.demog = init.demog,
                  ins = orig_adap_data$adap_ins,
                  new.clients = orig_adap_data$adap_new_clients,
                  cost.pday = orig_adap_data$ADAPcost_pd,
                  cost.pyr = orig_adap_data$ADAPcost_tot,
                  model.disenroll = orig_adap_data$surv_coef,
                  pred.disenroll = orig_adap_data$pred_disenroll,
                  vl.race = orig_adap_data$vl_race, 
                  makefile = "make_DOHDAPdynamics.Rmd & DAPoutputs.R")

# compute 2018 DOH ADAP fractions -- For comparison to WHAMP survey
doh_adap_2018 <- sum(adap_data$demog$N[adap_data$demog$enrollYear==2018])
pop_pos_2018 <- sum(msm.pop.totals_2018$pop.pos$num_ub)
doh_adap_art_frac <- doh_adap_2018 / (pop_pos_2018 * doh.on.art)
doh_adap_hivpos_frac <- doh_adap_2018 / pop_pos_2018
adap.frac = list(art = doh_adap_art_frac,
                 hivpos = doh_adap_hivpos_frac)

# rebuild descTable
adap_desc_table <- tibble(
  Component = c("adap.frac", names(adap_data)),
  Description = c("ADAP fraction of ART users or HIV+",
                  "demographics of ADAP clients",
                  "demographics in first yr",
                  "insurance of ADAP clients",
                  "demographics of new ADAP clients",
                  "daily cost by component and total",
                  "annual cost by component and total",
                  "survival model calc outputs",
                  "pred prob ADAP disenroll/wk",
                  "prop virally suppressed",
                  "source files"),
  Method = c("clients/(art_current or pop.pos)",
             rep("Obs summary", 6),
             rep("Exp + Weibull survival model", 2),
             "Obs summary",
             " "),
  Levels = c("overall",
             "enroll yr x race x region",
             "race x region",
             rep("enroll yr x race x region", 2),
             rep("yr x race x insurance", 2),
             "day x race x insurance x type",
             "wk x race x insurance",
             "race x ADAP status",
             " "),
  Source = c("ADAP claims, Census, DOH report",
             rep("ADAP claims data", 8), 
             "ADAP claims data + EHARS",
             " "),
  Group = c(rep("ADAP-related", 10), " "))


# Reconstruct the object
adap_data <- c(adap.frac = list(adap.frac),
               adap_data, 
               descTable = list(adap_desc_table))

## PDAP ----

# we have several preliminary changes to make:

# from last chunk of ZK's Parameters and Targets.rmd
pred.disenroll <- orig_pdap_data$drop_prob_dat[ , years := as.numeric(years)]

# construct initial enrollment demog distn (% of HIV-)
## init_pdap_dat gets a name change but no other transforms,
## so unlike adap init.demog, this is not overwritten later

## the init_pdap_dat table is a linelist with enrollment days
## for each client, restricted to clients with 
## enrollYr=2016 so we use the 2016 WApopdata
## ZK transforms this to init_pdap_n, the count by race x region

## NOTE: we rename n_samp to N, and replace pop with popsize.neg 
## to parallel ADAP init.demog

init_pdap_n <- orig_pdap_data$init_pdap_dat[, .N, by = c("race", "region")]
init_pdap_n <- merge(init_pdap_n, #pop.hboregion.neg, was original merge
                     msm.pop.totals_2016$pop.racexregion.neg,
                     by = c("race", "region")) %>%
  mutate(popsize.neg = num_ub,
         prop = N/popsize.neg) %>%
  select(race, region, N, popsize.neg, prop) %>%
  setkeyv(c("race", "region"))

# Rename, add placeholder for predicted insurance (model in PDAP section)
pdap_data <- list(demog = orig_pdap_data$pdap_demog,
                  init.demog = init_pdap_n,
                  ins = orig_pdap_data$pdap_ins,
                  ins.pred = "placeholder",
                  new.clients = orig_pdap_data$pdap_new_clients,
                  cost.pday = orig_pdap_data$PDAPcost_pd,
                  model.disenroll = orig_pdap_data$dropout_model,
                  pred.disenroll = pred.disenroll,
                  init.dur = orig_pdap_data$init_pdap_dat, 
                  makefile = "make_DOHDAPdynamics.Rmd & DAPoutputs.R")


# compute DOH PDAP fraction -- use 2018 for comparison to WHAMP survey

doh_pdap_2018 <- sum(pdap_data$demog$N[pdap_data$demog$year==2018])
pop_neg_2018 <- sum(msm.pop.totals_2018$pop.neg$num_ub)
# PrepFrac -- we don't have a DOH estimate so use WHAMP
prepFrac <- w.prepTargets$all$wtd.mean[w.prepTargets$all$var == "prep.current"]
doh_pdap_prep_frac <- doh_pdap_2018 / (pop_neg_2018 * prepFrac)
doh_pdap_hivneg_frac <- doh_pdap_2018 / pop_neg_2018
pdap.frac = list(prep = doh_pdap_prep_frac,
                 hivneg = doh_pdap_hivneg_frac)

# rebuild descTable
pdap_desc_table <- tibble(
  Component = c("pdap.frac", names(pdap_data)),
  Description = c("PDAP fraction of PrEP users or HIV-",
                  "demographics of PDAP clients",
                  "demographics before first yr (2016)",
                  "observed insurance of PDAP clients",
                  "predicted insurance for PDAP clients",
                  "demographics of new PDAP clients",
                  "daily cost by component and total",
                  "disenroll model fit object",
                  "pred prob PDAP disenroll/wk",
                  "time on PDAP at start of first yr (days)",
                  "source files"),
  Method = c("clients/(prep.current or pop.neg)",
             rep("Obs summary", 3),
             "multinomial regression",
             rep("Obs summary", 2),
             rep("Logistic regression", 2),
             "Obs summary",
             " "),
  Levels = c("overall",
             "enroll yr x race x region",
             "race x region",
             "enroll yr x race x region",
             "race x region",
             "enroll yr x race x region",
             "enroll yr x race x insurance",
             rep("yr x race x insurance", 2),
             "race x insurance x region",
             " "),
  Source = c("PDAP claims, Census, WHAMP survey",
             rep("PDAP claims data", 9), " "),
  Group = c(rep("PDAP-related", 10), " "))

# Reconstruct the object
pdap_data <- c(pdap.frac = list(pdap.frac),
               pdap_data, 
               descTable = list(pdap_desc_table))

Population estimates

The population estimates msm.pop.totals_20XX come from the WApopdata repository, for XX=year (14 thru 19). The objects are documented, so the details are available via ?WApopdata::msm.pop.totals_2019.

These are list objects, which include the MSM population estimates by demographic attributes (age, race, region) and HIV status. Summary of the 2019 object below.

summary(msm.pop.totals_2019)
##                     Length Class      Mode
## pop.all             5      tbl_df     list
## pop.pos             8      tbl_df     list
## pop.neg             6      tbl_df     list
## newdx.all           8      tbl_df     list
## pop.age.all         5      tbl_df     list
## pop.age.neg         4      tbl_df     list
## pop.age.pos         9      tbl_df     list
## newdx.age           9      tbl_df     list
## pop.race.all        5      tbl_df     list
## pop.race.neg        4      tbl_df     list
## pop.race.pos        9      tbl_df     list
## newdx.race          9      tbl_df     list
## pop.region.all      3      tbl_df     list
## pop.region.neg      4      tbl_df     list
## pop.region.pos      6      tbl_df     list
## newdx.region        6      tbl_df     list
## pop.racexregion.all 4      grouped_df list
## pop.racexregion.neg 5      grouped_df list
## pop.racexregion.pos 7      grouped_df list
## newdx.racexregion   7      grouped_df list
## MSM_PLWH_WA         5      tbl_df     list
## msm.wts.all.age5    5      tbl_df     list
## msm.wts.all.age10   5      tbl_df     list
## msm.wts.15_65.age10 5      tbl_df     list

DOH DAP data files

These files are derived from the ADAP and PDAP program data. Construction workflow is on the secure terminal server: DataManagement.R followed by DAPoutputs.R.

NOTE: We have renamed the components of ZK’s DAP objects for clarity, consistency and brevity. The renames can be found in the code section at the top of this file where the objects are read in, and the new names are also listed in the descTable at the end of this report.

ADAP data

adap_data is a list including the following elements.

kable(adap_data$descTable, 
      caption= "ADAP data") %>% 
  kable_styling(full_width = F, position = "center", 
                bootstrap_options = c("striped"))
ADAP data
Component Description Method Levels Source Group
adap.frac ADAP fraction of ART users or HIV+ clients/(art_current or pop.pos) overall ADAP claims, Census, DOH report ADAP-related
demog demographics of ADAP clients Obs summary enroll yr x race x region ADAP claims data ADAP-related
init.demog demographics in first yr Obs summary race x region ADAP claims data ADAP-related
ins insurance of ADAP clients Obs summary enroll yr x race x region ADAP claims data ADAP-related
new.clients demographics of new ADAP clients Obs summary enroll yr x race x region ADAP claims data ADAP-related
cost.pday daily cost by component and total Obs summary yr x race x insurance ADAP claims data ADAP-related
cost.pyr annual cost by component and total Obs summary yr x race x insurance ADAP claims data ADAP-related
model.disenroll survival model calc outputs Exp + Weibull survival model day x race x insurance x type ADAP claims data ADAP-related
pred.disenroll pred prob ADAP disenroll/wk Exp + Weibull survival model wk x race x insurance ADAP claims data ADAP-related
vl.race prop virally suppressed Obs summary race x ADAP status ADAP claims data + EHARS ADAP-related
makefile source files

PDAP data

pdap_data is a list including the following elements.

kable(pdap_data$descTable, 
      caption= "PDAP data") %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
PDAP data
Component Description Method Levels Source Group
pdap.frac PDAP fraction of PrEP users or HIV- clients/(prep.current or pop.neg) overall PDAP claims, Census, WHAMP survey PDAP-related
demog demographics of PDAP clients Obs summary enroll yr x race x region PDAP claims data PDAP-related
init.demog demographics before first yr (2016) Obs summary race x region PDAP claims data PDAP-related
ins observed insurance of PDAP clients Obs summary enroll yr x race x region PDAP claims data PDAP-related
ins.pred predicted insurance for PDAP clients multinomial regression race x region PDAP claims data PDAP-related
new.clients demographics of new PDAP clients Obs summary enroll yr x race x region PDAP claims data PDAP-related
cost.pday daily cost by component and total Obs summary enroll yr x race x insurance PDAP claims data PDAP-related
model.disenroll disenroll model fit object Logistic regression yr x race x insurance PDAP claims data PDAP-related
pred.disenroll pred prob PDAP disenroll/wk Logistic regression yr x race x insurance PDAP claims data PDAP-related
init.dur time on PDAP at start of first yr (days) Obs summary race x insurance x region PDAP claims data PDAP-related
makefile source files

WHAMP survey targets

These are based on the WHAMP survey data, and do not include the ARTnetWA cases.

ART

This is a list object with summary statistics on the ART continuum, overall and stratified by attributes (components are all, age, race, region). Sample is restricted to HIV+.

In general we can only use the overall sample summaries, as the cell sizes are too small when stratified by attribute to be reliable:

kable(w.artTargets$all, 
      caption= "ART summary stats for all HIV+",
      digits = c(0,0,0,0,1,2,2,3,1)) %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped")) %>%
  footnote("WHAMP survey data")
ART summary stats for all HIV+
var nobs n.valid n.missing wtd.n wtd.mean wtd.sd wtd.semean wtd.median
mos.frst.art 87 87 0 89.7 177.59 105.27 11.116 160
art.int 87 87 0 89.7 0.30 0.46 0.049 0
art.int.mos 87 24 63 25.2 11.37 19.36 2.044 6
Note:
WHAMP survey data

PrEP

This is a list object with summary statistics on the PrEP continuum, overall and stratified by attributes (components are all, age, race, region, snap5). Sample is restricted to HIV-.

As with the WHAMP ART stats, we can only use the overall sample summaries, as the cell sizes are too small when stratified by attribute to be reliable:

kable(w.prepTargets$all, 
      caption= "PrEP summary stats for all HIV-",
      digits = c(0,0,0,0,1,2,2,3,1)) %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped")) %>%
  footnote("WHAMP survey data")
PrEP summary stats for all HIV-
var nobs n.valid n.missing wtd.n wtd.mean wtd.sd wtd.semean wtd.median
prep.aware 831 756 75 749.8 0.92 0.27 0.009 1
prep.ever 831 755 76 748.8 0.30 0.46 0.016 0
prep.current 831 755 76 748.8 0.22 0.42 0.014 0
prep.discont 831 222 609 225.2 0.39 0.49 0.017 0
prep.stop 831 222 609 225.2 0.26 0.44 0.015 0
prep.reinit 831 161 670 167.5 0.18 0.39 0.013 0
prep.int.mos 831 34 797 30.3 3.50 2.62 0.091 2
Note:
WHAMP survey data

DAP participation

This is a list object with point estimates of the overall ADAP and PDAP enrollment rates, for both those engaged in care and the HIV status-relevant population, and the number of observations on which they are based.

Again we can only use the overall sample summaries, as the subgroups are too small when stratified by attribute to be reliable.

  • ADAP enrollment fraction estimates
    • of ART users: 29.9%
    • of HIV+ : 28.2%
  • PDAP enrollment fraction estimates
    • of PrEP users: 16.7%
    • of HIV- : 3.7%
kable(w.dapFractions$descTable, 
      caption= "WHAMP DAP participation rate estimates") %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
WHAMP DAP participation rate estimates
Params Description Subset Method Levels Notes
adap.frac ADAP enrollment fractions & nobs ART current or HIV+ wtd proportions overall adap.frac art is starting value for calibration
pdap.frac PDAP enrollment fractions & nobs PrEP current or HIV- wtd proportions overall pdap.frac prep is starting value for calibration
makefile source file WHAMP survey estimates
cat("adap.frac object")
## adap.frac object
glimpse(w.dapFractions$adap.frac)
## List of 4
##  $ art   : num 0.299
##  $ n.art : int 87
##  $ hivpos: num 0.282
##  $ n.pos : int 92
cat("pdap.frac object")
## pdap.frac object
glimpse(w.dapFractions$pdap.frac)
## List of 4
##  $ prep  : num 0.167
##  $ n.prep: int 161
##  $ hivneg: num 0.0372
##  $ n.neg : int 755

Parameters

ADAP

demog

Demographics of ADAP clients.

Data inputs

  • Number of ADAP clients by race x region x year from DAP data
  • HIV+ popsize by race x region x year from WApopdata
  • Overall 2019 engaged in care fraction of HIV+ from 2020 DOH surveillance report (see this GH issue)

Parameter outputs

  • Year 1 (2014) serves as the initial distribution of ADAP clients by race x region.

  • ADAP fraction of ART users (can be used as a target, or a parameter)

# ADAP data only for 2014-2018
# we are now using 2014-2018 data for pop estimates also
# and we use the upper bound estimate for number of HIV positive

year<- data.frame(year = c(rep(2014, 9), rep(2015,9), rep(2016,9),
                           rep(2017,9), rep(2018,9)))

pop.racexregion.pos <- bind_rows(msm.pop.totals_2014$pop.racexregion.pos,
                                 msm.pop.totals_2015$pop.racexregion.pos,
                                 msm.pop.totals_2016$pop.racexregion.pos,
                                 msm.pop.totals_2017$pop.racexregion.pos,
                                 msm.pop.totals_2018$pop.racexregion.pos) %>%
  bind_cols(year, .) %>%
  select(year, region, race, popsize.pos = num_ub) %>%
  data.table()

# ZK modifies the data structure in place
adap_data$demog <- merge(adap_data$demog, 
                         pop.racexregion.pos, 
                         by.x = c("enrollYear", "race", "region"), 
                         by.y = c("year", "race", "region"),
                         all.x = T) %>%
  mutate(prop = N/popsize.pos,
         year = enrollYear - 2013) %>%
  select(-c(yr_bk, enrollYear)) %>%
  setkeyv(c("year", "race", "region")) %>%
  setcolorder(c("year", "race", "region"))

adap_data$init.demog <- adap_data$demog[year == 1] %>% # note we overwrite
  setkeyv(c("race", "region"))

## Not used, but would be interesting
# adap_person_yrs <- sum(adap_data$demog$N)

ADAP Prevalence estimate comparisons

We have 2 sources for estimating the fraction of ART users on ADAP: DOH DAP + surveillance data, and the WHAMP survey. The two estimates are consistent (given sampling error):

  • DOH data: 34.3%
  • WHAMP survey: 29.9% (95% CI: 20.1% - 39.7%)

DOH ADAP estimates

The plot and table below show the fraction of HIV- in ADAP, based on the DOH DAP and WApop data. The estimates are based on ADAP.clients(yr)/PopHIV-(yr) by attribute. Note the denominator is not ART users.

Plot

p <- ggplot(adap_data$demog %>% mutate(year=year+2013), 
            aes(x = year, y = prop, text = N)) + 
  geom_line(aes(color = race)) +
  facet_wrap(~ region) + 
  labs(title = "ADAP participation rates for HIV+",
       xlab = "year",
       ylab = "proportion") +
  theme(axis.text.x = element_text(size = 9, angle = 90, hjust = 1))

gp <- ggplotly(p, tooltip = "text")
gp %>% layout_3x3

Table

kable(adap_data$demog, digits = c(0, 0, 0, 0, 1, 2), 
      caption= "ADAP by race and region") %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
ADAP by race and region
year race region N popsize.pos prop
1 B EasternWA 6 34.3 0.17
1 B King 165 498.1 0.33
1 B WesternWA 55 220.2 0.25
1 H EasternWA 72 194.1 0.37
1 H King 261 668.1 0.39
1 H WesternWA 117 321.7 0.36
1 O EasternWA 242 780.8 0.31
1 O King 1144 4141.0 0.28
1 O WesternWA 674 2120.6 0.32
2 B EasternWA 5 40.4 0.12
2 B King 157 507.1 0.31
2 B WesternWA 58 240.4 0.24
2 H EasternWA 71 206.6 0.34
2 H King 279 721.5 0.39
2 H WesternWA 128 354.0 0.36
2 O EasternWA 235 872.7 0.27
2 O King 1074 4164.1 0.26
2 O WesternWA 684 2191.6 0.31
3 B EasternWA 3 40.5 0.07
3 B King 178 530.2 0.34
3 B WesternWA 59 248.6 0.24
3 H EasternWA 72 210.9 0.34
3 H King 300 771.7 0.39
3 H WesternWA 150 367.6 0.41
3 O EasternWA 257 913.0 0.28
3 O King 1106 4139.0 0.27
3 O WesternWA 743 2286.3 0.32
4 B EasternWA 6 45.1 0.13
4 B King 200 573.1 0.35
4 B WesternWA 64 266.6 0.24
4 H EasternWA 84 229.7 0.37
4 H King 320 808.4 0.40
4 H WesternWA 161 426.3 0.38
4 O EasternWA 262 969.1 0.27
4 O King 1121 4130.7 0.27
4 O WesternWA 769 2421.9 0.32
5 B EasternWA 8 52.5 0.15
5 B King 212 604.4 0.35
5 B WesternWA 67 278.0 0.24
5 H EasternWA 103 243.0 0.42
5 H King 329 850.7 0.39
5 H WesternWA 167 445.7 0.37
5 O EasternWA 284 996.6 0.28
5 O King 1142 4094.8 0.28
5 O WesternWA 794 2548.2 0.31

ins

Insurance among ADAP clients

Data source: DOH DAP data

  • Number of ADAP clients by race x region x insurance x year
  • 6 insurance cagetories: employer, individual, medicaid, medicare, none (uninsured), and WSHIP.

Parameter Output

  • Probability of insurance category by race x region x year.
  • Insurance of new ADAP clients was assigned using this data.table.
# ZK modifies the original data here
ins <- adap_data$ins
ins[, sum_N := sum(N), by = list(year, race, region)]
ins[, prop := N / sum_N]
ins[, `:=` (yr_bk = NULL, 
            sum_N = NULL, 
            year = year - 2013)]
adap_data$ins <- ins

Plot

p <- ggplot(adap_data$ins %>% mutate(year = year+2013), 
            aes(x = year, y = prop, 
                text = round(prop,2))) +
  geom_line(aes(group = race, color = race)) +
  facet_grid(region ~ insurance) + 
  labs(title = "Insurance type for ADAP clients") +
  xlab("year") + ylab("proportion") +
  theme(axis.text.x = element_text(size = 9, angle = 90, hjust = 1))

# This plot takes a lot of tweaking to display properly using
# ggplotly

gp <- ggplotly(p, tooltip = "text")
gp %>% layout_3x5

Table

kable(adap_data$ins, digits = c(0, 0, 0, 0, 0, 3), 
      caption= "insurance of ADAP clients by race and region") %>% 
  kable_styling(full_width=F, position="center", bootstrap_options = c("striped"))
insurance of ADAP clients by race and region
year race region insurance N prop
1 B EasternWA employer 0 0.000
1 B EasternWA individual 0 0.000
1 B EasternWA medicaid 1 0.167
1 B EasternWA medicare 2 0.333
1 B EasternWA none 3 0.500
1 B EasternWA wship 0 0.000
1 B King employer 0 0.000
1 B King individual 57 0.345
1 B King medicaid 23 0.139
1 B King medicare 63 0.382
1 B King none 22 0.133
1 B King wship 0 0.000
1 B WesternWA employer 0 0.000
1 B WesternWA individual 21 0.382
1 B WesternWA medicaid 3 0.055
1 B WesternWA medicare 24 0.436
1 B WesternWA none 7 0.127
1 B WesternWA wship 0 0.000
1 H EasternWA employer 0 0.000
1 H EasternWA individual 18 0.250
1 H EasternWA medicaid 1 0.014
1 H EasternWA medicare 14 0.194
1 H EasternWA none 18 0.250
1 H EasternWA wship 21 0.292
1 H King employer 0 0.000
1 H King individual 107 0.410
1 H King medicaid 4 0.015
1 H King medicare 38 0.146
1 H King none 45 0.172
1 H King wship 67 0.257
1 H WesternWA employer 0 0.000
1 H WesternWA individual 31 0.265
1 H WesternWA medicaid 2 0.017
1 H WesternWA medicare 25 0.214
1 H WesternWA none 24 0.205
1 H WesternWA wship 35 0.299
1 O EasternWA employer 0 0.000
1 O EasternWA individual 72 0.298
1 O EasternWA medicaid 28 0.116
1 O EasternWA medicare 134 0.554
1 O EasternWA none 8 0.033
1 O EasternWA wship 0 0.000
1 O King employer 0 0.000
1 O King individual 536 0.469
1 O King medicaid 68 0.059
1 O King medicare 401 0.351
1 O King none 131 0.115
1 O King wship 8 0.007
1 O WesternWA employer 0 0.000
1 O WesternWA individual 222 0.329
1 O WesternWA medicaid 33 0.049
1 O WesternWA medicare 359 0.533
1 O WesternWA none 55 0.082
1 O WesternWA wship 5 0.007
2 B EasternWA employer 0 0.000
2 B EasternWA individual 2 0.400
2 B EasternWA medicaid 0 0.000
2 B EasternWA medicare 3 0.600
2 B EasternWA none 0 0.000
2 B EasternWA wship 0 0.000
2 B King employer 0 0.000
2 B King individual 53 0.338
2 B King medicaid 26 0.166
2 B King medicare 61 0.389
2 B King none 17 0.108
2 B King wship 0 0.000
2 B WesternWA employer 0 0.000
2 B WesternWA individual 21 0.362
2 B WesternWA medicaid 3 0.052
2 B WesternWA medicare 26 0.448
2 B WesternWA none 8 0.138
2 B WesternWA wship 0 0.000
2 H EasternWA employer 0 0.000
2 H EasternWA individual 24 0.338
2 H EasternWA medicaid 3 0.042
2 H EasternWA medicare 12 0.169
2 H EasternWA none 12 0.169
2 H EasternWA wship 20 0.282
2 H King employer 0 0.000
2 H King individual 115 0.412
2 H King medicaid 4 0.014
2 H King medicare 37 0.133
2 H King none 55 0.197
2 H King wship 68 0.244
2 H WesternWA employer 0 0.000
2 H WesternWA individual 43 0.336
2 H WesternWA medicaid 1 0.008
2 H WesternWA medicare 28 0.219
2 H WesternWA none 21 0.164
2 H WesternWA wship 35 0.273
2 O EasternWA employer 0 0.000
2 O EasternWA individual 56 0.238
2 O EasternWA medicaid 29 0.123
2 O EasternWA medicare 143 0.609
2 O EasternWA none 7 0.030
2 O EasternWA wship 0 0.000
2 O King employer 0 0.000
2 O King individual 499 0.465
2 O King medicaid 74 0.069
2 O King medicare 396 0.369
2 O King none 97 0.090
2 O King wship 8 0.007
2 O WesternWA employer 0 0.000
2 O WesternWA individual 199 0.291
2 O WesternWA medicaid 53 0.077
2 O WesternWA medicare 381 0.557
2 O WesternWA none 45 0.066
2 O WesternWA wship 6 0.009
3 B EasternWA employer 0 0.000
3 B EasternWA individual 0 0.000
3 B EasternWA medicaid 1 0.333
3 B EasternWA medicare 2 0.667
3 B EasternWA none 0 0.000
3 B EasternWA wship 0 0.000
3 B King employer 10 0.056
3 B King individual 49 0.275
3 B King medicaid 31 0.174
3 B King medicare 64 0.360
3 B King none 24 0.135
3 B King wship 0 0.000
3 B WesternWA employer 4 0.068
3 B WesternWA individual 21 0.356
3 B WesternWA medicaid 5 0.085
3 B WesternWA medicare 25 0.424
3 B WesternWA none 4 0.068
3 B WesternWA wship 0 0.000
3 H EasternWA employer 3 0.042
3 H EasternWA individual 26 0.361
3 H EasternWA medicaid 4 0.056
3 H EasternWA medicare 12 0.167
3 H EasternWA none 9 0.125
3 H EasternWA wship 18 0.250
3 H King employer 10 0.033
3 H King individual 134 0.447
3 H King medicaid 6 0.020
3 H King medicare 37 0.123
3 H King none 44 0.147
3 H King wship 69 0.230
3 H WesternWA employer 3 0.020
3 H WesternWA individual 57 0.380
3 H WesternWA medicaid 1 0.007
3 H WesternWA medicare 32 0.213
3 H WesternWA none 21 0.140
3 H WesternWA wship 36 0.240
3 O EasternWA employer 5 0.019
3 O EasternWA individual 53 0.206
3 O EasternWA medicaid 42 0.163
3 O EasternWA medicare 143 0.556
3 O EasternWA none 14 0.054
3 O EasternWA wship 0 0.000
3 O King employer 37 0.033
3 O King individual 468 0.423
3 O King medicaid 97 0.088
3 O King medicare 391 0.354
3 O King none 105 0.095
3 O King wship 8 0.007
3 O WesternWA employer 36 0.048
3 O WesternWA individual 204 0.275
3 O WesternWA medicaid 68 0.092
3 O WesternWA medicare 393 0.529
3 O WesternWA none 36 0.048
3 O WesternWA wship 6 0.008
4 B EasternWA employer 1 0.167
4 B EasternWA individual 1 0.167
4 B EasternWA medicaid 4 0.667
4 B EasternWA medicare 0 0.000
4 B EasternWA none 0 0.000
4 B EasternWA wship 0 0.000
4 B King employer 46 0.230
4 B King individual 34 0.170
4 B King medicaid 61 0.305
4 B King medicare 38 0.190
4 B King none 21 0.105
4 B King wship 0 0.000
4 B WesternWA employer 19 0.297
4 B WesternWA individual 10 0.156
4 B WesternWA medicaid 13 0.203
4 B WesternWA medicare 15 0.234
4 B WesternWA none 7 0.109
4 B WesternWA wship 0 0.000
4 H EasternWA employer 19 0.226
4 H EasternWA individual 18 0.214
4 H EasternWA medicaid 11 0.131
4 H EasternWA medicare 6 0.071
4 H EasternWA none 12 0.143
4 H EasternWA wship 18 0.214
4 H King employer 65 0.203
4 H King individual 87 0.272
4 H King medicaid 24 0.075
4 H King medicare 18 0.056
4 H King none 59 0.184
4 H King wship 67 0.209
4 H WesternWA employer 27 0.168
4 H WesternWA individual 40 0.248
4 H WesternWA medicaid 12 0.075
4 H WesternWA medicare 18 0.112
4 H WesternWA none 27 0.168
4 H WesternWA wship 37 0.230
4 O EasternWA employer 30 0.115
4 O EasternWA individual 38 0.145
4 O EasternWA medicaid 96 0.366
4 O EasternWA medicare 89 0.340
4 O EasternWA none 9 0.034
4 O EasternWA wship 0 0.000
4 O King employer 237 0.211
4 O King individual 313 0.279
4 O King medicaid 239 0.213
4 O King medicare 251 0.224
4 O King none 73 0.065
4 O King wship 8 0.007
4 O WesternWA employer 129 0.168
4 O WesternWA individual 129 0.168
4 O WesternWA medicaid 202 0.263
4 O WesternWA medicare 264 0.343
4 O WesternWA none 39 0.051
4 O WesternWA wship 6 0.008
5 B EasternWA employer 1 0.125
5 B EasternWA individual 1 0.125
5 B EasternWA medicaid 3 0.375
5 B EasternWA medicare 0 0.000
5 B EasternWA none 3 0.375
5 B EasternWA wship 0 0.000
5 B King employer 51 0.241
5 B King individual 37 0.175
5 B King medicaid 62 0.292
5 B King medicare 40 0.189
5 B King none 22 0.104
5 B King wship 0 0.000
5 B WesternWA employer 17 0.254
5 B WesternWA individual 10 0.149
5 B WesternWA medicaid 14 0.209
5 B WesternWA medicare 16 0.239
5 B WesternWA none 10 0.149
5 B WesternWA wship 0 0.000
5 H EasternWA employer 27 0.262
5 H EasternWA individual 25 0.243
5 H EasternWA medicaid 13 0.126
5 H EasternWA medicare 9 0.087
5 H EasternWA none 11 0.107
5 H EasternWA wship 18 0.175
5 H King employer 70 0.213
5 H King individual 75 0.228
5 H King medicaid 27 0.082
5 H King medicare 16 0.049
5 H King none 76 0.231
5 H King wship 65 0.198
5 H WesternWA employer 24 0.144
5 H WesternWA individual 49 0.293
5 H WesternWA medicaid 13 0.078
5 H WesternWA medicare 20 0.120
5 H WesternWA none 26 0.156
5 H WesternWA wship 35 0.210
5 O EasternWA employer 32 0.113
5 O EasternWA individual 49 0.173
5 O EasternWA medicaid 110 0.387
5 O EasternWA medicare 81 0.285
5 O EasternWA none 12 0.042
5 O EasternWA wship 0 0.000
5 O King employer 256 0.224
5 O King individual 309 0.271
5 O King medicaid 239 0.209
5 O King medicare 260 0.228
5 O King none 71 0.062
5 O King wship 7 0.006
5 O WesternWA employer 134 0.169
5 O WesternWA individual 138 0.174
5 O WesternWA medicaid 209 0.263
5 O WesternWA medicare 267 0.336
5 O WesternWA none 40 0.050
5 O WesternWA wship 6 0.008

cost.pday

Average daily ADAP cost per person

Data inputs: DOH DAP data

  • Number of clients
  • Number of client-days enrolled in ADAP
  • Costs for each category of spending
  • race, insurance, year (2014-2015, 2016, and 2017-2018)

Parameter outputs:

  • Costs stratified by race x insurance x year
  • Total category costs = sum over all persons, all days (annual cost)
  • Daily category cost per person = Total / sum(person-days of enrollment).
  • Overall program costs sum the category costs.
# ZK modifies the original data here
tmpDF <- data.table(expand.grid(yr_bk = c("2014-2015", "2016", "2017-2018"), 
                                race = c("B", "H", "O"), 
                                insurance = c("none", "employer", "individual",
                                              "medicaid", "medicare", "wship")))

adap_data$cost.pday <- merge(tmpDF, adap_data$cost.pday, 
                             by = c("yr_bk", "race", "insurance"), 
                             all.x = T)
adap_data$cost.pday[is.na(adap_data$cost.pday)] <- 0

Plots

Premium
p <- ggplot(adap_data$cost.pday, 
            aes(x = insurance, y = cPremium, 
                text = round(cPremium, 2))) + 
  geom_bar(aes(fill = race), stat = "identity", 
           position = position_dodge2(width = 0.9), alpha = 0.7) +
  facet_wrap(~ yr_bk, nrow = 5) + 
  labs(title = "Premium cost per person-day",
       x = "insurance",
       y = "cost ($)") +
  theme(legend.position = "bottom")

gp <- ggplotly(p, tooltip = "text")
gp %>% layout_3x1
ART
p <- ggplot(adap_data$cost.pday, 
            aes(x = insurance, y = cART, 
                text = round(cART, 2))) + 
  geom_bar(aes(fill = race), stat = "identity", 
           position = position_dodge2(width = 0.9), alpha = 0.7) +
  facet_wrap(~ yr_bk, nrow = 5) + 
  labs(title = "ART cost per person-day",
       x = "insurance",
       y = "cost ($)") +
  theme(legend.position = "bottom")

gp <- ggplotly(p, tooltip = "text")
gp %>% layout_3x1
Medical care
p <- ggplot(adap_data$cost.pday, 
            aes(x = insurance, y = cMedCare, 
                text = round(cMedCare, 2))) + 
  geom_bar(aes(fill = race), stat = "identity", 
           position = position_dodge2(width = 0.9), alpha = 0.7) +
  facet_wrap(~ yr_bk, nrow = 5) + 
  labs(title = "Other Medical costs per person-day",
       x = "insurance",
       y = "cost ($)") +
  theme(legend.position = "bottom")

gp <- ggplotly(p, tooltip = "text")
gp %>% layout_3x1
Total
#ggplot(adap_data$cost.pday, aes(x = insurance, y = cTotCost)) 

p <- ggplot(adap_data$cost.pday, 
            aes(x = insurance, y = cTotCost, 
                text = round(cTotCost, 2))) + 
  geom_bar(aes(fill = race), stat = "identity", 
           position = position_dodge2(width = 0.9), alpha = 0.7) +
  facet_wrap(~ yr_bk, nrow = 5) + 
  labs(title = "Total cost per person-day",
       x = "insurance",
       y = "cost ($)") +
  theme(legend.position = "bottom")

gp <- ggplotly(p, tooltip = "text")
gp %>% layout_3x1

Table

kable(adap_data$cost.pday, digits = c(0, 0, 0, 2, 2, 2, 2), 
      caption= "Daily ADAP cost by race and insurance") %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
Daily ADAP cost by race and insurance
yr_bk race insurance cPremium cART cOtherDrug cMedCare cTotCost
2014-2015 B employer 0.00 0.00 0.00 0.00 0
2014-2015 B individual 4.46 7.13 0.23 0.76 13
2014-2015 B medicaid 0.75 0.16 0.03 0.01 1
2014-2015 B medicare 0.61 3.65 0.27 0.60 5
2014-2015 B none 1.56 41.55 0.89 3.00 47
2014-2015 B wship 0.00 0.00 0.00 0.00 0
2014-2015 H employer 0.00 0.00 0.00 0.00 0
2014-2015 H individual 8.16 6.37 0.85 0.92 16
2014-2015 H medicaid 0.93 0.02 0.01 0.00 1
2014-2015 H medicare 0.66 3.35 0.15 1.02 5
2014-2015 H none 0.92 48.18 1.30 6.05 56
2014-2015 H wship 35.10 1.05 0.05 1.39 38
2014-2015 O employer 0.00 0.00 0.00 0.00 0
2014-2015 O individual 6.27 6.58 0.51 0.92 14
2014-2015 O medicaid 0.83 0.07 0.03 0.00 1
2014-2015 O medicare 1.14 5.29 0.78 0.85 8
2014-2015 O none 2.25 36.05 1.01 4.49 44
2014-2015 O wship 32.58 2.06 0.30 1.19 36
2016 B employer 1.53 3.39 0.12 0.44 5
2016 B individual 9.08 3.12 0.19 0.94 13
2016 B medicaid 0.86 0.35 0.03 0.28 2
2016 B medicare 0.95 6.18 0.28 0.80 8
2016 B none 2.32 39.27 0.37 4.46 46
2016 B wship 0.00 0.00 0.00 0.00 0
2016 H employer 1.99 3.22 0.07 0.65 6
2016 H individual 10.27 6.29 0.14 0.92 18
2016 H medicaid 0.38 0.01 0.01 0.60 1
2016 H medicare 0.86 4.32 0.22 1.14 7
2016 H none 1.58 57.53 3.97 6.00 69
2016 H wship 42.57 1.09 0.04 1.24 45
2016 O employer 2.11 3.32 0.30 0.85 7
2016 O individual 10.17 2.92 0.29 0.91 14
2016 O medicaid 0.92 0.04 0.01 0.35 1
2016 O medicare 1.53 6.95 0.59 1.01 10
2016 O none 2.37 40.01 0.34 3.64 46
2016 O wship 37.71 2.48 0.22 1.75 42
2017-2018 B employer 1.14 4.06 1.23 1.31 8
2017-2018 B individual 14.11 4.63 0.48 0.95 20
2017-2018 B medicaid 0.53 0.19 0.08 0.79 2
2017-2018 B medicare 1.30 11.20 1.30 1.56 15
2017-2018 B none 1.47 54.38 3.06 5.03 64
2017-2018 B wship 0.00 0.00 0.00 0.00 0
2017-2018 H employer 1.05 5.66 0.32 1.21 8
2017-2018 H individual 15.29 10.25 0.26 2.32 28
2017-2018 H medicaid 0.39 0.16 0.06 1.02 2
2017-2018 H medicare 1.42 10.51 1.48 2.30 16
2017-2018 H none 0.99 57.40 6.39 8.01 73
2017-2018 H wship 53.91 1.75 0.07 1.73 57
2017-2018 O employer 2.05 4.66 0.57 1.35 9
2017-2018 O individual 15.08 5.15 0.64 1.27 22
2017-2018 O medicaid 1.02 0.18 0.10 1.32 3
2017-2018 O medicare 2.22 10.05 1.20 1.91 15
2017-2018 O none 2.46 43.87 5.84 5.34 58
2017-2018 O wship 47.87 2.63 1.75 2.81 55

pred.disenroll

Disenrollment probability from ADAP (weekly)

This is a model-based estimate that pieces together two different model specifications:

  • Incident client model: An exponential survival model based on ADAP clients who enrolled after 2014.

  • Established client model: A Weibull survival model based on ADAP clients who were already enrolled in 2014.

  • Both models controlled for race and insurance (public, private, and uninsured) at the time of first enrollment. The model code is in the repo here, but the analysis was done on the secure terminal server.

The models are pieced together by using the predicted disenrollment probabilities from the exponential model (a constant hazard) for the first 2 years, then switching over to the predicted values from the Weibull model for the subsequent enrollment period. The subsequent “established client” period has lower hazards that almost all decline over time.

Tables

Survival coefficients
coeff.est <- adap_data$model.disenroll

coeff.est <- coeff.est %>% 
  ungroup() %>%
  group_by(RaceCategory, FirstInsuranceCategory, type) %>% 
  filter(row_number() == 1) %>%
  select(Race = RaceCategory, 
         FirstIns = FirstInsuranceCategory, 
         type, shape, scale) %>%
  ungroup() %>%
  arrange(type, Race, FirstIns) %>%
  mutate(model = ifelse(type == "incident", "exponential", "weibull"))

kable(coeff.est, digits = c(0, 0, 0, 2, 0, 0), 
      caption= "Shape and scale coefficients of survival model") %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
Shape and scale coefficients of survival model
Race FirstIns type shape scale model
Other Public established 0.99 5422 weibull
Other Private established 0.83 1456 weibull
Other None established 0.73 632 weibull
Hispanic Public established 0.91 4431 weibull
Hispanic Private established 0.97 1395 weibull
Hispanic None established 0.75 1882 weibull
Black Public established 1.13 3300 weibull
Black Private established 0.70 1514 weibull
Black None established 0.55 1118 weibull
Other Public incident 1.00 3244 exponential
Other Private incident 1.00 1036 exponential
Other None incident 1.00 962 exponential
Hispanic Public incident 1.00 2424 exponential
Hispanic Private incident 1.00 988 exponential
Hispanic None incident 1.00 1250 exponential
Black Public incident 1.00 1506 exponential
Black Private incident 1.00 643 exponential
Black None incident 1.00 824 exponential
Probability of disenrollment
  • R code used to calculate probability of disenrollment included here, but not run.
for (i in 1:nrow(coeff.est)){
  
  cumhazdiff <- rep(NA, 3650)
  cumhaz <- rep(NA, 3650)
  for(t in 1:3650){
    a <- coeff.est$shape[i]
    b <- coeff.est$scale[i]
    cumhazdiff[t] <- -pweibull(t, a, b, lower = FALSE, log = TRUE) +
      pweibull(t-1, a, b, lower = FALSE, log = TRUE)
    cumhaz[t] <- -pweibull(t, a, b, lower = FALSE, log = TRUE)
  }
  
  dat <- data.frame(t = 1:3650,
                    cumhazdiff = cumhazdiff,
                    cumhaz = cumhaz,
                    Race = coeff.est$Race[i],
                    FirstIns = coeff.est$FirstIns[i],
                    type = coeff.est$type[i],
                    shape = coeff.est$shape[i],
                    scale = coeff.est$scale[i])
  
  if(i==1) {plot.dat <- dat} else {plot.dat <- rbind(plot.dat, dat)}
  
}

model_disenroll <- plot.dat %>%
  filter(type == "established") %>%
  mutate(t = t + 730) %>%
  filter(t <= 3650) %>%
  full_join(plot.dat %>%
              filter(type == "incident")) %>%
  group_by(FirstIns, Race,t) %>%
  arrange(FirstIns, Race, t, cumhazdiff) %>%
  filter(row_number() == 1) %>%
  ungroup() %>%
  group_by(FirstIns, Race) %>%
  arrange(t) %>%
  mutate(cumhaz = cumsum(cumhazdiff)) %>%
  ungroup() %>%
  rowwise() %>%
  mutate(surv = exp(-cumhaz)) 
  • Probability of disenrollment by race and insurance type (data.table)
kable(adap_data$pred.disenroll, digits = c(0, 0, 0, 3), 
      caption= "probability of ADAP disenrollment") %>% 
  kable_styling(full_width=F, position="center", bootstrap_options = c("striped"))
probability of ADAP disenrollment
week insurance race disenroll_prob
1 private B 0.011
2 private B 0.011
3 private B 0.011
4 private B 0.011
5 private B 0.011
6 private B 0.011
7 private B 0.011
8 private B 0.011
9 private B 0.011
10 private B 0.011
11 private B 0.011
12 private B 0.011
13 private B 0.011
14 private B 0.011
15 private B 0.011
16 private B 0.011
17 private B 0.011
18 private B 0.011
19 private B 0.011
20 private B 0.011
21 private B 0.011
22 private B 0.011
23 private B 0.011
24 private B 0.011
25 private B 0.011
26 private B 0.011
27 private B 0.011
28 private B 0.011
29 private B 0.011
30 private B 0.011
31 private B 0.011
32 private B 0.011
33 private B 0.011
34 private B 0.011
35 private B 0.011
36 private B 0.011
37 private B 0.011
38 private B 0.011
39 private B 0.011
40 private B 0.011
41 private B 0.011
42 private B 0.011
43 private B 0.011
44 private B 0.011
45 private B 0.011
46 private B 0.011
47 private B 0.011
48 private B 0.011
49 private B 0.011
50 private B 0.011
51 private B 0.011
52 private B 0.011
53 private B 0.011
54 private B 0.011
55 private B 0.011
56 private B 0.011
57 private B 0.011
58 private B 0.011
59 private B 0.011
60 private B 0.011
61 private B 0.011
62 private B 0.011
63 private B 0.011
64 private B 0.011
65 private B 0.011
66 private B 0.011
67 private B 0.011
68 private B 0.011
69 private B 0.011
70 private B 0.011
71 private B 0.011
72 private B 0.011
73 private B 0.011
74 private B 0.011
75 private B 0.011
76 private B 0.011
77 private B 0.011
78 private B 0.011
79 private B 0.011
80 private B 0.011
81 private B 0.011
82 private B 0.011
83 private B 0.011
84 private B 0.011
85 private B 0.011
86 private B 0.011
87 private B 0.011
88 private B 0.011
89 private B 0.011
90 private B 0.011
91 private B 0.011
92 private B 0.011
93 private B 0.011
94 private B 0.011
95 private B 0.011
96 private B 0.011
97 private B 0.011
98 private B 0.011
99 private B 0.011
100 private B 0.011
101 private B 0.011
102 private B 0.011
103 private B 0.011
104 private B 0.011
105 private B 0.011
106 private B 0.011
107 private B 0.011
108 private B 0.011
109 private B 0.011
110 private B 0.010
111 private B 0.009
112 private B 0.009
113 private B 0.009
114 private B 0.008
115 private B 0.008
116 private B 0.008
117 private B 0.008
118 private B 0.007
119 private B 0.007
120 private B 0.007
121 private B 0.007
122 private B 0.007
123 private B 0.007
124 private B 0.007
125 private B 0.007
126 private B 0.006
127 private B 0.006
128 private B 0.006
129 private B 0.006
130 private B 0.006
131 private B 0.006
132 private B 0.006
133 private B 0.006
134 private B 0.006
135 private B 0.006
136 private B 0.006
137 private B 0.006
138 private B 0.006
139 private B 0.006
140 private B 0.006
141 private B 0.006
142 private B 0.005
143 private B 0.005
144 private B 0.005
145 private B 0.005
146 private B 0.005
147 private B 0.005
148 private B 0.005
149 private B 0.005
150 private B 0.005
151 private B 0.005
152 private B 0.005
153 private B 0.005
154 private B 0.005
155 private B 0.005
156 private B 0.005
157 private B 0.005
158 private B 0.005
159 private B 0.005
160 private B 0.005
161 private B 0.005
162 private B 0.005
163 private B 0.005
164 private B 0.005
165 private B 0.005
166 private B 0.005
167 private B 0.005
168 private B 0.005
169 private B 0.005
170 private B 0.005
171 private B 0.005
172 private B 0.005
173 private B 0.005
174 private B 0.005
175 private B 0.005
176 private B 0.005
177 private B 0.004
178 private B 0.004
179 private B 0.004
180 private B 0.004
181 private B 0.004
182 private B 0.004
183 private B 0.004
184 private B 0.004
185 private B 0.004
186 private B 0.004
187 private B 0.004
188 private B 0.004
189 private B 0.004
190 private B 0.004
191 private B 0.004
192 private B 0.004
193 private B 0.004
194 private B 0.004
195 private B 0.004
196 private B 0.004
197 private B 0.004
198 private B 0.004
199 private B 0.004
200 private B 0.004
201 private B 0.004
202 private B 0.004
203 private B 0.004
204 private B 0.004
205 private B 0.004
206 private B 0.004
207 private B 0.004
208 private B 0.004
209 private B 0.004
210 private B 0.004
211 private B 0.004
212 private B 0.004
213 private B 0.004
214 private B 0.004
215 private B 0.004
216 private B 0.004
217 private B 0.004
218 private B 0.004
219 private B 0.004
220 private B 0.004
221 private B 0.004
222 private B 0.004
223 private B 0.004
224 private B 0.004
225 private B 0.004
226 private B 0.004
227 private B 0.004
228 private B 0.004
229 private B 0.004
230 private B 0.004
231 private B 0.004
232 private B 0.004
233 private B 0.004
234 private B 0.004
235 private B 0.004
236 private B 0.004
237 private B 0.004
238 private B 0.004
239 private B 0.004
240 private B 0.004
241 private B 0.004
242 private B 0.004
243 private B 0.004
244 private B 0.004
245 private B 0.004
246 private B 0.004
247 private B 0.004
248 private B 0.004
249 private B 0.004
250 private B 0.004
251 private B 0.004
252 private B 0.004
253 private B 0.004
254 private B 0.004
255 private B 0.004
256 private B 0.004
257 private B 0.004
258 private B 0.004
259 private B 0.004
260 private B 0.004
261 private B 0.004
262 private B 0.004
263 private B 0.004
264 private B 0.004
265 private B 0.004
266 private B 0.004
267 private B 0.004
268 private B 0.004
269 private B 0.003
270 private B 0.003
271 private B 0.003
272 private B 0.003
273 private B 0.003
274 private B 0.003
275 private B 0.003
276 private B 0.003
277 private B 0.003
278 private B 0.003
279 private B 0.003
280 private B 0.003
281 private B 0.003
282 private B 0.003
283 private B 0.003
284 private B 0.003
285 private B 0.003
286 private B 0.003
287 private B 0.003
288 private B 0.003
289 private B 0.003
290 private B 0.003
291 private B 0.003
292 private B 0.003
293 private B 0.003
294 private B 0.003
295 private B 0.003
296 private B 0.003
297 private B 0.003
298 private B 0.003
299 private B 0.003
300 private B 0.003
301 private B 0.003
302 private B 0.003
303 private B 0.003
304 private B 0.003
305 private B 0.003
306 private B 0.003
307 private B 0.003
308 private B 0.003
309 private B 0.003
310 private B 0.003
311 private B 0.003
312 private B 0.003
313 private B 0.003
314 private B 0.003
315 private B 0.003
316 private B 0.003
317 private B 0.003
318 private B 0.003
319 private B 0.003
320 private B 0.003
321 private B 0.003
322 private B 0.003
323 private B 0.003
324 private B 0.003
325 private B 0.003
326 private B 0.003
327 private B 0.003
328 private B 0.003
329 private B 0.003
330 private B 0.003
331 private B 0.003
332 private B 0.003
333 private B 0.003
334 private B 0.003
335 private B 0.003
336 private B 0.003
337 private B 0.003
338 private B 0.003
339 private B 0.003
340 private B 0.003
341 private B 0.003
342 private B 0.003
343 private B 0.003
344 private B 0.003
345 private B 0.003
346 private B 0.003
347 private B 0.003
348 private B 0.003
349 private B 0.003
350 private B 0.003
351 private B 0.003
352 private B 0.003
353 private B 0.003
354 private B 0.003
355 private B 0.003
356 private B 0.003
357 private B 0.003
358 private B 0.003
359 private B 0.003
360 private B 0.003
361 private B 0.003
362 private B 0.003
363 private B 0.003
364 private B 0.003
365 private B 0.003
366 private B 0.003
367 private B 0.003
368 private B 0.003
369 private B 0.003
370 private B 0.003
371 private B 0.003
372 private B 0.003
373 private B 0.003
374 private B 0.003
375 private B 0.003
376 private B 0.003
377 private B 0.003
378 private B 0.003
379 private B 0.003
380 private B 0.003
381 private B 0.003
382 private B 0.003
383 private B 0.003
384 private B 0.003
385 private B 0.003
386 private B 0.003
387 private B 0.003
388 private B 0.003
389 private B 0.003
390 private B 0.003
391 private B 0.003
392 private B 0.003
393 private B 0.003
394 private B 0.003
395 private B 0.003
396 private B 0.003
397 private B 0.003
398 private B 0.003
399 private B 0.003
400 private B 0.003
401 private B 0.003
402 private B 0.003
403 private B 0.003
404 private B 0.003
405 private B 0.003
406 private B 0.003
407 private B 0.003
408 private B 0.003
409 private B 0.003
410 private B 0.003
411 private B 0.003
412 private B 0.003
413 private B 0.003
414 private B 0.003
415 private B 0.003
416 private B 0.003
417 private B 0.003
418 private B 0.003
419 private B 0.003
420 private B 0.003
421 private B 0.003
422 private B 0.003
423 private B 0.003
424 private B 0.003
425 private B 0.003
426 private B 0.003
427 private B 0.003
428 private B 0.003
429 private B 0.003
430 private B 0.003
431 private B 0.003
432 private B 0.003
433 private B 0.003
434 private B 0.003
435 private B 0.003
436 private B 0.003
437 private B 0.003
438 private B 0.003
439 private B 0.003
440 private B 0.003
441 private B 0.003
442 private B 0.003
443 private B 0.003
444 private B 0.003
445 private B 0.003
446 private B 0.003
447 private B 0.003
448 private B 0.003
449 private B 0.003
450 private B 0.003
451 private B 0.003
452 private B 0.003
453 private B 0.003
454 private B 0.003
455 private B 0.003
456 private B 0.003
457 private B 0.003
458 private B 0.003
459 private B 0.003
460 private B 0.003
461 private B 0.003
462 private B 0.003
463 private B 0.003
464 private B 0.003
465 private B 0.003
466 private B 0.003
467 private B 0.003
468 private B 0.003
469 private B 0.003
470 private B 0.003
471 private B 0.003
472 private B 0.003
473 private B 0.003
474 private B 0.003
475 private B 0.003
476 private B 0.003
477 private B 0.003
478 private B 0.003
479 private B 0.003
480 private B 0.003
481 private B 0.003
482 private B 0.003
483 private B 0.003
484 private B 0.003
485 private B 0.003
486 private B 0.003
487 private B 0.003
488 private B 0.003
489 private B 0.003
490 private B 0.003
491 private B 0.003
492 private B 0.003
493 private B 0.003
494 private B 0.003
495 private B 0.003
496 private B 0.003
497 private B 0.003
498 private B 0.003
499 private B 0.003
500 private B 0.003
501 private B 0.003
502 private B 0.003
503 private B 0.003
504 private B 0.003
505 private B 0.003
506 private B 0.003
507 private B 0.003
508 private B 0.003
509 private B 0.003
510 private B 0.003
511 private B 0.003
512 private B 0.003
513 private B 0.003
514 private B 0.003
515 private B 0.003
516 private B 0.003
517 private B 0.003
518 private B 0.003
519 private B 0.003
520 private B 0.003
521 private B 0.003
1 public B 0.005
2 public B 0.005
3 public B 0.005
4 public B 0.005
5 public B 0.005
6 public B 0.005
7 public B 0.005
8 public B 0.005
9 public B 0.005
10 public B 0.005
11 public B 0.005
12 public B 0.005
13 public B 0.005
14 public B 0.005
15 public B 0.005
16 public B 0.005
17 public B 0.005
18 public B 0.005
19 public B 0.005
20 public B 0.005
21 public B 0.005
22 public B 0.005
23 public B 0.005
24 public B 0.005
25 public B 0.005
26 public B 0.005
27 public B 0.005
28 public B 0.005
29 public B 0.005
30 public B 0.005
31 public B 0.005
32 public B 0.005
33 public B 0.005
34 public B 0.005
35 public B 0.005
36 public B 0.005
37 public B 0.005
38 public B 0.005
39 public B 0.005
40 public B 0.005
41 public B 0.005
42 public B 0.005
43 public B 0.005
44 public B 0.005
45 public B 0.005
46 public B 0.005
47 public B 0.005
48 public B 0.005
49 public B 0.005
50 public B 0.005
51 public B 0.005
52 public B 0.005
53 public B 0.005
54 public B 0.005
55 public B 0.005
56 public B 0.005
57 public B 0.005
58 public B 0.005
59 public B 0.005
60 public B 0.005
61 public B 0.005
62 public B 0.005
63 public B 0.005
64 public B 0.005
65 public B 0.005
66 public B 0.005
67 public B 0.005
68 public B 0.005
69 public B 0.005
70 public B 0.005
71 public B 0.005
72 public B 0.005
73 public B 0.005
74 public B 0.005
75 public B 0.005
76 public B 0.005
77 public B 0.005
78 public B 0.005
79 public B 0.005
80 public B 0.005
81 public B 0.005
82 public B 0.005
83 public B 0.005
84 public B 0.005
85 public B 0.005
86 public B 0.005
87 public B 0.005
88 public B 0.005
89 public B 0.005
90 public B 0.005
91 public B 0.005
92 public B 0.005
93 public B 0.005
94 public B 0.005
95 public B 0.005
96 public B 0.005
97 public B 0.005
98 public B 0.005
99 public B 0.005
100 public B 0.005
101 public B 0.005
102 public B 0.005
103 public B 0.005
104 public B 0.005
105 public B 0.002
106 public B 0.001
107 public B 0.001
108 public B 0.001
109 public B 0.001
110 public B 0.001
111 public B 0.001
112 public B 0.001
113 public B 0.001
114 public B 0.001
115 public B 0.001
116 public B 0.001
117 public B 0.001
118 public B 0.002
119 public B 0.002
120 public B 0.002
121 public B 0.002
122 public B 0.002
123 public B 0.002
124 public B 0.002
125 public B 0.002
126 public B 0.002
127 public B 0.002
128 public B 0.002
129 public B 0.002
130 public B 0.002
131 public B 0.002
132 public B 0.002
133 public B 0.002
134 public B 0.002
135 public B 0.002
136 public B 0.002
137 public B 0.002
138 public B 0.002
139 public B 0.002
140 public B 0.002
141 public B 0.002
142 public B 0.002
143 public B 0.002
144 public B 0.002
145 public B 0.002
146 public B 0.002
147 public B 0.002
148 public B 0.002
149 public B 0.002
150 public B 0.002
151 public B 0.002
152 public B 0.002
153 public B 0.002
154 public B 0.002
155 public B 0.002
156 public B 0.002
157 public B 0.002
158 public B 0.002
159 public B 0.002
160 public B 0.002
161 public B 0.002
162 public B 0.002
163 public B 0.002
164 public B 0.002
165 public B 0.002
166 public B 0.002
167 public B 0.002
168 public B 0.002
169 public B 0.002
170 public B 0.002
171 public B 0.002
172 public B 0.002
173 public B 0.002
174 public B 0.002
175 public B 0.002
176 public B 0.002
177 public B 0.002
178 public B 0.002
179 public B 0.002
180 public B 0.002
181 public B 0.002
182 public B 0.002
183 public B 0.002
184 public B 0.002
185 public B 0.002
186 public B 0.002
187 public B 0.002
188 public B 0.002
189 public B 0.002
190 public B 0.002
191 public B 0.002
192 public B 0.002
193 public B 0.002
194 public B 0.002
195 public B 0.002
196 public B 0.002
197 public B 0.002
198 public B 0.002
199 public B 0.002
200 public B 0.002
201 public B 0.002
202 public B 0.002
203 public B 0.002
204 public B 0.002
205 public B 0.002
206 public B 0.002
207 public B 0.002
208 public B 0.002
209 public B 0.002
210 public B 0.002
211 public B 0.002
212 public B 0.002
213 public B 0.002
214 public B 0.002
215 public B 0.002
216 public B 0.002
217 public B 0.002
218 public B 0.002
219 public B 0.002
220 public B 0.002
221 public B 0.002
222 public B 0.002
223 public B 0.002
224 public B 0.002
225 public B 0.002
226 public B 0.002
227 public B 0.002
228 public B 0.002
229 public B 0.002
230 public B 0.002
231 public B 0.002
232 public B 0.002
233 public B 0.002
234 public B 0.002
235 public B 0.002
236 public B 0.002
237 public B 0.002
238 public B 0.002
239 public B 0.002
240 public B 0.002
241 public B 0.002
242 public B 0.002
243 public B 0.002
244 public B 0.002
245 public B 0.002
246 public B 0.002
247 public B 0.002
248 public B 0.002
249 public B 0.002
250 public B 0.002
251 public B 0.002
252 public B 0.002
253 public B 0.002
254 public B 0.002
255 public B 0.002
256 public B 0.002
257 public B 0.002
258 public B 0.002
259 public B 0.002
260 public B 0.002
261 public B 0.002
262 public B 0.002
263 public B 0.002
264 public B 0.002
265 public B 0.002
266 public B 0.002
267 public B 0.002
268 public B 0.002
269 public B 0.002
270 public B 0.002
271 public B 0.002
272 public B 0.002
273 public B 0.002
274 public B 0.002
275 public B 0.002
276 public B 0.002
277 public B 0.002
278 public B 0.002
279 public B 0.002
280 public B 0.002
281 public B 0.002
282 public B 0.002
283 public B 0.002
284 public B 0.002
285 public B 0.002
286 public B 0.002
287 public B 0.002
288 public B 0.002
289 public B 0.002
290 public B 0.002
291 public B 0.002
292 public B 0.002
293 public B 0.002
294 public B 0.002
295 public B 0.002
296 public B 0.002
297 public B 0.002
298 public B 0.002
299 public B 0.002
300 public B 0.002
301 public B 0.002
302 public B 0.002
303 public B 0.002
304 public B 0.002
305 public B 0.002
306 public B 0.002
307 public B 0.002
308 public B 0.002
309 public B 0.002
310 public B 0.002
311 public B 0.002
312 public B 0.002
313 public B 0.002
314 public B 0.002
315 public B 0.002
316 public B 0.002
317 public B 0.002
318 public B 0.002
319 public B 0.002
320 public B 0.002
321 public B 0.002
322 public B 0.002
323 public B 0.002
324 public B 0.002
325 public B 0.002
326 public B 0.002
327 public B 0.002
328 public B 0.002
329 public B 0.002
330 public B 0.002
331 public B 0.002
332 public B 0.002
333 public B 0.002
334 public B 0.002
335 public B 0.002
336 public B 0.002
337 public B 0.002
338 public B 0.002
339 public B 0.002
340 public B 0.002
341 public B 0.002
342 public B 0.002
343 public B 0.002
344 public B 0.002
345 public B 0.002
346 public B 0.002
347 public B 0.002
348 public B 0.002
349 public B 0.002
350 public B 0.002
351 public B 0.002
352 public B 0.002
353 public B 0.002
354 public B 0.002
355 public B 0.002
356 public B 0.002
357 public B 0.002
358 public B 0.002
359 public B 0.002
360 public B 0.002
361 public B 0.002
362 public B 0.002
363 public B 0.002
364 public B 0.002
365 public B 0.002
366 public B 0.002
367 public B 0.002
368 public B 0.002
369 public B 0.002
370 public B 0.002
371 public B 0.002
372 public B 0.002
373 public B 0.002
374 public B 0.002
375 public B 0.002
376 public B 0.002
377 public B 0.002
378 public B 0.002
379 public B 0.002
380 public B 0.002
381 public B 0.002
382 public B 0.002
383 public B 0.002
384 public B 0.002
385 public B 0.002
386 public B 0.002
387 public B 0.002
388 public B 0.002
389 public B 0.002
390 public B 0.002
391 public B 0.002
392 public B 0.002
393 public B 0.002
394 public B 0.002
395 public B 0.002
396 public B 0.002
397 public B 0.002
398 public B 0.002
399 public B 0.002
400 public B 0.002
401 public B 0.002
402 public B 0.002
403 public B 0.002
404 public B 0.002
405 public B 0.002
406 public B 0.002
407 public B 0.002
408 public B 0.002
409 public B 0.002
410 public B 0.002
411 public B 0.002
412 public B 0.002
413 public B 0.002
414 public B 0.002
415 public B 0.002
416 public B 0.002
417 public B 0.002
418 public B 0.002
419 public B 0.002
420 public B 0.002
421 public B 0.002
422 public B 0.002
423 public B 0.002
424 public B 0.002
425 public B 0.002
426 public B 0.002
427 public B 0.002
428 public B 0.002
429 public B 0.002
430 public B 0.002
431 public B 0.002
432 public B 0.002
433 public B 0.002
434 public B 0.002
435 public B 0.002
436 public B 0.002
437 public B 0.002
438 public B 0.002
439 public B 0.002
440 public B 0.002
441 public B 0.002
442 public B 0.002
443 public B 0.002
444 public B 0.002
445 public B 0.002
446 public B 0.002
447 public B 0.002
448 public B 0.002
449 public B 0.002
450 public B 0.002
451 public B 0.002
452 public B 0.002
453 public B 0.002
454 public B 0.002
455 public B 0.002
456 public B 0.002
457 public B 0.002
458 public B 0.002
459 public B 0.002
460 public B 0.002
461 public B 0.002
462 public B 0.002
463 public B 0.002
464 public B 0.002
465 public B 0.002
466 public B 0.002
467 public B 0.002
468 public B 0.002
469 public B 0.002
470 public B 0.002
471 public B 0.002
472 public B 0.002
473 public B 0.002
474 public B 0.002
475 public B 0.002
476 public B 0.002
477 public B 0.002
478 public B 0.002
479 public B 0.002
480 public B 0.002
481 public B 0.002
482 public B 0.002
483 public B 0.002
484 public B 0.002
485 public B 0.002
486 public B 0.002
487 public B 0.002
488 public B 0.002
489 public B 0.002
490 public B 0.002
491 public B 0.002
492 public B 0.002
493 public B 0.002
494 public B 0.002
495 public B 0.002
496 public B 0.002
497 public B 0.002
498 public B 0.002
499 public B 0.002
500 public B 0.002
501 public B 0.002
502 public B 0.002
503 public B 0.002
504 public B 0.002
505 public B 0.002
506 public B 0.002
507 public B 0.002
508 public B 0.002
509 public B 0.002
510 public B 0.002
511 public B 0.002
512 public B 0.002
513 public B 0.002
514 public B 0.002
515 public B 0.002
516 public B 0.002
517 public B 0.002
518 public B 0.002
519 public B 0.002
520 public B 0.002
521 public B 0.002
1 uninsure B 0.008
2 uninsure B 0.008
3 uninsure B 0.008
4 uninsure B 0.008
5 uninsure B 0.008
6 uninsure B 0.008
7 uninsure B 0.008
8 uninsure B 0.008
9 uninsure B 0.008
10 uninsure B 0.008
11 uninsure B 0.008
12 uninsure B 0.008
13 uninsure B 0.008
14 uninsure B 0.008
15 uninsure B 0.008
16 uninsure B 0.008
17 uninsure B 0.008
18 uninsure B 0.008
19 uninsure B 0.008
20 uninsure B 0.008
21 uninsure B 0.008
22 uninsure B 0.008
23 uninsure B 0.008
24 uninsure B 0.008
25 uninsure B 0.008
26 uninsure B 0.008
27 uninsure B 0.008
28 uninsure B 0.008
29 uninsure B 0.008
30 uninsure B 0.008
31 uninsure B 0.008
32 uninsure B 0.008
33 uninsure B 0.008
34 uninsure B 0.008
35 uninsure B 0.008
36 uninsure B 0.008
37 uninsure B 0.008
38 uninsure B 0.008
39 uninsure B 0.008
40 uninsure B 0.008
41 uninsure B 0.008
42 uninsure B 0.008
43 uninsure B 0.008
44 uninsure B 0.008
45 uninsure B 0.008
46 uninsure B 0.008
47 uninsure B 0.008
48 uninsure B 0.008
49 uninsure B 0.008
50 uninsure B 0.008
51 uninsure B 0.008
52 uninsure B 0.008
53 uninsure B 0.008
54 uninsure B 0.008
55 uninsure B 0.008
56 uninsure B 0.008
57 uninsure B 0.008
58 uninsure B 0.008
59 uninsure B 0.008
60 uninsure B 0.008
61 uninsure B 0.008
62 uninsure B 0.008
63 uninsure B 0.008
64 uninsure B 0.008
65 uninsure B 0.008
66 uninsure B 0.008
67 uninsure B 0.008
68 uninsure B 0.008
69 uninsure B 0.008
70 uninsure B 0.008
71 uninsure B 0.008
72 uninsure B 0.008
73 uninsure B 0.008
74 uninsure B 0.008
75 uninsure B 0.008
76 uninsure B 0.008
77 uninsure B 0.008
78 uninsure B 0.008
79 uninsure B 0.008
80 uninsure B 0.008
81 uninsure B 0.008
82 uninsure B 0.008
83 uninsure B 0.008
84 uninsure B 0.008
85 uninsure B 0.008
86 uninsure B 0.008
87 uninsure B 0.008
88 uninsure B 0.008
89 uninsure B 0.008
90 uninsure B 0.008
91 uninsure B 0.008
92 uninsure B 0.008
93 uninsure B 0.008
94 uninsure B 0.008
95 uninsure B 0.008
96 uninsure B 0.008
97 uninsure B 0.008
98 uninsure B 0.008
99 uninsure B 0.008
100 uninsure B 0.008
101 uninsure B 0.008
102 uninsure B 0.008
103 uninsure B 0.008
104 uninsure B 0.008
105 uninsure B 0.008
106 uninsure B 0.008
107 uninsure B 0.008
108 uninsure B 0.008
109 uninsure B 0.008
110 uninsure B 0.008
111 uninsure B 0.008
112 uninsure B 0.008
113 uninsure B 0.008
114 uninsure B 0.008
115 uninsure B 0.008
116 uninsure B 0.008
117 uninsure B 0.008
118 uninsure B 0.008
119 uninsure B 0.008
120 uninsure B 0.008
121 uninsure B 0.008
122 uninsure B 0.008
123 uninsure B 0.008
124 uninsure B 0.008
125 uninsure B 0.008
126 uninsure B 0.008
127 uninsure B 0.008
128 uninsure B 0.008
129 uninsure B 0.008
130 uninsure B 0.008
131 uninsure B 0.008
132 uninsure B 0.008
133 uninsure B 0.007
134 uninsure B 0.007
135 uninsure B 0.007
136 uninsure B 0.007
137 uninsure B 0.007
138 uninsure B 0.007
139 uninsure B 0.007
140 uninsure B 0.007
141 uninsure B 0.007
142 uninsure B 0.007
143 uninsure B 0.007
144 uninsure B 0.006
145 uninsure B 0.006
146 uninsure B 0.006
147 uninsure B 0.006
148 uninsure B 0.006
149 uninsure B 0.006
150 uninsure B 0.006
151 uninsure B 0.006
152 uninsure B 0.006
153 uninsure B 0.006
154 uninsure B 0.006
155 uninsure B 0.006
156 uninsure B 0.006
157 uninsure B 0.006
158 uninsure B 0.006
159 uninsure B 0.006
160 uninsure B 0.006
161 uninsure B 0.005
162 uninsure B 0.005
163 uninsure B 0.005
164 uninsure B 0.005
165 uninsure B 0.005
166 uninsure B 0.005
167 uninsure B 0.005
168 uninsure B 0.005
169 uninsure B 0.005
170 uninsure B 0.005
171 uninsure B 0.005
172 uninsure B 0.005
173 uninsure B 0.005
174 uninsure B 0.005
175 uninsure B 0.005
176 uninsure B 0.005
177 uninsure B 0.005
178 uninsure B 0.005
179 uninsure B 0.005
180 uninsure B 0.005
181 uninsure B 0.005
182 uninsure B 0.005
183 uninsure B 0.005
184 uninsure B 0.005
185 uninsure B 0.005
186 uninsure B 0.005
187 uninsure B 0.005
188 uninsure B 0.005
189 uninsure B 0.005
190 uninsure B 0.005
191 uninsure B 0.005
192 uninsure B 0.005
193 uninsure B 0.004
194 uninsure B 0.004
195 uninsure B 0.004
196 uninsure B 0.004
197 uninsure B 0.004
198 uninsure B 0.004
199 uninsure B 0.004
200 uninsure B 0.004
201 uninsure B 0.004
202 uninsure B 0.004
203 uninsure B 0.004
204 uninsure B 0.004
205 uninsure B 0.004
206 uninsure B 0.004
207 uninsure B 0.004
208 uninsure B 0.004
209 uninsure B 0.004
210 uninsure B 0.004
211 uninsure B 0.004
212 uninsure B 0.004
213 uninsure B 0.004
214 uninsure B 0.004
215 uninsure B 0.004
216 uninsure B 0.004
217 uninsure B 0.004
218 uninsure B 0.004
219 uninsure B 0.004
220 uninsure B 0.004
221 uninsure B 0.004
222 uninsure B 0.004
223 uninsure B 0.004
224 uninsure B 0.004
225 uninsure B 0.004
226 uninsure B 0.004
227 uninsure B 0.004
228 uninsure B 0.004
229 uninsure B 0.004
230 uninsure B 0.004
231 uninsure B 0.004
232 uninsure B 0.004
233 uninsure B 0.004
234 uninsure B 0.004
235 uninsure B 0.004
236 uninsure B 0.004
237 uninsure B 0.004
238 uninsure B 0.004
239 uninsure B 0.004
240 uninsure B 0.004
241 uninsure B 0.004
242 uninsure B 0.004
243 uninsure B 0.004
244 uninsure B 0.004
245 uninsure B 0.004
246 uninsure B 0.004
247 uninsure B 0.004
248 uninsure B 0.004
249 uninsure B 0.004
250 uninsure B 0.004
251 uninsure B 0.004
252 uninsure B 0.004
253 uninsure B 0.004
254 uninsure B 0.004
255 uninsure B 0.004
256 uninsure B 0.004
257 uninsure B 0.004
258 uninsure B 0.004
259 uninsure B 0.003
260 uninsure B 0.003
261 uninsure B 0.003
262 uninsure B 0.003
263 uninsure B 0.003
264 uninsure B 0.003
265 uninsure B 0.003
266 uninsure B 0.003
267 uninsure B 0.003
268 uninsure B 0.003
269 uninsure B 0.003
270 uninsure B 0.003
271 uninsure B 0.003
272 uninsure B 0.003
273 uninsure B 0.003
274 uninsure B 0.003
275 uninsure B 0.003
276 uninsure B 0.003
277 uninsure B 0.003
278 uninsure B 0.003
279 uninsure B 0.003
280 uninsure B 0.003
281 uninsure B 0.003
282 uninsure B 0.003
283 uninsure B 0.003
284 uninsure B 0.003
285 uninsure B 0.003
286 uninsure B 0.003
287 uninsure B 0.003
288 uninsure B 0.003
289 uninsure B 0.003
290 uninsure B 0.003
291 uninsure B 0.003
292 uninsure B 0.003
293 uninsure B 0.003
294 uninsure B 0.003
295 uninsure B 0.003
296 uninsure B 0.003
297 uninsure B 0.003
298 uninsure B 0.003
299 uninsure B 0.003
300 uninsure B 0.003
301 uninsure B 0.003
302 uninsure B 0.003
303 uninsure B 0.003
304 uninsure B 0.003
305 uninsure B 0.003
306 uninsure B 0.003
307 uninsure B 0.003
308 uninsure B 0.003
309 uninsure B 0.003
310 uninsure B 0.003
311 uninsure B 0.003
312 uninsure B 0.003
313 uninsure B 0.003
314 uninsure B 0.003
315 uninsure B 0.003
316 uninsure B 0.003
317 uninsure B 0.003
318 uninsure B 0.003
319 uninsure B 0.003
320 uninsure B 0.003
321 uninsure B 0.003
322 uninsure B 0.003
323 uninsure B 0.003
324 uninsure B 0.003
325 uninsure B 0.003
326 uninsure B 0.003
327 uninsure B 0.003
328 uninsure B 0.003
329 uninsure B 0.003
330 uninsure B 0.003
331 uninsure B 0.003
332 uninsure B 0.003
333 uninsure B 0.003
334 uninsure B 0.003
335 uninsure B 0.003
336 uninsure B 0.003
337 uninsure B 0.003
338 uninsure B 0.003
339 uninsure B 0.003
340 uninsure B 0.003
341 uninsure B 0.003
342 uninsure B 0.003
343 uninsure B 0.003
344 uninsure B 0.003
345 uninsure B 0.003
346 uninsure B 0.003
347 uninsure B 0.003
348 uninsure B 0.003
349 uninsure B 0.003
350 uninsure B 0.003
351 uninsure B 0.003
352 uninsure B 0.003
353 uninsure B 0.003
354 uninsure B 0.003
355 uninsure B 0.003
356 uninsure B 0.003
357 uninsure B 0.003
358 uninsure B 0.003
359 uninsure B 0.003
360 uninsure B 0.003
361 uninsure B 0.003
362 uninsure B 0.003
363 uninsure B 0.003
364 uninsure B 0.003
365 uninsure B 0.003
366 uninsure B 0.003
367 uninsure B 0.003
368 uninsure B 0.003
369 uninsure B 0.003
370 uninsure B 0.003
371 uninsure B 0.003
372 uninsure B 0.003
373 uninsure B 0.003
374 uninsure B 0.003
375 uninsure B 0.003
376 uninsure B 0.003
377 uninsure B 0.003
378 uninsure B 0.003
379 uninsure B 0.003
380 uninsure B 0.003
381 uninsure B 0.003
382 uninsure B 0.003
383 uninsure B 0.003
384 uninsure B 0.003
385 uninsure B 0.003
386 uninsure B 0.003
387 uninsure B 0.003
388 uninsure B 0.003
389 uninsure B 0.003
390 uninsure B 0.003
391 uninsure B 0.003
392 uninsure B 0.003
393 uninsure B 0.003
394 uninsure B 0.003
395 uninsure B 0.003
396 uninsure B 0.003
397 uninsure B 0.003
398 uninsure B 0.003
399 uninsure B 0.003
400 uninsure B 0.003
401 uninsure B 0.003
402 uninsure B 0.003
403 uninsure B 0.003
404 uninsure B 0.003
405 uninsure B 0.003
406 uninsure B 0.003
407 uninsure B 0.003
408 uninsure B 0.003
409 uninsure B 0.003
410 uninsure B 0.003
411 uninsure B 0.003
412 uninsure B 0.003
413 uninsure B 0.003
414 uninsure B 0.003
415 uninsure B 0.003
416 uninsure B 0.003
417 uninsure B 0.003
418 uninsure B 0.003
419 uninsure B 0.003
420 uninsure B 0.003
421 uninsure B 0.003
422 uninsure B 0.003
423 uninsure B 0.003
424 uninsure B 0.003
425 uninsure B 0.003
426 uninsure B 0.003
427 uninsure B 0.003
428 uninsure B 0.003
429 uninsure B 0.003
430 uninsure B 0.003
431 uninsure B 0.003
432 uninsure B 0.002
433 uninsure B 0.002
434 uninsure B 0.002
435 uninsure B 0.002
436 uninsure B 0.002
437 uninsure B 0.002
438 uninsure B 0.002
439 uninsure B 0.002
440 uninsure B 0.002
441 uninsure B 0.002
442 uninsure B 0.002
443 uninsure B 0.002
444 uninsure B 0.002
445 uninsure B 0.002
446 uninsure B 0.002
447 uninsure B 0.002
448 uninsure B 0.002
449 uninsure B 0.002
450 uninsure B 0.002
451 uninsure B 0.002
452 uninsure B 0.002
453 uninsure B 0.002
454 uninsure B 0.002
455 uninsure B 0.002
456 uninsure B 0.002
457 uninsure B 0.002
458 uninsure B 0.002
459 uninsure B 0.002
460 uninsure B 0.002
461 uninsure B 0.002
462 uninsure B 0.002
463 uninsure B 0.002
464 uninsure B 0.002
465 uninsure B 0.002
466 uninsure B 0.002
467 uninsure B 0.002
468 uninsure B 0.002
469 uninsure B 0.002
470 uninsure B 0.002
471 uninsure B 0.002
472 uninsure B 0.002
473 uninsure B 0.002
474 uninsure B 0.002
475 uninsure B 0.002
476 uninsure B 0.002
477 uninsure B 0.002
478 uninsure B 0.002
479 uninsure B 0.002
480 uninsure B 0.002
481 uninsure B 0.002
482 uninsure B 0.002
483 uninsure B 0.002
484 uninsure B 0.002
485 uninsure B 0.002
486 uninsure B 0.002
487 uninsure B 0.002
488 uninsure B 0.002
489 uninsure B 0.002
490 uninsure B 0.002
491 uninsure B 0.002
492 uninsure B 0.002
493 uninsure B 0.002
494 uninsure B 0.002
495 uninsure B 0.002
496 uninsure B 0.002
497 uninsure B 0.002
498 uninsure B 0.002
499 uninsure B 0.002
500 uninsure B 0.002
501 uninsure B 0.002
502 uninsure B 0.002
503 uninsure B 0.002
504 uninsure B 0.002
505 uninsure B 0.002
506 uninsure B 0.002
507 uninsure B 0.002
508 uninsure B 0.002
509 uninsure B 0.002
510 uninsure B 0.002
511 uninsure B 0.002
512 uninsure B 0.002
513 uninsure B 0.002
514 uninsure B 0.002
515 uninsure B 0.002
516 uninsure B 0.002
517 uninsure B 0.002
518 uninsure B 0.002
519 uninsure B 0.002
520 uninsure B 0.002
521 uninsure B 0.002
1 wship B 0.004
2 wship B 0.004
3 wship B 0.004
4 wship B 0.004
5 wship B 0.004
6 wship B 0.004
7 wship B 0.004
8 wship B 0.004
9 wship B 0.004
10 wship B 0.004
11 wship B 0.004
12 wship B 0.004
13 wship B 0.004
14 wship B 0.004
15 wship B 0.004
16 wship B 0.004
17 wship B 0.004
18 wship B 0.004
19 wship B 0.004
20 wship B 0.004
21 wship B 0.004
22 wship B 0.004
23 wship B 0.004
24 wship B 0.004
25 wship B 0.004
26 wship B 0.004
27 wship B 0.004
28 wship B 0.004
29 wship B 0.004
30 wship B 0.004
31 wship B 0.004
32 wship B 0.004
33 wship B 0.004
34 wship B 0.004
35 wship B 0.004
36 wship B 0.004
37 wship B 0.004
38 wship B 0.004
39 wship B 0.004
40 wship B 0.004
41 wship B 0.004
42 wship B 0.004
43 wship B 0.004
44 wship B 0.004
45 wship B 0.004
46 wship B 0.004
47 wship B 0.004
48 wship B 0.004
49 wship B 0.004
50 wship B 0.004
51 wship B 0.004
52 wship B 0.004
53 wship B 0.004
54 wship B 0.004
55 wship B 0.004
56 wship B 0.004
57 wship B 0.004
58 wship B 0.004
59 wship B 0.004
60 wship B 0.004
61 wship B 0.004
62 wship B 0.004
63 wship B 0.004
64 wship B 0.004
65 wship B 0.004
66 wship B 0.004
67 wship B 0.004
68 wship B 0.004
69 wship B 0.004
70 wship B 0.004
71 wship B 0.004
72 wship B 0.004
73 wship B 0.004
74 wship B 0.004
75 wship B 0.004
76 wship B 0.004
77 wship B 0.004
78 wship B 0.004
79 wship B 0.004
80 wship B 0.004
81 wship B 0.004
82 wship B 0.004
83 wship B 0.004
84 wship B 0.004
85 wship B 0.004
86 wship B 0.004
87 wship B 0.004
88 wship B 0.004
89 wship B 0.004
90 wship B 0.004
91 wship B 0.004
92 wship B 0.004
93 wship B 0.004
94 wship B 0.004
95 wship B 0.004
96 wship B 0.004
97 wship B 0.004
98 wship B 0.004
99 wship B 0.004
100 wship B 0.004
101 wship B 0.004
102 wship B 0.004
103 wship B 0.004
104 wship B 0.004
105 wship B 0.004
106 wship B 0.004
107 wship B 0.004
108 wship B 0.004
109 wship B 0.004
110 wship B 0.004
111 wship B 0.004
112 wship B 0.004
113 wship B 0.004
114 wship B 0.004
115 wship B 0.004
116 wship B 0.004
117 wship B 0.004
118 wship B 0.004
119 wship B 0.004
120 wship B 0.004
121 wship B 0.004
122 wship B 0.004
123 wship B 0.004
124 wship B 0.004
125 wship B 0.004
126 wship B 0.004
127 wship B 0.004
128 wship B 0.004
129 wship B 0.004
130 wship B 0.004
131 wship B 0.004
132 wship B 0.004
133 wship B 0.004
134 wship B 0.004
135 wship B 0.004
136 wship B 0.004
137 wship B 0.004
138 wship B 0.004
139 wship B 0.004
140 wship B 0.004
141 wship B 0.004
142 wship B 0.004
143 wship B 0.004
144 wship B 0.004
145 wship B 0.004
146 wship B 0.004
147 wship B 0.004
148 wship B 0.004
149 wship B 0.004
150 wship B 0.004
151 wship B 0.004
152 wship B 0.004
153 wship B 0.004
154 wship B 0.004
155 wship B 0.004
156 wship B 0.004
157 wship B 0.004
158 wship B 0.004
159 wship B 0.004
160 wship B 0.004
161 wship B 0.004
162 wship B 0.004
163 wship B 0.004
164 wship B 0.004
165 wship B 0.004
166 wship B 0.004
167 wship B 0.004
168 wship B 0.004
169 wship B 0.004
170 wship B 0.004
171 wship B 0.004
172 wship B 0.004
173 wship B 0.004
174 wship B 0.004
175 wship B 0.004
176 wship B 0.004
177 wship B 0.004
178 wship B 0.004
179 wship B 0.004
180 wship B 0.004
181 wship B 0.004
182 wship B 0.004
183 wship B 0.004
184 wship B 0.004
185 wship B 0.004
186 wship B 0.004
187 wship B 0.004
188 wship B 0.004
189 wship B 0.004
190 wship B 0.004
191 wship B 0.004
192 wship B 0.004
193 wship B 0.004
194 wship B 0.004
195 wship B 0.004
196 wship B 0.004
197 wship B 0.004
198 wship B 0.004
199 wship B 0.004
200 wship B 0.004
201 wship B 0.004
202 wship B 0.004
203 wship B 0.004
204 wship B 0.004
205 wship B 0.004
206 wship B 0.004
207 wship B 0.004
208 wship B 0.004
209 wship B 0.004
210 wship B 0.004
211 wship B 0.004
212 wship B 0.004
213 wship B 0.004
214 wship B 0.004
215 wship B 0.004
216 wship B 0.004
217 wship B 0.004
218 wship B 0.004
219 wship B 0.004
220 wship B 0.004
221 wship B 0.004
222 wship B 0.004
223 wship B 0.004
224 wship B 0.004
225 wship B 0.004
226 wship B 0.004
227 wship B 0.004
228 wship B 0.004
229 wship B 0.004
230 wship B 0.004
231 wship B 0.004
232 wship B 0.004
233 wship B 0.004
234 wship B 0.004
235 wship B 0.004
236 wship B 0.004
237 wship B 0.004
238 wship B 0.004
239 wship B 0.004
240 wship B 0.004
241 wship B 0.004
242 wship B 0.004
243 wship B 0.004
244 wship B 0.004
245 wship B 0.004
246 wship B 0.004
247 wship B 0.004
248 wship B 0.004
249 wship B 0.004
250 wship B 0.004
251 wship B 0.004
252 wship B 0.004
253 wship B 0.004
254 wship B 0.004
255 wship B 0.004
256 wship B 0.004
257 wship B 0.004
258 wship B 0.004
259 wship B 0.004
260 wship B 0.004
261 wship B 0.004
262 wship B 0.004
263 wship B 0.004
264 wship B 0.004
265 wship B 0.004
266 wship B 0.004
267 wship B 0.004
268 wship B 0.004
269 wship B 0.004
270 wship B 0.004
271 wship B 0.004
272 wship B 0.004
273 wship B 0.004
274 wship B 0.004
275 wship B 0.004
276 wship B 0.004
277 wship B 0.004
278 wship B 0.004
279 wship B 0.004
280 wship B 0.004
281 wship B 0.004
282 wship B 0.004
283 wship B 0.004
284 wship B 0.004
285 wship B 0.004
286 wship B 0.004
287 wship B 0.004
288 wship B 0.004
289 wship B 0.004
290 wship B 0.004
291 wship B 0.004
292 wship B 0.004
293 wship B 0.004
294 wship B 0.004
295 wship B 0.004
296 wship B 0.004
297 wship B 0.004
298 wship B 0.004
299 wship B 0.004
300 wship B 0.004
301 wship B 0.004
302 wship B 0.004
303 wship B 0.004
304 wship B 0.004
305 wship B 0.004
306 wship B 0.004
307 wship B 0.004
308 wship B 0.004
309 wship B 0.004
310 wship B 0.004
311 wship B 0.004
312 wship B 0.004
313 wship B 0.004
314 wship B 0.004
315 wship B 0.004
316 wship B 0.004
317 wship B 0.004
318 wship B 0.004
319 wship B 0.004
320 wship B 0.004
321 wship B 0.004
322 wship B 0.004
323 wship B 0.004
324 wship B 0.004
325 wship B 0.004
326 wship B 0.004
327 wship B 0.004
328 wship B 0.004
329 wship B 0.004
330 wship B 0.004
331 wship B 0.004
332 wship B 0.004
333 wship B 0.004
334 wship B 0.004
335 wship B 0.004
336 wship B 0.004
337 wship B 0.004
338 wship B 0.004
339 wship B 0.004
340 wship B 0.004
341 wship B 0.004
342 wship B 0.004
343 wship B 0.004
344 wship B 0.004
345 wship B 0.004
346 wship B 0.004
347 wship B 0.004
348 wship B 0.004
349 wship B 0.004
350 wship B 0.004
351 wship B 0.004
352 wship B 0.004
353 wship B 0.004
354 wship B 0.004
355 wship B 0.004
356 wship B 0.004
357 wship B 0.004
358 wship B 0.004
359 wship B 0.004
360 wship B 0.004
361 wship B 0.004
362 wship B 0.004
363 wship B 0.004
364 wship B 0.004
365 wship B 0.004
366 wship B 0.004
367 wship B 0.004
368 wship B 0.004
369 wship B 0.004
370 wship B 0.004
371 wship B 0.004
372 wship B 0.004
373 wship B 0.004
374 wship B 0.004
375 wship B 0.004
376 wship B 0.004
377 wship B 0.004
378 wship B 0.004
379 wship B 0.004
380 wship B 0.004
381 wship B 0.004
382 wship B 0.004
383 wship B 0.004
384 wship B 0.004
385 wship B 0.004
386 wship B 0.004
387 wship B 0.004
388 wship B 0.004
389 wship B 0.004
390 wship B 0.004
391 wship B 0.004
392 wship B 0.004
393 wship B 0.004
394 wship B 0.004
395 wship B 0.004
396 wship B 0.004
397 wship B 0.004
398 wship B 0.004
399 wship B 0.004
400 wship B 0.004
401 wship B 0.004
402 wship B 0.004
403 wship B 0.004
404 wship B 0.004
405 wship B 0.004
406 wship B 0.004
407 wship B 0.004
408 wship B 0.004
409 wship B 0.004
410 wship B 0.004
411 wship B 0.004
412 wship B 0.004
413 wship B 0.004
414 wship B 0.004
415 wship B 0.004
416 wship B 0.004
417 wship B 0.004
418 wship B 0.004
419 wship B 0.004
420 wship B 0.004
421 wship B 0.004
422 wship B 0.004
423 wship B 0.004
424 wship B 0.004
425 wship B 0.004
426 wship B 0.004
427 wship B 0.004
428 wship B 0.004
429 wship B 0.004
430 wship B 0.004
431 wship B 0.004
432 wship B 0.004
433 wship B 0.004
434 wship B 0.004
435 wship B 0.004
436 wship B 0.004
437 wship B 0.004
438 wship B 0.004
439 wship B 0.004
440 wship B 0.004
441 wship B 0.004
442 wship B 0.004
443 wship B 0.004
444 wship B 0.004
445 wship B 0.004
446 wship B 0.004
447 wship B 0.004
448 wship B 0.004
449 wship B 0.004
450 wship B 0.004
451 wship B 0.004
452 wship B 0.004
453 wship B 0.004
454 wship B 0.004
455 wship B 0.004
456 wship B 0.004
457 wship B 0.004
458 wship B 0.004
459 wship B 0.004
460 wship B 0.004
461 wship B 0.004
462 wship B 0.004
463 wship B 0.004
464 wship B 0.004
465 wship B 0.004
466 wship B 0.004
467 wship B 0.004
468 wship B 0.004
469 wship B 0.004
470 wship B 0.004
471 wship B 0.004
472 wship B 0.004
473 wship B 0.004
474 wship B 0.004
475 wship B 0.004
476 wship B 0.004
477 wship B 0.004
478 wship B 0.004
479 wship B 0.004
480 wship B 0.004
481 wship B 0.004
482 wship B 0.004
483 wship B 0.004
484 wship B 0.004
485 wship B 0.004
486 wship B 0.004
487 wship B 0.004
488 wship B 0.004
489 wship B 0.004
490 wship B 0.004
491 wship B 0.004
492 wship B 0.004
493 wship B 0.004
494 wship B 0.004
495 wship B 0.004
496 wship B 0.004
497 wship B 0.004
498 wship B 0.004
499 wship B 0.004
500 wship B 0.004
501 wship B 0.004
502 wship B 0.004
503 wship B 0.004
504 wship B 0.004
505 wship B 0.004
506 wship B 0.004
507 wship B 0.004
508 wship B 0.004
509 wship B 0.004
510 wship B 0.004
511 wship B 0.004
512 wship B 0.004
513 wship B 0.004
514 wship B 0.004
515 wship B 0.004
516 wship B 0.004
517 wship B 0.004
518 wship B 0.004
519 wship B 0.004
520 wship B 0.004
521 wship B 0.004
1 private H 0.007
2 private H 0.007
3 private H 0.007
4 private H 0.007
5 private H 0.007
6 private H 0.007
7 private H 0.007
8 private H 0.007
9 private H 0.007
10 private H 0.007
11 private H 0.007
12 private H 0.007
13 private H 0.007
14 private H 0.007
15 private H 0.007
16 private H 0.007
17 private H 0.007
18 private H 0.007
19 private H 0.007
20 private H 0.007
21 private H 0.007
22 private H 0.007
23 private H 0.007
24 private H 0.007
25 private H 0.007
26 private H 0.007
27 private H 0.007
28 private H 0.007
29 private H 0.007
30 private H 0.007
31 private H 0.007
32 private H 0.007
33 private H 0.007
34 private H 0.007
35 private H 0.007
36 private H 0.007
37 private H 0.007
38 private H 0.007
39 private H 0.007
40 private H 0.007
41 private H 0.007
42 private H 0.007
43 private H 0.007
44 private H 0.007
45 private H 0.007
46 private H 0.007
47 private H 0.007
48 private H 0.007
49 private H 0.007
50 private H 0.007
51 private H 0.007
52 private H 0.007
53 private H 0.007
54 private H 0.007
55 private H 0.007
56 private H 0.007
57 private H 0.007
58 private H 0.007
59 private H 0.007
60 private H 0.007
61 private H 0.007
62 private H 0.007
63 private H 0.007
64 private H 0.007
65 private H 0.007
66 private H 0.007
67 private H 0.007
68 private H 0.007
69 private H 0.007
70 private H 0.007
71 private H 0.007
72 private H 0.007
73 private H 0.007
74 private H 0.007
75 private H 0.007
76 private H 0.007
77 private H 0.007
78 private H 0.007
79 private H 0.007
80 private H 0.007
81 private H 0.007
82 private H 0.007
83 private H 0.007
84 private H 0.007
85 private H 0.007
86 private H 0.007
87 private H 0.007
88 private H 0.007
89 private H 0.007
90 private H 0.007
91 private H 0.007
92 private H 0.007
93 private H 0.007
94 private H 0.007
95 private H 0.007
96 private H 0.007
97 private H 0.007
98 private H 0.007
99 private H 0.007
100 private H 0.007
101 private H 0.007
102 private H 0.007
103 private H 0.007
104 private H 0.007
105 private H 0.006
106 private H 0.006
107 private H 0.006
108 private H 0.005
109 private H 0.005
110 private H 0.005
111 private H 0.005
112 private H 0.005
113 private H 0.005
114 private H 0.005
115 private H 0.005
116 private H 0.005
117 private H 0.005
118 private H 0.005
119 private H 0.005
120 private H 0.005
121 private H 0.005
122 private H 0.005
123 private H 0.005
124 private H 0.005
125 private H 0.005
126 private H 0.005
127 private H 0.005
128 private H 0.005
129 private H 0.005
130 private H 0.005
131 private H 0.005
132 private H 0.005
133 private H 0.005
134 private H 0.005
135 private H 0.005
136 private H 0.005
137 private H 0.005
138 private H 0.005
139 private H 0.005
140 private H 0.005
141 private H 0.005
142 private H 0.005
143 private H 0.005
144 private H 0.005
145 private H 0.005
146 private H 0.005
147 private H 0.005
148 private H 0.005
149 private H 0.005
150 private H 0.005
151 private H 0.005
152 private H 0.005
153 private H 0.005
154 private H 0.005
155 private H 0.005
156 private H 0.005
157 private H 0.005
158 private H 0.005
159 private H 0.005
160 private H 0.005
161 private H 0.005
162 private H 0.005
163 private H 0.005
164 private H 0.005
165 private H 0.005
166 private H 0.005
167 private H 0.005
168 private H 0.005
169 private H 0.005
170 private H 0.005
171 private H 0.005
172 private H 0.005
173 private H 0.005
174 private H 0.005
175 private H 0.005
176 private H 0.005
177 private H 0.005
178 private H 0.005
179 private H 0.005
180 private H 0.005
181 private H 0.005
182 private H 0.005
183 private H 0.005
184 private H 0.005
185 private H 0.005
186 private H 0.005
187 private H 0.005
188 private H 0.005
189 private H 0.005
190 private H 0.005
191 private H 0.005
192 private H 0.005
193 private H 0.005
194 private H 0.005
195 private H 0.005
196 private H 0.005
197 private H 0.005
198 private H 0.005
199 private H 0.005
200 private H 0.005
201 private H 0.005
202 private H 0.005
203 private H 0.005
204 private H 0.005
205 private H 0.005
206 private H 0.005
207 private H 0.005
208 private H 0.005
209 private H 0.005
210 private H 0.005
211 private H 0.005
212 private H 0.005
213 private H 0.005
214 private H 0.005
215 private H 0.005
216 private H 0.005
217 private H 0.005
218 private H 0.005
219 private H 0.005
220 private H 0.005
221 private H 0.005
222 private H 0.005
223 private H 0.005
224 private H 0.005
225 private H 0.005
226 private H 0.005
227 private H 0.005
228 private H 0.005
229 private H 0.005
230 private H 0.005
231 private H 0.005
232 private H 0.005
233 private H 0.005
234 private H 0.005
235 private H 0.005
236 private H 0.005
237 private H 0.005
238 private H 0.005
239 private H 0.005
240 private H 0.005
241 private H 0.005
242 private H 0.005
243 private H 0.005
244 private H 0.005
245 private H 0.005
246 private H 0.005
247 private H 0.005
248 private H 0.005
249 private H 0.005
250 private H 0.005
251 private H 0.005
252 private H 0.005
253 private H 0.005
254 private H 0.005
255 private H 0.005
256 private H 0.005
257 private H 0.005
258 private H 0.005
259 private H 0.005
260 private H 0.005
261 private H 0.005
262 private H 0.005
263 private H 0.005
264 private H 0.005
265 private H 0.005
266 private H 0.005
267 private H 0.005
268 private H 0.005
269 private H 0.005
270 private H 0.005
271 private H 0.005
272 private H 0.005
273 private H 0.005
274 private H 0.005
275 private H 0.005
276 private H 0.005
277 private H 0.005
278 private H 0.005
279 private H 0.005
280 private H 0.005
281 private H 0.005
282 private H 0.005
283 private H 0.005
284 private H 0.005
285 private H 0.005
286 private H 0.005
287 private H 0.005
288 private H 0.005
289 private H 0.005
290 private H 0.005
291 private H 0.005
292 private H 0.005
293 private H 0.005
294 private H 0.005
295 private H 0.005
296 private H 0.005
297 private H 0.005
298 private H 0.005
299 private H 0.005
300 private H 0.005
301 private H 0.005
302 private H 0.005
303 private H 0.005
304 private H 0.005
305 private H 0.005
306 private H 0.005
307 private H 0.005
308 private H 0.005
309 private H 0.005
310 private H 0.005
311 private H 0.005
312 private H 0.005
313 private H 0.005
314 private H 0.005
315 private H 0.005
316 private H 0.005
317 private H 0.005
318 private H 0.005
319 private H 0.005
320 private H 0.005
321 private H 0.005
322 private H 0.005
323 private H 0.005
324 private H 0.005
325 private H 0.005
326 private H 0.005
327 private H 0.005
328 private H 0.005
329 private H 0.005
330 private H 0.005
331 private H 0.005
332 private H 0.005
333 private H 0.005
334 private H 0.005
335 private H 0.005
336 private H 0.005
337 private H 0.005
338 private H 0.005
339 private H 0.005
340 private H 0.005
341 private H 0.005
342 private H 0.005
343 private H 0.005
344 private H 0.005
345 private H 0.005
346 private H 0.005
347 private H 0.005
348 private H 0.005
349 private H 0.005
350 private H 0.005
351 private H 0.005
352 private H 0.005
353 private H 0.005
354 private H 0.005
355 private H 0.005
356 private H 0.005
357 private H 0.005
358 private H 0.005
359 private H 0.005
360 private H 0.005
361 private H 0.005
362 private H 0.005
363 private H 0.005
364 private H 0.005
365 private H 0.005
366 private H 0.005
367 private H 0.005
368 private H 0.005
369 private H 0.005
370 private H 0.005
371 private H 0.005
372 private H 0.005
373 private H 0.005
374 private H 0.005
375 private H 0.005
376 private H 0.005
377 private H 0.005
378 private H 0.005
379 private H 0.005
380 private H 0.005
381 private H 0.005
382 private H 0.005
383 private H 0.005
384 private H 0.005
385 private H 0.005
386 private H 0.005
387 private H 0.005
388 private H 0.005
389 private H 0.005
390 private H 0.005
391 private H 0.005
392 private H 0.005
393 private H 0.005
394 private H 0.005
395 private H 0.005
396 private H 0.005
397 private H 0.005
398 private H 0.005
399 private H 0.005
400 private H 0.005
401 private H 0.005
402 private H 0.005
403 private H 0.005
404 private H 0.005
405 private H 0.005
406 private H 0.005
407 private H 0.005
408 private H 0.005
409 private H 0.005
410 private H 0.005
411 private H 0.005
412 private H 0.005
413 private H 0.005
414 private H 0.005
415 private H 0.005
416 private H 0.005
417 private H 0.005
418 private H 0.005
419 private H 0.005
420 private H 0.005
421 private H 0.005
422 private H 0.005
423 private H 0.005
424 private H 0.005
425 private H 0.005
426 private H 0.005
427 private H 0.005
428 private H 0.005
429 private H 0.005
430 private H 0.005
431 private H 0.005
432 private H 0.005
433 private H 0.005
434 private H 0.005
435 private H 0.005
436 private H 0.005
437 private H 0.005
438 private H 0.005
439 private H 0.005
440 private H 0.005
441 private H 0.005
442 private H 0.005
443 private H 0.005
444 private H 0.005
445 private H 0.005
446 private H 0.005
447 private H 0.005
448 private H 0.005
449 private H 0.005
450 private H 0.005
451 private H 0.005
452 private H 0.005
453 private H 0.005
454 private H 0.005
455 private H 0.005
456 private H 0.005
457 private H 0.005
458 private H 0.005
459 private H 0.005
460 private H 0.005
461 private H 0.005
462 private H 0.005
463 private H 0.005
464 private H 0.005
465 private H 0.005
466 private H 0.005
467 private H 0.005
468 private H 0.005
469 private H 0.005
470 private H 0.005
471 private H 0.005
472 private H 0.005
473 private H 0.005
474 private H 0.005
475 private H 0.005
476 private H 0.005
477 private H 0.005
478 private H 0.005
479 private H 0.005
480 private H 0.005
481 private H 0.005
482 private H 0.005
483 private H 0.005
484 private H 0.005
485 private H 0.005
486 private H 0.005
487 private H 0.005
488 private H 0.005
489 private H 0.005
490 private H 0.005
491 private H 0.005
492 private H 0.005
493 private H 0.005
494 private H 0.005
495 private H 0.005
496 private H 0.005
497 private H 0.005
498 private H 0.005
499 private H 0.005
500 private H 0.005
501 private H 0.005
502 private H 0.005
503 private H 0.005
504 private H 0.005
505 private H 0.005
506 private H 0.005
507 private H 0.005
508 private H 0.005
509 private H 0.005
510 private H 0.005
511 private H 0.005
512 private H 0.005
513 private H 0.005
514 private H 0.005
515 private H 0.005
516 private H 0.005
517 private H 0.005
518 private H 0.005
519 private H 0.005
520 private H 0.005
521 private H 0.005
1 public H 0.003
2 public H 0.003
3 public H 0.003
4 public H 0.003
5 public H 0.003
6 public H 0.003
7 public H 0.003
8 public H 0.003
9 public H 0.003
10 public H 0.003
11 public H 0.003
12 public H 0.003
13 public H 0.003
14 public H 0.003
15 public H 0.003
16 public H 0.003
17 public H 0.003
18 public H 0.003
19 public H 0.003
20 public H 0.003
21 public H 0.003
22 public H 0.003
23 public H 0.003
24 public H 0.003
25 public H 0.003
26 public H 0.003
27 public H 0.003
28 public H 0.003
29 public H 0.003
30 public H 0.003
31 public H 0.003
32 public H 0.003
33 public H 0.003
34 public H 0.003
35 public H 0.003
36 public H 0.003
37 public H 0.003
38 public H 0.003
39 public H 0.003
40 public H 0.003
41 public H 0.003
42 public H 0.003
43 public H 0.003
44 public H 0.003
45 public H 0.003
46 public H 0.003
47 public H 0.003
48 public H 0.003
49 public H 0.003
50 public H 0.003
51 public H 0.003
52 public H 0.003
53 public H 0.003
54 public H 0.003
55 public H 0.003
56 public H 0.003
57 public H 0.003
58 public H 0.003
59 public H 0.003
60 public H 0.003
61 public H 0.003
62 public H 0.003
63 public H 0.003
64 public H 0.003
65 public H 0.003
66 public H 0.003
67 public H 0.003
68 public H 0.003
69 public H 0.003
70 public H 0.003
71 public H 0.003
72 public H 0.003
73 public H 0.003
74 public H 0.003
75 public H 0.003
76 public H 0.003
77 public H 0.003
78 public H 0.003
79 public H 0.003
80 public H 0.003
81 public H 0.003
82 public H 0.003
83 public H 0.003
84 public H 0.003
85 public H 0.003
86 public H 0.003
87 public H 0.003
88 public H 0.003
89 public H 0.003
90 public H 0.003
91 public H 0.003
92 public H 0.003
93 public H 0.003
94 public H 0.003
95 public H 0.003
96 public H 0.003
97 public H 0.003
98 public H 0.003
99 public H 0.003
100 public H 0.003
101 public H 0.003
102 public H 0.003
103 public H 0.003
104 public H 0.003
105 public H 0.003
106 public H 0.003
107 public H 0.002
108 public H 0.002
109 public H 0.002
110 public H 0.002
111 public H 0.002
112 public H 0.002
113 public H 0.002
114 public H 0.002
115 public H 0.002
116 public H 0.002
117 public H 0.002
118 public H 0.002
119 public H 0.002
120 public H 0.002
121 public H 0.002
122 public H 0.002
123 public H 0.002
124 public H 0.002
125 public H 0.002
126 public H 0.002
127 public H 0.002
128 public H 0.002
129 public H 0.002
130 public H 0.002
131 public H 0.002
132 public H 0.002
133 public H 0.002
134 public H 0.002
135 public H 0.002
136 public H 0.002
137 public H 0.002
138 public H 0.002
139 public H 0.002
140 public H 0.002
141 public H 0.002
142 public H 0.002
143 public H 0.002
144 public H 0.002
145 public H 0.002
146 public H 0.002
147 public H 0.002
148 public H 0.002
149 public H 0.002
150 public H 0.002
151 public H 0.002
152 public H 0.002
153 public H 0.002
154 public H 0.002
155 public H 0.002
156 public H 0.002
157 public H 0.002
158 public H 0.002
159 public H 0.002
160 public H 0.002
161 public H 0.002
162 public H 0.002
163 public H 0.002
164 public H 0.002
165 public H 0.002
166 public H 0.002
167 public H 0.002
168 public H 0.002
169 public H 0.002
170 public H 0.002
171 public H 0.002
172 public H 0.002
173 public H 0.002
174 public H 0.002
175 public H 0.002
176 public H 0.002
177 public H 0.002
178 public H 0.002
179 public H 0.002
180 public H 0.002
181 public H 0.002
182 public H 0.002
183 public H 0.002
184 public H 0.002
185 public H 0.002
186 public H 0.002
187 public H 0.002
188 public H 0.002
189 public H 0.002
190 public H 0.002
191 public H 0.002
192 public H 0.002
193 public H 0.002
194 public H 0.002
195 public H 0.002
196 public H 0.002
197 public H 0.002
198 public H 0.002
199 public H 0.002
200 public H 0.002
201 public H 0.002
202 public H 0.002
203 public H 0.002
204 public H 0.002
205 public H 0.002
206 public H 0.002
207 public H 0.002
208 public H 0.002
209 public H 0.002
210 public H 0.002
211 public H 0.002
212 public H 0.002
213 public H 0.002
214 public H 0.002
215 public H 0.002
216 public H 0.002
217 public H 0.002
218 public H 0.002
219 public H 0.002
220 public H 0.002
221 public H 0.002
222 public H 0.002
223 public H 0.002
224 public H 0.002
225 public H 0.002
226 public H 0.002
227 public H 0.002
228 public H 0.002
229 public H 0.002
230 public H 0.002
231 public H 0.002
232 public H 0.002
233 public H 0.002
234 public H 0.002
235 public H 0.002
236 public H 0.002
237 public H 0.002
238 public H 0.002
239 public H 0.002
240 public H 0.002
241 public H 0.002
242 public H 0.002
243 public H 0.002
244 public H 0.002
245 public H 0.002
246 public H 0.002
247 public H 0.002
248 public H 0.002
249 public H 0.002
250 public H 0.002
251 public H 0.002
252 public H 0.002
253 public H 0.002
254 public H 0.002
255 public H 0.002
256 public H 0.002
257 public H 0.002
258 public H 0.002
259 public H 0.002
260 public H 0.002
261 public H 0.002
262 public H 0.002
263 public H 0.002
264 public H 0.002
265 public H 0.002
266 public H 0.002
267 public H 0.002
268 public H 0.002
269 public H 0.002
270 public H 0.002
271 public H 0.002
272 public H 0.002
273 public H 0.002
274 public H 0.002
275 public H 0.002
276 public H 0.002
277 public H 0.002
278 public H 0.002
279 public H 0.002
280 public H 0.002
281 public H 0.002
282 public H 0.002
283 public H 0.002
284 public H 0.002
285 public H 0.002
286 public H 0.002
287 public H 0.002
288 public H 0.002
289 public H 0.002
290 public H 0.002
291 public H 0.002
292 public H 0.002
293 public H 0.002
294 public H 0.002
295 public H 0.002
296 public H 0.002
297 public H 0.002
298 public H 0.002
299 public H 0.002
300 public H 0.002
301 public H 0.002
302 public H 0.002
303 public H 0.002
304 public H 0.002
305 public H 0.002
306 public H 0.002
307 public H 0.002
308 public H 0.002
309 public H 0.002
310 public H 0.002
311 public H 0.002
312 public H 0.002
313 public H 0.002
314 public H 0.002
315 public H 0.002
316 public H 0.002
317 public H 0.002
318 public H 0.002
319 public H 0.002
320 public H 0.002
321 public H 0.002
322 public H 0.002
323 public H 0.002
324 public H 0.002
325 public H 0.002
326 public H 0.002
327 public H 0.002
328 public H 0.002
329 public H 0.002
330 public H 0.002
331 public H 0.002
332 public H 0.002
333 public H 0.002
334 public H 0.002
335 public H 0.002
336 public H 0.002
337 public H 0.002
338 public H 0.002
339 public H 0.002
340 public H 0.002
341 public H 0.002
342 public H 0.002
343 public H 0.002
344 public H 0.002
345 public H 0.002
346 public H 0.002
347 public H 0.002
348 public H 0.002
349 public H 0.002
350 public H 0.002
351 public H 0.002
352 public H 0.002
353 public H 0.002
354 public H 0.002
355 public H 0.002
356 public H 0.002
357 public H 0.002
358 public H 0.002
359 public H 0.002
360 public H 0.002
361 public H 0.002
362 public H 0.002
363 public H 0.002
364 public H 0.002
365 public H 0.002
366 public H 0.002
367 public H 0.002
368 public H 0.002
369 public H 0.002
370 public H 0.002
371 public H 0.002
372 public H 0.002
373 public H 0.002
374 public H 0.002
375 public H 0.002
376 public H 0.002
377 public H 0.002
378 public H 0.002
379 public H 0.002
380 public H 0.002
381 public H 0.002
382 public H 0.002
383 public H 0.002
384 public H 0.002
385 public H 0.002
386 public H 0.002
387 public H 0.002
388 public H 0.002
389 public H 0.002
390 public H 0.002
391 public H 0.002
392 public H 0.002
393 public H 0.002
394 public H 0.002
395 public H 0.002
396 public H 0.002
397 public H 0.002
398 public H 0.002
399 public H 0.002
400 public H 0.002
401 public H 0.002
402 public H 0.002
403 public H 0.002
404 public H 0.002
405 public H 0.002
406 public H 0.002
407 public H 0.002
408 public H 0.002
409 public H 0.002
410 public H 0.002
411 public H 0.002
412 public H 0.002
413 public H 0.002
414 public H 0.002
415 public H 0.002
416 public H 0.002
417 public H 0.002
418 public H 0.002
419 public H 0.002
420 public H 0.002
421 public H 0.002
422 public H 0.002
423 public H 0.002
424 public H 0.002
425 public H 0.002
426 public H 0.002
427 public H 0.002
428 public H 0.002
429 public H 0.002
430 public H 0.002
431 public H 0.002
432 public H 0.002
433 public H 0.002
434 public H 0.002
435 public H 0.002
436 public H 0.002
437 public H 0.002
438 public H 0.002
439 public H 0.002
440 public H 0.002
441 public H 0.002
442 public H 0.002
443 public H 0.002
444 public H 0.002
445 public H 0.002
446 public H 0.002
447 public H 0.002
448 public H 0.002
449 public H 0.002
450 public H 0.002
451 public H 0.002
452 public H 0.002
453 public H 0.002
454 public H 0.002
455 public H 0.002
456 public H 0.002
457 public H 0.002
458 public H 0.002
459 public H 0.002
460 public H 0.002
461 public H 0.002
462 public H 0.002
463 public H 0.002
464 public H 0.002
465 public H 0.002
466 public H 0.002
467 public H 0.002
468 public H 0.002
469 public H 0.002
470 public H 0.002
471 public H 0.002
472 public H 0.002
473 public H 0.002
474 public H 0.002
475 public H 0.002
476 public H 0.002
477 public H 0.002
478 public H 0.002
479 public H 0.002
480 public H 0.002
481 public H 0.002
482 public H 0.002
483 public H 0.002
484 public H 0.002
485 public H 0.002
486 public H 0.001
487 public H 0.001
488 public H 0.001
489 public H 0.001
490 public H 0.001
491 public H 0.001
492 public H 0.001
493 public H 0.001
494 public H 0.001
495 public H 0.001
496 public H 0.001
497 public H 0.001
498 public H 0.001
499 public H 0.001
500 public H 0.001
501 public H 0.001
502 public H 0.001
503 public H 0.001
504 public H 0.001
505 public H 0.001
506 public H 0.001
507 public H 0.001
508 public H 0.001
509 public H 0.001
510 public H 0.001
511 public H 0.001
512 public H 0.001
513 public H 0.001
514 public H 0.001
515 public H 0.001
516 public H 0.001
517 public H 0.001
518 public H 0.001
519 public H 0.001
520 public H 0.001
521 public H 0.001
1 uninsure H 0.006
2 uninsure H 0.006
3 uninsure H 0.006
4 uninsure H 0.006
5 uninsure H 0.006
6 uninsure H 0.006
7 uninsure H 0.006
8 uninsure H 0.006
9 uninsure H 0.006
10 uninsure H 0.006
11 uninsure H 0.006
12 uninsure H 0.006
13 uninsure H 0.006
14 uninsure H 0.006
15 uninsure H 0.006
16 uninsure H 0.006
17 uninsure H 0.006
18 uninsure H 0.006
19 uninsure H 0.006
20 uninsure H 0.006
21 uninsure H 0.006
22 uninsure H 0.006
23 uninsure H 0.006
24 uninsure H 0.006
25 uninsure H 0.006
26 uninsure H 0.006
27 uninsure H 0.006
28 uninsure H 0.006
29 uninsure H 0.006
30 uninsure H 0.006
31 uninsure H 0.006
32 uninsure H 0.006
33 uninsure H 0.006
34 uninsure H 0.006
35 uninsure H 0.006
36 uninsure H 0.006
37 uninsure H 0.006
38 uninsure H 0.006
39 uninsure H 0.006
40 uninsure H 0.006
41 uninsure H 0.006
42 uninsure H 0.006
43 uninsure H 0.006
44 uninsure H 0.006
45 uninsure H 0.006
46 uninsure H 0.006
47 uninsure H 0.006
48 uninsure H 0.006
49 uninsure H 0.006
50 uninsure H 0.006
51 uninsure H 0.006
52 uninsure H 0.006
53 uninsure H 0.006
54 uninsure H 0.006
55 uninsure H 0.006
56 uninsure H 0.006
57 uninsure H 0.006
58 uninsure H 0.006
59 uninsure H 0.006
60 uninsure H 0.006
61 uninsure H 0.006
62 uninsure H 0.006
63 uninsure H 0.006
64 uninsure H 0.006
65 uninsure H 0.006
66 uninsure H 0.006
67 uninsure H 0.006
68 uninsure H 0.006
69 uninsure H 0.006
70 uninsure H 0.006
71 uninsure H 0.006
72 uninsure H 0.006
73 uninsure H 0.006
74 uninsure H 0.006
75 uninsure H 0.006
76 uninsure H 0.006
77 uninsure H 0.006
78 uninsure H 0.006
79 uninsure H 0.006
80 uninsure H 0.006
81 uninsure H 0.006
82 uninsure H 0.006
83 uninsure H 0.006
84 uninsure H 0.006
85 uninsure H 0.006
86 uninsure H 0.006
87 uninsure H 0.006
88 uninsure H 0.006
89 uninsure H 0.006
90 uninsure H 0.006
91 uninsure H 0.006
92 uninsure H 0.006
93 uninsure H 0.006
94 uninsure H 0.006
95 uninsure H 0.006
96 uninsure H 0.006
97 uninsure H 0.006
98 uninsure H 0.006
99 uninsure H 0.006
100 uninsure H 0.006
101 uninsure H 0.006
102 uninsure H 0.006
103 uninsure H 0.006
104 uninsure H 0.006
105 uninsure H 0.006
106 uninsure H 0.006
107 uninsure H 0.006
108 uninsure H 0.006
109 uninsure H 0.006
110 uninsure H 0.006
111 uninsure H 0.006
112 uninsure H 0.006
113 uninsure H 0.006
114 uninsure H 0.006
115 uninsure H 0.006
116 uninsure H 0.006
117 uninsure H 0.006
118 uninsure H 0.006
119 uninsure H 0.006
120 uninsure H 0.006
121 uninsure H 0.006
122 uninsure H 0.006
123 uninsure H 0.005
124 uninsure H 0.005
125 uninsure H 0.005
126 uninsure H 0.005
127 uninsure H 0.005
128 uninsure H 0.005
129 uninsure H 0.005
130 uninsure H 0.005
131 uninsure H 0.005
132 uninsure H 0.005
133 uninsure H 0.005
134 uninsure H 0.005
135 uninsure H 0.005
136 uninsure H 0.005
137 uninsure H 0.005
138 uninsure H 0.005
139 uninsure H 0.005
140 uninsure H 0.005
141 uninsure H 0.005
142 uninsure H 0.005
143 uninsure H 0.005
144 uninsure H 0.005
145 uninsure H 0.004
146 uninsure H 0.004
147 uninsure H 0.004
148 uninsure H 0.004
149 uninsure H 0.004
150 uninsure H 0.004
151 uninsure H 0.004
152 uninsure H 0.004
153 uninsure H 0.004
154 uninsure H 0.004
155 uninsure H 0.004
156 uninsure H 0.004
157 uninsure H 0.004
158 uninsure H 0.004
159 uninsure H 0.004
160 uninsure H 0.004
161 uninsure H 0.004
162 uninsure H 0.004
163 uninsure H 0.004
164 uninsure H 0.004
165 uninsure H 0.004
166 uninsure H 0.004
167 uninsure H 0.004
168 uninsure H 0.004
169 uninsure H 0.004
170 uninsure H 0.004
171 uninsure H 0.004
172 uninsure H 0.004
173 uninsure H 0.004
174 uninsure H 0.004
175 uninsure H 0.004
176 uninsure H 0.004
177 uninsure H 0.004
178 uninsure H 0.004
179 uninsure H 0.004
180 uninsure H 0.004
181 uninsure H 0.004
182 uninsure H 0.004
183 uninsure H 0.004
184 uninsure H 0.004
185 uninsure H 0.004
186 uninsure H 0.004
187 uninsure H 0.004
188 uninsure H 0.004
189 uninsure H 0.004
190 uninsure H 0.004
191 uninsure H 0.004
192 uninsure H 0.004
193 uninsure H 0.004
194 uninsure H 0.004
195 uninsure H 0.004
196 uninsure H 0.004
197 uninsure H 0.004
198 uninsure H 0.004
199 uninsure H 0.004
200 uninsure H 0.004
201 uninsure H 0.004
202 uninsure H 0.004
203 uninsure H 0.004
204 uninsure H 0.004
205 uninsure H 0.004
206 uninsure H 0.004
207 uninsure H 0.004
208 uninsure H 0.004
209 uninsure H 0.004
210 uninsure H 0.004
211 uninsure H 0.004
212 uninsure H 0.004
213 uninsure H 0.003
214 uninsure H 0.003
215 uninsure H 0.003
216 uninsure H 0.003
217 uninsure H 0.003
218 uninsure H 0.003
219 uninsure H 0.003
220 uninsure H 0.003
221 uninsure H 0.003
222 uninsure H 0.003
223 uninsure H 0.003
224 uninsure H 0.003
225 uninsure H 0.003
226 uninsure H 0.003
227 uninsure H 0.003
228 uninsure H 0.003
229 uninsure H 0.003
230 uninsure H 0.003
231 uninsure H 0.003
232 uninsure H 0.003
233 uninsure H 0.003
234 uninsure H 0.003
235 uninsure H 0.003
236 uninsure H 0.003
237 uninsure H 0.003
238 uninsure H 0.003
239 uninsure H 0.003
240 uninsure H 0.003
241 uninsure H 0.003
242 uninsure H 0.003
243 uninsure H 0.003
244 uninsure H 0.003
245 uninsure H 0.003
246 uninsure H 0.003
247 uninsure H 0.003
248 uninsure H 0.003
249 uninsure H 0.003
250 uninsure H 0.003
251 uninsure H 0.003
252 uninsure H 0.003
253 uninsure H 0.003
254 uninsure H 0.003
255 uninsure H 0.003
256 uninsure H 0.003
257 uninsure H 0.003
258 uninsure H 0.003
259 uninsure H 0.003
260 uninsure H 0.003
261 uninsure H 0.003
262 uninsure H 0.003
263 uninsure H 0.003
264 uninsure H 0.003
265 uninsure H 0.003
266 uninsure H 0.003
267 uninsure H 0.003
268 uninsure H 0.003
269 uninsure H 0.003
270 uninsure H 0.003
271 uninsure H 0.003
272 uninsure H 0.003
273 uninsure H 0.003
274 uninsure H 0.003
275 uninsure H 0.003
276 uninsure H 0.003
277 uninsure H 0.003
278 uninsure H 0.003
279 uninsure H 0.003
280 uninsure H 0.003
281 uninsure H 0.003
282 uninsure H 0.003
283 uninsure H 0.003
284 uninsure H 0.003
285 uninsure H 0.003
286 uninsure H 0.003
287 uninsure H 0.003
288 uninsure H 0.003
289 uninsure H 0.003
290 uninsure H 0.003
291 uninsure H 0.003
292 uninsure H 0.003
293 uninsure H 0.003
294 uninsure H 0.003
295 uninsure H 0.003
296 uninsure H 0.003
297 uninsure H 0.003
298 uninsure H 0.003
299 uninsure H 0.003
300 uninsure H 0.003
301 uninsure H 0.003
302 uninsure H 0.003
303 uninsure H 0.003
304 uninsure H 0.003
305 uninsure H 0.003
306 uninsure H 0.003
307 uninsure H 0.003
308 uninsure H 0.003
309 uninsure H 0.003
310 uninsure H 0.003
311 uninsure H 0.003
312 uninsure H 0.003
313 uninsure H 0.003
314 uninsure H 0.003
315 uninsure H 0.003
316 uninsure H 0.003
317 uninsure H 0.003
318 uninsure H 0.003
319 uninsure H 0.003
320 uninsure H 0.003
321 uninsure H 0.003
322 uninsure H 0.003
323 uninsure H 0.003
324 uninsure H 0.003
325 uninsure H 0.003
326 uninsure H 0.003
327 uninsure H 0.003
328 uninsure H 0.003
329 uninsure H 0.003
330 uninsure H 0.003
331 uninsure H 0.003
332 uninsure H 0.003
333 uninsure H 0.003
334 uninsure H 0.003
335 uninsure H 0.003
336 uninsure H 0.003
337 uninsure H 0.003
338 uninsure H 0.003
339 uninsure H 0.003
340 uninsure H 0.003
341 uninsure H 0.003
342 uninsure H 0.003
343 uninsure H 0.003
344 uninsure H 0.003
345 uninsure H 0.003
346 uninsure H 0.003
347 uninsure H 0.003
348 uninsure H 0.003
349 uninsure H 0.003
350 uninsure H 0.003
351 uninsure H 0.003
352 uninsure H 0.003
353 uninsure H 0.003
354 uninsure H 0.003
355 uninsure H 0.003
356 uninsure H 0.003
357 uninsure H 0.003
358 uninsure H 0.003
359 uninsure H 0.003
360 uninsure H 0.003
361 uninsure H 0.003
362 uninsure H 0.003
363 uninsure H 0.003
364 uninsure H 0.003
365 uninsure H 0.003
366 uninsure H 0.003
367 uninsure H 0.003
368 uninsure H 0.003
369 uninsure H 0.003
370 uninsure H 0.003
371 uninsure H 0.003
372 uninsure H 0.003
373 uninsure H 0.003
374 uninsure H 0.003
375 uninsure H 0.003
376 uninsure H 0.003
377 uninsure H 0.003
378 uninsure H 0.003
379 uninsure H 0.003
380 uninsure H 0.003
381 uninsure H 0.003
382 uninsure H 0.003
383 uninsure H 0.003
384 uninsure H 0.003
385 uninsure H 0.003
386 uninsure H 0.003
387 uninsure H 0.003
388 uninsure H 0.003
389 uninsure H 0.003
390 uninsure H 0.003
391 uninsure H 0.003
392 uninsure H 0.003
393 uninsure H 0.003
394 uninsure H 0.003
395 uninsure H 0.003
396 uninsure H 0.003
397 uninsure H 0.003
398 uninsure H 0.003
399 uninsure H 0.003
400 uninsure H 0.003
401 uninsure H 0.003
402 uninsure H 0.003
403 uninsure H 0.003
404 uninsure H 0.003
405 uninsure H 0.003
406 uninsure H 0.003
407 uninsure H 0.003
408 uninsure H 0.003
409 uninsure H 0.003
410 uninsure H 0.003
411 uninsure H 0.003
412 uninsure H 0.003
413 uninsure H 0.003
414 uninsure H 0.003
415 uninsure H 0.003
416 uninsure H 0.003
417 uninsure H 0.003
418 uninsure H 0.003
419 uninsure H 0.003
420 uninsure H 0.003
421 uninsure H 0.003
422 uninsure H 0.003
423 uninsure H 0.003
424 uninsure H 0.003
425 uninsure H 0.003
426 uninsure H 0.003
427 uninsure H 0.003
428 uninsure H 0.003
429 uninsure H 0.003
430 uninsure H 0.003
431 uninsure H 0.003
432 uninsure H 0.003
433 uninsure H 0.003
434 uninsure H 0.003
435 uninsure H 0.003
436 uninsure H 0.003
437 uninsure H 0.003
438 uninsure H 0.003
439 uninsure H 0.003
440 uninsure H 0.003
441 uninsure H 0.003
442 uninsure H 0.003
443 uninsure H 0.003
444 uninsure H 0.003
445 uninsure H 0.003
446 uninsure H 0.003
447 uninsure H 0.003
448 uninsure H 0.003
449 uninsure H 0.003
450 uninsure H 0.003
451 uninsure H 0.003
452 uninsure H 0.003
453 uninsure H 0.003
454 uninsure H 0.003
455 uninsure H 0.003
456 uninsure H 0.003
457 uninsure H 0.003
458 uninsure H 0.003
459 uninsure H 0.003
460 uninsure H 0.003
461 uninsure H 0.003
462 uninsure H 0.003
463 uninsure H 0.003
464 uninsure H 0.003
465 uninsure H 0.003
466 uninsure H 0.003
467 uninsure H 0.003
468 uninsure H 0.003
469 uninsure H 0.003
470 uninsure H 0.003
471 uninsure H 0.003
472 uninsure H 0.003
473 uninsure H 0.003
474 uninsure H 0.003
475 uninsure H 0.003
476 uninsure H 0.003
477 uninsure H 0.003
478 uninsure H 0.003
479 uninsure H 0.003
480 uninsure H 0.003
481 uninsure H 0.003
482 uninsure H 0.003
483 uninsure H 0.003
484 uninsure H 0.003
485 uninsure H 0.003
486 uninsure H 0.003
487 uninsure H 0.003
488 uninsure H 0.003
489 uninsure H 0.003
490 uninsure H 0.003
491 uninsure H 0.003
492 uninsure H 0.003
493 uninsure H 0.003
494 uninsure H 0.003
495 uninsure H 0.003
496 uninsure H 0.003
497 uninsure H 0.003
498 uninsure H 0.003
499 uninsure H 0.003
500 uninsure H 0.003
501 uninsure H 0.003
502 uninsure H 0.003
503 uninsure H 0.003
504 uninsure H 0.003
505 uninsure H 0.003
506 uninsure H 0.003
507 uninsure H 0.003
508 uninsure H 0.003
509 uninsure H 0.003
510 uninsure H 0.003
511 uninsure H 0.003
512 uninsure H 0.003
513 uninsure H 0.003
514 uninsure H 0.003
515 uninsure H 0.003
516 uninsure H 0.003
517 uninsure H 0.002
518 uninsure H 0.002
519 uninsure H 0.002
520 uninsure H 0.002
521 uninsure H 0.002
1 wship H 0.004
2 wship H 0.004
3 wship H 0.004
4 wship H 0.004
5 wship H 0.004
6 wship H 0.004
7 wship H 0.004
8 wship H 0.004
9 wship H 0.004
10 wship H 0.004
11 wship H 0.004
12 wship H 0.004
13 wship H 0.004
14 wship H 0.004
15 wship H 0.004
16 wship H 0.004
17 wship H 0.004
18 wship H 0.004
19 wship H 0.004
20 wship H 0.004
21 wship H 0.004
22 wship H 0.004
23 wship H 0.004
24 wship H 0.004
25 wship H 0.004
26 wship H 0.004
27 wship H 0.004
28 wship H 0.004
29 wship H 0.004
30 wship H 0.004
31 wship H 0.004
32 wship H 0.004
33 wship H 0.004
34 wship H 0.004
35 wship H 0.004
36 wship H 0.004
37 wship H 0.004
38 wship H 0.004
39 wship H 0.004
40 wship H 0.004
41 wship H 0.004
42 wship H 0.004
43 wship H 0.004
44 wship H 0.004
45 wship H 0.004
46 wship H 0.004
47 wship H 0.004
48 wship H 0.004
49 wship H 0.004
50 wship H 0.004
51 wship H 0.004
52 wship H 0.004
53 wship H 0.004
54 wship H 0.004
55 wship H 0.004
56 wship H 0.004
57 wship H 0.004
58 wship H 0.004
59 wship H 0.004
60 wship H 0.004
61 wship H 0.004
62 wship H 0.004
63 wship H 0.004
64 wship H 0.004
65 wship H 0.004
66 wship H 0.004
67 wship H 0.004
68 wship H 0.004
69 wship H 0.004
70 wship H 0.004
71 wship H 0.004
72 wship H 0.004
73 wship H 0.004
74 wship H 0.004
75 wship H 0.004
76 wship H 0.004
77 wship H 0.004
78 wship H 0.004
79 wship H 0.004
80 wship H 0.004
81 wship H 0.004
82 wship H 0.004
83 wship H 0.004
84 wship H 0.004
85 wship H 0.004
86 wship H 0.004
87 wship H 0.004
88 wship H 0.004
89 wship H 0.004
90 wship H 0.004
91 wship H 0.004
92 wship H 0.004
93 wship H 0.004
94 wship H 0.004
95 wship H 0.004
96 wship H 0.004
97 wship H 0.004
98 wship H 0.004
99 wship H 0.004
100 wship H 0.004
101 wship H 0.004
102 wship H 0.004
103 wship H 0.004
104 wship H 0.004
105 wship H 0.004
106 wship H 0.004
107 wship H 0.004
108 wship H 0.004
109 wship H 0.004
110 wship H 0.004
111 wship H 0.004
112 wship H 0.004
113 wship H 0.004
114 wship H 0.004
115 wship H 0.004
116 wship H 0.004
117 wship H 0.004
118 wship H 0.004
119 wship H 0.004
120 wship H 0.004
121 wship H 0.004
122 wship H 0.004
123 wship H 0.004
124 wship H 0.004
125 wship H 0.004
126 wship H 0.004
127 wship H 0.004
128 wship H 0.004
129 wship H 0.004
130 wship H 0.004
131 wship H 0.004
132 wship H 0.004
133 wship H 0.004
134 wship H 0.004
135 wship H 0.004
136 wship H 0.004
137 wship H 0.004
138 wship H 0.004
139 wship H 0.004
140 wship H 0.004
141 wship H 0.004
142 wship H 0.004
143 wship H 0.004
144 wship H 0.004
145 wship H 0.004
146 wship H 0.004
147 wship H 0.004
148 wship H 0.004
149 wship H 0.004
150 wship H 0.004
151 wship H 0.004
152 wship H 0.004
153 wship H 0.004
154 wship H 0.004
155 wship H 0.004
156 wship H 0.004
157 wship H 0.004
158 wship H 0.004
159 wship H 0.004
160 wship H 0.004
161 wship H 0.004
162 wship H 0.004
163 wship H 0.004
164 wship H 0.004
165 wship H 0.004
166 wship H 0.004
167 wship H 0.004
168 wship H 0.004
169 wship H 0.004
170 wship H 0.004
171 wship H 0.004
172 wship H 0.004
173 wship H 0.004
174 wship H 0.004
175 wship H 0.004
176 wship H 0.004
177 wship H 0.004
178 wship H 0.004
179 wship H 0.004
180 wship H 0.004
181 wship H 0.004
182 wship H 0.004
183 wship H 0.004
184 wship H 0.004
185 wship H 0.004
186 wship H 0.004
187 wship H 0.004
188 wship H 0.004
189 wship H 0.004
190 wship H 0.004
191 wship H 0.004
192 wship H 0.004
193 wship H 0.004
194 wship H 0.004
195 wship H 0.004
196 wship H 0.004
197 wship H 0.004
198 wship H 0.004
199 wship H 0.004
200 wship H 0.004
201 wship H 0.004
202 wship H 0.004
203 wship H 0.004
204 wship H 0.004
205 wship H 0.004
206 wship H 0.004
207 wship H 0.004
208 wship H 0.004
209 wship H 0.004
210 wship H 0.004
211 wship H 0.004
212 wship H 0.004
213 wship H 0.004
214 wship H 0.004
215 wship H 0.004
216 wship H 0.004
217 wship H 0.004
218 wship H 0.004
219 wship H 0.004
220 wship H 0.004
221 wship H 0.004
222 wship H 0.004
223 wship H 0.004
224 wship H 0.004
225 wship H 0.004
226 wship H 0.004
227 wship H 0.004
228 wship H 0.004
229 wship H 0.004
230 wship H 0.004
231 wship H 0.004
232 wship H 0.004
233 wship H 0.004
234 wship H 0.004
235 wship H 0.004
236 wship H 0.004
237 wship H 0.004
238 wship H 0.004
239 wship H 0.004
240 wship H 0.004
241 wship H 0.004
242 wship H 0.004
243 wship H 0.004
244 wship H 0.004
245 wship H 0.004
246 wship H 0.004
247 wship H 0.004
248 wship H 0.004
249 wship H 0.004
250 wship H 0.004
251 wship H 0.004
252 wship H 0.004
253 wship H 0.004
254 wship H 0.004
255 wship H 0.004
256 wship H 0.004
257 wship H 0.004
258 wship H 0.004
259 wship H 0.004
260 wship H 0.004
261 wship H 0.004
262 wship H 0.004
263 wship H 0.004
264 wship H 0.004
265 wship H 0.004
266 wship H 0.004
267 wship H 0.004
268 wship H 0.004
269 wship H 0.004
270 wship H 0.004
271 wship H 0.004
272 wship H 0.004
273 wship H 0.004
274 wship H 0.004
275 wship H 0.004
276 wship H 0.004
277 wship H 0.004
278 wship H 0.004
279 wship H 0.004
280 wship H 0.004
281 wship H 0.004
282 wship H 0.004
283 wship H 0.004
284 wship H 0.004
285 wship H 0.004
286 wship H 0.004
287 wship H 0.004
288 wship H 0.004
289 wship H 0.004
290 wship H 0.004
291 wship H 0.004
292 wship H 0.004
293 wship H 0.004
294 wship H 0.004
295 wship H 0.004
296 wship H 0.004
297 wship H 0.004
298 wship H 0.004
299 wship H 0.004
300 wship H 0.004
301 wship H 0.004
302 wship H 0.004
303 wship H 0.004
304 wship H 0.004
305 wship H 0.004
306 wship H 0.004
307 wship H 0.004
308 wship H 0.004
309 wship H 0.004
310 wship H 0.004
311 wship H 0.004
312 wship H 0.004
313 wship H 0.004
314 wship H 0.004
315 wship H 0.004
316 wship H 0.004
317 wship H 0.004
318 wship H 0.004
319 wship H 0.004
320 wship H 0.004
321 wship H 0.004
322 wship H 0.004
323 wship H 0.004
324 wship H 0.004
325 wship H 0.004
326 wship H 0.004
327 wship H 0.004
328 wship H 0.004
329 wship H 0.004
330 wship H 0.004
331 wship H 0.004
332 wship H 0.004
333 wship H 0.004
334 wship H 0.004
335 wship H 0.004
336 wship H 0.004
337 wship H 0.004
338 wship H 0.004
339 wship H 0.004
340 wship H 0.004
341 wship H 0.004
342 wship H 0.004
343 wship H 0.004
344 wship H 0.004
345 wship H 0.004
346 wship H 0.004
347 wship H 0.004
348 wship H 0.004
349 wship H 0.004
350 wship H 0.004
351 wship H 0.004
352 wship H 0.004
353 wship H 0.004
354 wship H 0.004
355 wship H 0.004
356 wship H 0.004
357 wship H 0.004
358 wship H 0.004
359 wship H 0.004
360 wship H 0.004
361 wship H 0.004
362 wship H 0.004
363 wship H 0.004
364 wship H 0.004
365 wship H 0.004
366 wship H 0.004
367 wship H 0.004
368 wship H 0.004
369 wship H 0.004
370 wship H 0.004
371 wship H 0.004
372 wship H 0.004
373 wship H 0.004
374 wship H 0.004
375 wship H 0.004
376 wship H 0.004
377 wship H 0.004
378 wship H 0.004
379 wship H 0.004
380 wship H 0.004
381 wship H 0.004
382 wship H 0.004
383 wship H 0.004
384 wship H 0.004
385 wship H 0.004
386 wship H 0.004
387 wship H 0.004
388 wship H 0.004
389 wship H 0.004
390 wship H 0.004
391 wship H 0.004
392 wship H 0.004
393 wship H 0.004
394 wship H 0.004
395 wship H 0.004
396 wship H 0.004
397 wship H 0.004
398 wship H 0.004
399 wship H 0.004
400 wship H 0.004
401 wship H 0.004
402 wship H 0.004
403 wship H 0.004
404 wship H 0.004
405 wship H 0.004
406 wship H 0.004
407 wship H 0.004
408 wship H 0.004
409 wship H 0.004
410 wship H 0.004
411 wship H 0.004
412 wship H 0.004
413 wship H 0.004
414 wship H 0.004
415 wship H 0.004
416 wship H 0.004
417 wship H 0.004
418 wship H 0.004
419 wship H 0.004
420 wship H 0.004
421 wship H 0.004
422 wship H 0.004
423 wship H 0.004
424 wship H 0.004
425 wship H 0.004
426 wship H 0.004
427 wship H 0.004
428 wship H 0.004
429 wship H 0.004
430 wship H 0.004
431 wship H 0.004
432 wship H 0.004
433 wship H 0.004
434 wship H 0.004
435 wship H 0.004
436 wship H 0.004
437 wship H 0.004
438 wship H 0.004
439 wship H 0.004
440 wship H 0.004
441 wship H 0.004
442 wship H 0.004
443 wship H 0.004
444 wship H 0.004
445 wship H 0.004
446 wship H 0.004
447 wship H 0.004
448 wship H 0.004
449 wship H 0.004
450 wship H 0.004
451 wship H 0.004
452 wship H 0.004
453 wship H 0.004
454 wship H 0.004
455 wship H 0.004
456 wship H 0.004
457 wship H 0.004
458 wship H 0.004
459 wship H 0.004
460 wship H 0.004
461 wship H 0.004
462 wship H 0.004
463 wship H 0.004
464 wship H 0.004
465 wship H 0.004
466 wship H 0.004
467 wship H 0.004
468 wship H 0.004
469 wship H 0.004
470 wship H 0.004
471 wship H 0.004
472 wship H 0.004
473 wship H 0.004
474 wship H 0.004
475 wship H 0.004
476 wship H 0.004
477 wship H 0.004
478 wship H 0.004
479 wship H 0.004
480 wship H 0.004
481 wship H 0.004
482 wship H 0.004
483 wship H 0.004
484 wship H 0.004
485 wship H 0.004
486 wship H 0.004
487 wship H 0.004
488 wship H 0.004
489 wship H 0.004
490 wship H 0.004
491 wship H 0.004
492 wship H 0.004
493 wship H 0.004
494 wship H 0.004
495 wship H 0.004
496 wship H 0.004
497 wship H 0.004
498 wship H 0.004
499 wship H 0.004
500 wship H 0.004
501 wship H 0.004
502 wship H 0.004
503 wship H 0.004
504 wship H 0.004
505 wship H 0.004
506 wship H 0.004
507 wship H 0.004
508 wship H 0.004
509 wship H 0.004
510 wship H 0.004
511 wship H 0.004
512 wship H 0.004
513 wship H 0.004
514 wship H 0.004
515 wship H 0.004
516 wship H 0.004
517 wship H 0.004
518 wship H 0.004
519 wship H 0.004
520 wship H 0.004
521 wship H 0.004
1 private O 0.007
2 private O 0.007
3 private O 0.007
4 private O 0.007
5 private O 0.007
6 private O 0.007
7 private O 0.007
8 private O 0.007
9 private O 0.007
10 private O 0.007
11 private O 0.007
12 private O 0.007
13 private O 0.007
14 private O 0.007
15 private O 0.007
16 private O 0.007
17 private O 0.007
18 private O 0.007
19 private O 0.007
20 private O 0.007
21 private O 0.007
22 private O 0.007
23 private O 0.007
24 private O 0.007
25 private O 0.007
26 private O 0.007
27 private O 0.007
28 private O 0.007
29 private O 0.007
30 private O 0.007
31 private O 0.007
32 private O 0.007
33 private O 0.007
34 private O 0.007
35 private O 0.007
36 private O 0.007
37 private O 0.007
38 private O 0.007
39 private O 0.007
40 private O 0.007
41 private O 0.007
42 private O 0.007
43 private O 0.007
44 private O 0.007
45 private O 0.007
46 private O 0.007
47 private O 0.007
48 private O 0.007
49 private O 0.007
50 private O 0.007
51 private O 0.007
52 private O 0.007
53 private O 0.007
54 private O 0.007
55 private O 0.007
56 private O 0.007
57 private O 0.007
58 private O 0.007
59 private O 0.007
60 private O 0.007
61 private O 0.007
62 private O 0.007
63 private O 0.007
64 private O 0.007
65 private O 0.007
66 private O 0.007
67 private O 0.007
68 private O 0.007
69 private O 0.007
70 private O 0.007
71 private O 0.007
72 private O 0.007
73 private O 0.007
74 private O 0.007
75 private O 0.007
76 private O 0.007
77 private O 0.007
78 private O 0.007
79 private O 0.007
80 private O 0.007
81 private O 0.007
82 private O 0.007
83 private O 0.007
84 private O 0.007
85 private O 0.007
86 private O 0.007
87 private O 0.007
88 private O 0.007
89 private O 0.007
90 private O 0.007
91 private O 0.007
92 private O 0.007
93 private O 0.007
94 private O 0.007
95 private O 0.007
96 private O 0.007
97 private O 0.007
98 private O 0.007
99 private O 0.007
100 private O 0.007
101 private O 0.007
102 private O 0.007
103 private O 0.007
104 private O 0.007
105 private O 0.007
106 private O 0.007
107 private O 0.007
108 private O 0.007
109 private O 0.007
110 private O 0.007
111 private O 0.007
112 private O 0.007
113 private O 0.007
114 private O 0.007
115 private O 0.007
116 private O 0.007
117 private O 0.006
118 private O 0.006
119 private O 0.006
120 private O 0.006
121 private O 0.006
122 private O 0.006
123 private O 0.006
124 private O 0.006
125 private O 0.006
126 private O 0.006
127 private O 0.006
128 private O 0.006
129 private O 0.006
130 private O 0.006
131 private O 0.006
132 private O 0.006
133 private O 0.006
134 private O 0.006
135 private O 0.006
136 private O 0.005
137 private O 0.005
138 private O 0.005
139 private O 0.005
140 private O 0.005
141 private O 0.005
142 private O 0.005
143 private O 0.005
144 private O 0.005
145 private O 0.005
146 private O 0.005
147 private O 0.005
148 private O 0.005
149 private O 0.005
150 private O 0.005
151 private O 0.005
152 private O 0.005
153 private O 0.005
154 private O 0.005
155 private O 0.005
156 private O 0.005
157 private O 0.005
158 private O 0.005
159 private O 0.005
160 private O 0.005
161 private O 0.005
162 private O 0.005
163 private O 0.005
164 private O 0.005
165 private O 0.005
166 private O 0.005
167 private O 0.005
168 private O 0.005
169 private O 0.005
170 private O 0.005
171 private O 0.005
172 private O 0.005
173 private O 0.005
174 private O 0.005
175 private O 0.005
176 private O 0.005
177 private O 0.005
178 private O 0.005
179 private O 0.005
180 private O 0.005
181 private O 0.005
182 private O 0.005
183 private O 0.005
184 private O 0.005
185 private O 0.005
186 private O 0.005
187 private O 0.005
188 private O 0.005
189 private O 0.005
190 private O 0.005
191 private O 0.005
192 private O 0.005
193 private O 0.005
194 private O 0.005
195 private O 0.005
196 private O 0.005
197 private O 0.005
198 private O 0.005
199 private O 0.005
200 private O 0.005
201 private O 0.005
202 private O 0.005
203 private O 0.005
204 private O 0.005
205 private O 0.005
206 private O 0.005
207 private O 0.004
208 private O 0.004
209 private O 0.004
210 private O 0.004
211 private O 0.004
212 private O 0.004
213 private O 0.004
214 private O 0.004
215 private O 0.004
216 private O 0.004
217 private O 0.004
218 private O 0.004
219 private O 0.004
220 private O 0.004
221 private O 0.004
222 private O 0.004
223 private O 0.004
224 private O 0.004
225 private O 0.004
226 private O 0.004
227 private O 0.004
228 private O 0.004
229 private O 0.004
230 private O 0.004
231 private O 0.004
232 private O 0.004
233 private O 0.004
234 private O 0.004
235 private O 0.004
236 private O 0.004
237 private O 0.004
238 private O 0.004
239 private O 0.004
240 private O 0.004
241 private O 0.004
242 private O 0.004
243 private O 0.004
244 private O 0.004
245 private O 0.004
246 private O 0.004
247 private O 0.004
248 private O 0.004
249 private O 0.004
250 private O 0.004
251 private O 0.004
252 private O 0.004
253 private O 0.004
254 private O 0.004
255 private O 0.004
256 private O 0.004
257 private O 0.004
258 private O 0.004
259 private O 0.004
260 private O 0.004
261 private O 0.004
262 private O 0.004
263 private O 0.004
264 private O 0.004
265 private O 0.004
266 private O 0.004
267 private O 0.004
268 private O 0.004
269 private O 0.004
270 private O 0.004
271 private O 0.004
272 private O 0.004
273 private O 0.004
274 private O 0.004
275 private O 0.004
276 private O 0.004
277 private O 0.004
278 private O 0.004
279 private O 0.004
280 private O 0.004
281 private O 0.004
282 private O 0.004
283 private O 0.004
284 private O 0.004
285 private O 0.004
286 private O 0.004
287 private O 0.004
288 private O 0.004
289 private O 0.004
290 private O 0.004
291 private O 0.004
292 private O 0.004
293 private O 0.004
294 private O 0.004
295 private O 0.004
296 private O 0.004
297 private O 0.004
298 private O 0.004
299 private O 0.004
300 private O 0.004
301 private O 0.004
302 private O 0.004
303 private O 0.004
304 private O 0.004
305 private O 0.004
306 private O 0.004
307 private O 0.004
308 private O 0.004
309 private O 0.004
310 private O 0.004
311 private O 0.004
312 private O 0.004
313 private O 0.004
314 private O 0.004
315 private O 0.004
316 private O 0.004
317 private O 0.004
318 private O 0.004
319 private O 0.004
320 private O 0.004
321 private O 0.004
322 private O 0.004
323 private O 0.004
324 private O 0.004
325 private O 0.004
326 private O 0.004
327 private O 0.004
328 private O 0.004
329 private O 0.004
330 private O 0.004
331 private O 0.004
332 private O 0.004
333 private O 0.004
334 private O 0.004
335 private O 0.004
336 private O 0.004
337 private O 0.004
338 private O 0.004
339 private O 0.004
340 private O 0.004
341 private O 0.004
342 private O 0.004
343 private O 0.004
344 private O 0.004
345 private O 0.004
346 private O 0.004
347 private O 0.004
348 private O 0.004
349 private O 0.004
350 private O 0.004
351 private O 0.004
352 private O 0.004
353 private O 0.004
354 private O 0.004
355 private O 0.004
356 private O 0.004
357 private O 0.004
358 private O 0.004
359 private O 0.004
360 private O 0.004
361 private O 0.004
362 private O 0.004
363 private O 0.004
364 private O 0.004
365 private O 0.004
366 private O 0.004
367 private O 0.004
368 private O 0.004
369 private O 0.004
370 private O 0.004
371 private O 0.004
372 private O 0.004
373 private O 0.004
374 private O 0.004
375 private O 0.004
376 private O 0.004
377 private O 0.004
378 private O 0.004
379 private O 0.004
380 private O 0.004
381 private O 0.004
382 private O 0.004
383 private O 0.004
384 private O 0.004
385 private O 0.004
386 private O 0.004
387 private O 0.004
388 private O 0.004
389 private O 0.004
390 private O 0.004
391 private O 0.004
392 private O 0.004
393 private O 0.004
394 private O 0.004
395 private O 0.004
396 private O 0.004
397 private O 0.004
398 private O 0.004
399 private O 0.004
400 private O 0.004
401 private O 0.004
402 private O 0.004
403 private O 0.004
404 private O 0.004
405 private O 0.004
406 private O 0.004
407 private O 0.004
408 private O 0.004
409 private O 0.004
410 private O 0.004
411 private O 0.004
412 private O 0.004
413 private O 0.004
414 private O 0.004
415 private O 0.004
416 private O 0.004
417 private O 0.004
418 private O 0.004
419 private O 0.004
420 private O 0.004
421 private O 0.004
422 private O 0.004
423 private O 0.004
424 private O 0.004
425 private O 0.004
426 private O 0.004
427 private O 0.004
428 private O 0.004
429 private O 0.004
430 private O 0.004
431 private O 0.004
432 private O 0.004
433 private O 0.004
434 private O 0.004
435 private O 0.004
436 private O 0.004
437 private O 0.004
438 private O 0.004
439 private O 0.004
440 private O 0.004
441 private O 0.004
442 private O 0.004
443 private O 0.004
444 private O 0.004
445 private O 0.004
446 private O 0.004
447 private O 0.004
448 private O 0.004
449 private O 0.004
450 private O 0.004
451 private O 0.004
452 private O 0.004
453 private O 0.004
454 private O 0.004
455 private O 0.004
456 private O 0.004
457 private O 0.004
458 private O 0.004
459 private O 0.004
460 private O 0.004
461 private O 0.004
462 private O 0.004
463 private O 0.004
464 private O 0.004
465 private O 0.004
466 private O 0.004
467 private O 0.004
468 private O 0.004
469 private O 0.004
470 private O 0.004
471 private O 0.004
472 private O 0.004
473 private O 0.004
474 private O 0.004
475 private O 0.004
476 private O 0.004
477 private O 0.004
478 private O 0.004
479 private O 0.004
480 private O 0.004
481 private O 0.004
482 private O 0.004
483 private O 0.004
484 private O 0.004
485 private O 0.004
486 private O 0.004
487 private O 0.004
488 private O 0.004
489 private O 0.004
490 private O 0.004
491 private O 0.004
492 private O 0.004
493 private O 0.004
494 private O 0.004
495 private O 0.004
496 private O 0.004
497 private O 0.004
498 private O 0.004
499 private O 0.004
500 private O 0.004
501 private O 0.004
502 private O 0.004
503 private O 0.004
504 private O 0.004
505 private O 0.004
506 private O 0.004
507 private O 0.004
508 private O 0.004
509 private O 0.004
510 private O 0.004
511 private O 0.004
512 private O 0.004
513 private O 0.004
514 private O 0.004
515 private O 0.004
516 private O 0.004
517 private O 0.004
518 private O 0.004
519 private O 0.004
520 private O 0.004
521 private O 0.004
1 public O 0.002
2 public O 0.002
3 public O 0.002
4 public O 0.002
5 public O 0.002
6 public O 0.002
7 public O 0.002
8 public O 0.002
9 public O 0.002
10 public O 0.002
11 public O 0.002
12 public O 0.002
13 public O 0.002
14 public O 0.002
15 public O 0.002
16 public O 0.002
17 public O 0.002
18 public O 0.002
19 public O 0.002
20 public O 0.002
21 public O 0.002
22 public O 0.002
23 public O 0.002
24 public O 0.002
25 public O 0.002
26 public O 0.002
27 public O 0.002
28 public O 0.002
29 public O 0.002
30 public O 0.002
31 public O 0.002
32 public O 0.002
33 public O 0.002
34 public O 0.002
35 public O 0.002
36 public O 0.002
37 public O 0.002
38 public O 0.002
39 public O 0.002
40 public O 0.002
41 public O 0.002
42 public O 0.002
43 public O 0.002
44 public O 0.002
45 public O 0.002
46 public O 0.002
47 public O 0.002
48 public O 0.002
49 public O 0.002
50 public O 0.002
51 public O 0.002
52 public O 0.002
53 public O 0.002
54 public O 0.002
55 public O 0.002
56 public O 0.002
57 public O 0.002
58 public O 0.002
59 public O 0.002
60 public O 0.002
61 public O 0.002
62 public O 0.002
63 public O 0.002
64 public O 0.002
65 public O 0.002
66 public O 0.002
67 public O 0.002
68 public O 0.002
69 public O 0.002
70 public O 0.002
71 public O 0.002
72 public O 0.002
73 public O 0.002
74 public O 0.002
75 public O 0.002
76 public O 0.002
77 public O 0.002
78 public O 0.002
79 public O 0.002
80 public O 0.002
81 public O 0.002
82 public O 0.002
83 public O 0.002
84 public O 0.002
85 public O 0.002
86 public O 0.002
87 public O 0.002
88 public O 0.002
89 public O 0.002
90 public O 0.002
91 public O 0.002
92 public O 0.002
93 public O 0.002
94 public O 0.002
95 public O 0.002
96 public O 0.002
97 public O 0.002
98 public O 0.002
99 public O 0.002
100 public O 0.002
101 public O 0.002
102 public O 0.002
103 public O 0.002
104 public O 0.002
105 public O 0.002
106 public O 0.001
107 public O 0.001
108 public O 0.001
109 public O 0.001
110 public O 0.001
111 public O 0.001
112 public O 0.001
113 public O 0.001
114 public O 0.001
115 public O 0.001
116 public O 0.001
117 public O 0.001
118 public O 0.001
119 public O 0.001
120 public O 0.001
121 public O 0.001
122 public O 0.001
123 public O 0.001
124 public O 0.001
125 public O 0.001
126 public O 0.001
127 public O 0.001
128 public O 0.001
129 public O 0.001
130 public O 0.001
131 public O 0.001
132 public O 0.001
133 public O 0.001
134 public O 0.001
135 public O 0.001
136 public O 0.001
137 public O 0.001
138 public O 0.001
139 public O 0.001
140 public O 0.001
141 public O 0.001
142 public O 0.001
143 public O 0.001
144 public O 0.001
145 public O 0.001
146 public O 0.001
147 public O 0.001
148 public O 0.001
149 public O 0.001
150 public O 0.001
151 public O 0.001
152 public O 0.001
153 public O 0.001
154 public O 0.001
155 public O 0.001
156 public O 0.001
157 public O 0.001
158 public O 0.001
159 public O 0.001
160 public O 0.001
161 public O 0.001
162 public O 0.001
163 public O 0.001
164 public O 0.001
165 public O 0.001
166 public O 0.001
167 public O 0.001
168 public O 0.001
169 public O 0.001
170 public O 0.001
171 public O 0.001
172 public O 0.001
173 public O 0.001
174 public O 0.001
175 public O 0.001
176 public O 0.001
177 public O 0.001
178 public O 0.001
179 public O 0.001
180 public O 0.001
181 public O 0.001
182 public O 0.001
183 public O 0.001
184 public O 0.001
185 public O 0.001
186 public O 0.001
187 public O 0.001
188 public O 0.001
189 public O 0.001
190 public O 0.001
191 public O 0.001
192 public O 0.001
193 public O 0.001
194 public O 0.001
195 public O 0.001
196 public O 0.001
197 public O 0.001
198 public O 0.001
199 public O 0.001
200 public O 0.001
201 public O 0.001
202 public O 0.001
203 public O 0.001
204 public O 0.001
205 public O 0.001
206 public O 0.001
207 public O 0.001
208 public O 0.001
209 public O 0.001
210 public O 0.001
211 public O 0.001
212 public O 0.001
213 public O 0.001
214 public O 0.001
215 public O 0.001
216 public O 0.001
217 public O 0.001
218 public O 0.001
219 public O 0.001
220 public O 0.001
221 public O 0.001
222 public O 0.001
223 public O 0.001
224 public O 0.001
225 public O 0.001
226 public O 0.001
227 public O 0.001
228 public O 0.001
229 public O 0.001
230 public O 0.001
231 public O 0.001
232 public O 0.001
233 public O 0.001
234 public O 0.001
235 public O 0.001
236 public O 0.001
237 public O 0.001
238 public O 0.001
239 public O 0.001
240 public O 0.001
241 public O 0.001
242 public O 0.001
243 public O 0.001
244 public O 0.001
245 public O 0.001
246 public O 0.001
247 public O 0.001
248 public O 0.001
249 public O 0.001
250 public O 0.001
251 public O 0.001
252 public O 0.001
253 public O 0.001
254 public O 0.001
255 public O 0.001
256 public O 0.001
257 public O 0.001
258 public O 0.001
259 public O 0.001
260 public O 0.001
261 public O 0.001
262 public O 0.001
263 public O 0.001
264 public O 0.001
265 public O 0.001
266 public O 0.001
267 public O 0.001
268 public O 0.001
269 public O 0.001
270 public O 0.001
271 public O 0.001
272 public O 0.001
273 public O 0.001
274 public O 0.001
275 public O 0.001
276 public O 0.001
277 public O 0.001
278 public O 0.001
279 public O 0.001
280 public O 0.001
281 public O 0.001
282 public O 0.001
283 public O 0.001
284 public O 0.001
285 public O 0.001
286 public O 0.001
287 public O 0.001
288 public O 0.001
289 public O 0.001
290 public O 0.001
291 public O 0.001
292 public O 0.001
293 public O 0.001
294 public O 0.001
295 public O 0.001
296 public O 0.001
297 public O 0.001
298 public O 0.001
299 public O 0.001
300 public O 0.001
301 public O 0.001
302 public O 0.001
303 public O 0.001
304 public O 0.001
305 public O 0.001
306 public O 0.001
307 public O 0.001
308 public O 0.001
309 public O 0.001
310 public O 0.001
311 public O 0.001
312 public O 0.001
313 public O 0.001
314 public O 0.001
315 public O 0.001
316 public O 0.001
317 public O 0.001
318 public O 0.001
319 public O 0.001
320 public O 0.001
321 public O 0.001
322 public O 0.001
323 public O 0.001
324 public O 0.001
325 public O 0.001
326 public O 0.001
327 public O 0.001
328 public O 0.001
329 public O 0.001
330 public O 0.001
331 public O 0.001
332 public O 0.001
333 public O 0.001
334 public O 0.001
335 public O 0.001
336 public O 0.001
337 public O 0.001
338 public O 0.001
339 public O 0.001
340 public O 0.001
341 public O 0.001
342 public O 0.001
343 public O 0.001
344 public O 0.001
345 public O 0.001
346 public O 0.001
347 public O 0.001
348 public O 0.001
349 public O 0.001
350 public O 0.001
351 public O 0.001
352 public O 0.001
353 public O 0.001
354 public O 0.001
355 public O 0.001
356 public O 0.001
357 public O 0.001
358 public O 0.001
359 public O 0.001
360 public O 0.001
361 public O 0.001
362 public O 0.001
363 public O 0.001
364 public O 0.001
365 public O 0.001
366 public O 0.001
367 public O 0.001
368 public O 0.001
369 public O 0.001
370 public O 0.001
371 public O 0.001
372 public O 0.001
373 public O 0.001
374 public O 0.001
375 public O 0.001
376 public O 0.001
377 public O 0.001
378 public O 0.001
379 public O 0.001
380 public O 0.001
381 public O 0.001
382 public O 0.001
383 public O 0.001
384 public O 0.001
385 public O 0.001
386 public O 0.001
387 public O 0.001
388 public O 0.001
389 public O 0.001
390 public O 0.001
391 public O 0.001
392 public O 0.001
393 public O 0.001
394 public O 0.001
395 public O 0.001
396 public O 0.001
397 public O 0.001
398 public O 0.001
399 public O 0.001
400 public O 0.001
401 public O 0.001
402 public O 0.001
403 public O 0.001
404 public O 0.001
405 public O 0.001
406 public O 0.001
407 public O 0.001
408 public O 0.001
409 public O 0.001
410 public O 0.001
411 public O 0.001
412 public O 0.001
413 public O 0.001
414 public O 0.001
415 public O 0.001
416 public O 0.001
417 public O 0.001
418 public O 0.001
419 public O 0.001
420 public O 0.001
421 public O 0.001
422 public O 0.001
423 public O 0.001
424 public O 0.001
425 public O 0.001
426 public O 0.001
427 public O 0.001
428 public O 0.001
429 public O 0.001
430 public O 0.001
431 public O 0.001
432 public O 0.001
433 public O 0.001
434 public O 0.001
435 public O 0.001
436 public O 0.001
437 public O 0.001
438 public O 0.001
439 public O 0.001
440 public O 0.001
441 public O 0.001
442 public O 0.001
443 public O 0.001
444 public O 0.001
445 public O 0.001
446 public O 0.001
447 public O 0.001
448 public O 0.001
449 public O 0.001
450 public O 0.001
451 public O 0.001
452 public O 0.001
453 public O 0.001
454 public O 0.001
455 public O 0.001
456 public O 0.001
457 public O 0.001
458 public O 0.001
459 public O 0.001
460 public O 0.001
461 public O 0.001
462 public O 0.001
463 public O 0.001
464 public O 0.001
465 public O 0.001
466 public O 0.001
467 public O 0.001
468 public O 0.001
469 public O 0.001
470 public O 0.001
471 public O 0.001
472 public O 0.001
473 public O 0.001
474 public O 0.001
475 public O 0.001
476 public O 0.001
477 public O 0.001
478 public O 0.001
479 public O 0.001
480 public O 0.001
481 public O 0.001
482 public O 0.001
483 public O 0.001
484 public O 0.001
485 public O 0.001
486 public O 0.001
487 public O 0.001
488 public O 0.001
489 public O 0.001
490 public O 0.001
491 public O 0.001
492 public O 0.001
493 public O 0.001
494 public O 0.001
495 public O 0.001
496 public O 0.001
497 public O 0.001
498 public O 0.001
499 public O 0.001
500 public O 0.001
501 public O 0.001
502 public O 0.001
503 public O 0.001
504 public O 0.001
505 public O 0.001
506 public O 0.001
507 public O 0.001
508 public O 0.001
509 public O 0.001
510 public O 0.001
511 public O 0.001
512 public O 0.001
513 public O 0.001
514 public O 0.001
515 public O 0.001
516 public O 0.001
517 public O 0.001
518 public O 0.001
519 public O 0.001
520 public O 0.001
521 public O 0.001
1 uninsure O 0.007
2 uninsure O 0.007
3 uninsure O 0.007
4 uninsure O 0.007
5 uninsure O 0.007
6 uninsure O 0.007
7 uninsure O 0.007
8 uninsure O 0.007
9 uninsure O 0.007
10 uninsure O 0.007
11 uninsure O 0.007
12 uninsure O 0.007
13 uninsure O 0.007
14 uninsure O 0.007
15 uninsure O 0.007
16 uninsure O 0.007
17 uninsure O 0.007
18 uninsure O 0.007
19 uninsure O 0.007
20 uninsure O 0.007
21 uninsure O 0.007
22 uninsure O 0.007
23 uninsure O 0.007
24 uninsure O 0.007
25 uninsure O 0.007
26 uninsure O 0.007
27 uninsure O 0.007
28 uninsure O 0.007
29 uninsure O 0.007
30 uninsure O 0.007
31 uninsure O 0.007
32 uninsure O 0.007
33 uninsure O 0.007
34 uninsure O 0.007
35 uninsure O 0.007
36 uninsure O 0.007
37 uninsure O 0.007
38 uninsure O 0.007
39 uninsure O 0.007
40 uninsure O 0.007
41 uninsure O 0.007
42 uninsure O 0.007
43 uninsure O 0.007
44 uninsure O 0.007
45 uninsure O 0.007
46 uninsure O 0.007
47 uninsure O 0.007
48 uninsure O 0.007
49 uninsure O 0.007
50 uninsure O 0.007
51 uninsure O 0.007
52 uninsure O 0.007
53 uninsure O 0.007
54 uninsure O 0.007
55 uninsure O 0.007
56 uninsure O 0.007
57 uninsure O 0.007
58 uninsure O 0.007
59 uninsure O 0.007
60 uninsure O 0.007
61 uninsure O 0.007
62 uninsure O 0.007
63 uninsure O 0.007
64 uninsure O 0.007
65 uninsure O 0.007
66 uninsure O 0.007
67 uninsure O 0.007
68 uninsure O 0.007
69 uninsure O 0.007
70 uninsure O 0.007
71 uninsure O 0.007
72 uninsure O 0.007
73 uninsure O 0.007
74 uninsure O 0.007
75 uninsure O 0.007
76 uninsure O 0.007
77 uninsure O 0.007
78 uninsure O 0.007
79 uninsure O 0.007
80 uninsure O 0.007
81 uninsure O 0.007
82 uninsure O 0.007
83 uninsure O 0.007
84 uninsure O 0.007
85 uninsure O 0.007
86 uninsure O 0.007
87 uninsure O 0.007
88 uninsure O 0.007
89 uninsure O 0.007
90 uninsure O 0.007
91 uninsure O 0.007
92 uninsure O 0.007
93 uninsure O 0.007
94 uninsure O 0.007
95 uninsure O 0.007
96 uninsure O 0.007
97 uninsure O 0.007
98 uninsure O 0.007
99 uninsure O 0.007
100 uninsure O 0.007
101 uninsure O 0.007
102 uninsure O 0.007
103 uninsure O 0.007
104 uninsure O 0.007
105 uninsure O 0.007
106 uninsure O 0.007
107 uninsure O 0.007
108 uninsure O 0.007
109 uninsure O 0.007
110 uninsure O 0.007
111 uninsure O 0.007
112 uninsure O 0.007
113 uninsure O 0.007
114 uninsure O 0.007
115 uninsure O 0.007
116 uninsure O 0.007
117 uninsure O 0.007
118 uninsure O 0.007
119 uninsure O 0.007
120 uninsure O 0.007
121 uninsure O 0.007
122 uninsure O 0.007
123 uninsure O 0.007
124 uninsure O 0.007
125 uninsure O 0.007
126 uninsure O 0.007
127 uninsure O 0.007
128 uninsure O 0.007
129 uninsure O 0.007
130 uninsure O 0.007
131 uninsure O 0.007
132 uninsure O 0.007
133 uninsure O 0.007
134 uninsure O 0.007
135 uninsure O 0.007
136 uninsure O 0.007
137 uninsure O 0.007
138 uninsure O 0.007
139 uninsure O 0.007
140 uninsure O 0.007
141 uninsure O 0.007
142 uninsure O 0.007
143 uninsure O 0.007
144 uninsure O 0.007
145 uninsure O 0.007
146 uninsure O 0.007
147 uninsure O 0.007
148 uninsure O 0.007
149 uninsure O 0.007
150 uninsure O 0.007
151 uninsure O 0.007
152 uninsure O 0.007
153 uninsure O 0.007
154 uninsure O 0.007
155 uninsure O 0.007
156 uninsure O 0.007
157 uninsure O 0.007
158 uninsure O 0.007
159 uninsure O 0.007
160 uninsure O 0.007
161 uninsure O 0.007
162 uninsure O 0.007
163 uninsure O 0.007
164 uninsure O 0.007
165 uninsure O 0.007
166 uninsure O 0.007
167 uninsure O 0.007
168 uninsure O 0.007
169 uninsure O 0.007
170 uninsure O 0.007
171 uninsure O 0.007
172 uninsure O 0.007
173 uninsure O 0.007
174 uninsure O 0.007
175 uninsure O 0.007
176 uninsure O 0.007
177 uninsure O 0.007
178 uninsure O 0.007
179 uninsure O 0.007
180 uninsure O 0.007
181 uninsure O 0.007
182 uninsure O 0.007
183 uninsure O 0.007
184 uninsure O 0.007
185 uninsure O 0.007
186 uninsure O 0.007
187 uninsure O 0.007
188 uninsure O 0.007
189 uninsure O 0.007
190 uninsure O 0.007
191 uninsure O 0.007
192 uninsure O 0.007
193 uninsure O 0.007
194 uninsure O 0.007
195 uninsure O 0.007
196 uninsure O 0.007
197 uninsure O 0.007
198 uninsure O 0.007
199 uninsure O 0.007
200 uninsure O 0.007
201 uninsure O 0.007
202 uninsure O 0.007
203 uninsure O 0.007
204 uninsure O 0.007
205 uninsure O 0.007
206 uninsure O 0.007
207 uninsure O 0.007
208 uninsure O 0.007
209 uninsure O 0.007
210 uninsure O 0.007
211 uninsure O 0.007
212 uninsure O 0.007
213 uninsure O 0.007
214 uninsure O 0.007
215 uninsure O 0.007
216 uninsure O 0.007
217 uninsure O 0.007
218 uninsure O 0.007
219 uninsure O 0.007
220 uninsure O 0.007
221 uninsure O 0.007
222 uninsure O 0.007
223 uninsure O 0.007
224 uninsure O 0.007
225 uninsure O 0.007
226 uninsure O 0.007
227 uninsure O 0.007
228 uninsure O 0.007
229 uninsure O 0.007
230 uninsure O 0.007
231 uninsure O 0.007
232 uninsure O 0.007
233 uninsure O 0.007
234 uninsure O 0.007
235 uninsure O 0.007
236 uninsure O 0.007
237 uninsure O 0.007
238 uninsure O 0.007
239 uninsure O 0.007
240 uninsure O 0.007
241 uninsure O 0.007
242 uninsure O 0.007
243 uninsure O 0.007
244 uninsure O 0.007
245 uninsure O 0.007
246 uninsure O 0.007
247 uninsure O 0.007
248 uninsure O 0.007
249 uninsure O 0.007
250 uninsure O 0.007
251 uninsure O 0.007
252 uninsure O 0.007
253 uninsure O 0.007
254 uninsure O 0.007
255 uninsure O 0.007
256 uninsure O 0.007
257 uninsure O 0.007
258 uninsure O 0.007
259 uninsure O 0.007
260 uninsure O 0.007
261 uninsure O 0.007
262 uninsure O 0.007
263 uninsure O 0.007
264 uninsure O 0.007
265 uninsure O 0.007
266 uninsure O 0.007
267 uninsure O 0.007
268 uninsure O 0.007
269 uninsure O 0.007
270 uninsure O 0.007
271 uninsure O 0.007
272 uninsure O 0.007
273 uninsure O 0.007
274 uninsure O 0.007
275 uninsure O 0.007
276 uninsure O 0.007
277 uninsure O 0.007
278 uninsure O 0.007
279 uninsure O 0.007
280 uninsure O 0.007
281 uninsure O 0.007
282 uninsure O 0.007
283 uninsure O 0.007
284 uninsure O 0.007
285 uninsure O 0.007
286 uninsure O 0.007
287 uninsure O 0.007
288 uninsure O 0.007
289 uninsure O 0.007
290 uninsure O 0.007
291 uninsure O 0.007
292 uninsure O 0.007
293 uninsure O 0.007
294 uninsure O 0.007
295 uninsure O 0.007
296 uninsure O 0.007
297 uninsure O 0.007
298 uninsure O 0.007
299 uninsure O 0.006
300 uninsure O 0.006
301 uninsure O 0.006
302 uninsure O 0.006
303 uninsure O 0.006
304 uninsure O 0.006
305 uninsure O 0.006
306 uninsure O 0.006
307 uninsure O 0.006
308 uninsure O 0.006
309 uninsure O 0.006
310 uninsure O 0.006
311 uninsure O 0.006
312 uninsure O 0.006
313 uninsure O 0.006
314 uninsure O 0.006
315 uninsure O 0.006
316 uninsure O 0.006
317 uninsure O 0.006
318 uninsure O 0.006
319 uninsure O 0.006
320 uninsure O 0.006
321 uninsure O 0.006
322 uninsure O 0.006
323 uninsure O 0.006
324 uninsure O 0.006
325 uninsure O 0.006
326 uninsure O 0.006
327 uninsure O 0.006
328 uninsure O 0.006
329 uninsure O 0.006
330 uninsure O 0.006
331 uninsure O 0.006
332 uninsure O 0.006
333 uninsure O 0.006
334 uninsure O 0.006
335 uninsure O 0.006
336 uninsure O 0.006
337 uninsure O 0.006
338 uninsure O 0.006
339 uninsure O 0.006
340 uninsure O 0.006
341 uninsure O 0.006
342 uninsure O 0.006
343 uninsure O 0.006
344 uninsure O 0.006
345 uninsure O 0.006
346 uninsure O 0.006
347 uninsure O 0.006
348 uninsure O 0.006
349 uninsure O 0.006
350 uninsure O 0.006
351 uninsure O 0.006
352 uninsure O 0.006
353 uninsure O 0.006
354 uninsure O 0.006
355 uninsure O 0.006
356 uninsure O 0.006
357 uninsure O 0.006
358 uninsure O 0.006
359 uninsure O 0.006
360 uninsure O 0.006
361 uninsure O 0.006
362 uninsure O 0.006
363 uninsure O 0.006
364 uninsure O 0.006
365 uninsure O 0.006
366 uninsure O 0.006
367 uninsure O 0.006
368 uninsure O 0.006
369 uninsure O 0.006
370 uninsure O 0.006
371 uninsure O 0.006
372 uninsure O 0.006
373 uninsure O 0.006
374 uninsure O 0.006
375 uninsure O 0.006
376 uninsure O 0.006
377 uninsure O 0.006
378 uninsure O 0.006
379 uninsure O 0.006
380 uninsure O 0.006
381 uninsure O 0.006
382 uninsure O 0.006
383 uninsure O 0.006
384 uninsure O 0.006
385 uninsure O 0.006
386 uninsure O 0.006
387 uninsure O 0.006
388 uninsure O 0.006
389 uninsure O 0.006
390 uninsure O 0.006
391 uninsure O 0.006
392 uninsure O 0.006
393 uninsure O 0.006
394 uninsure O 0.006
395 uninsure O 0.006
396 uninsure O 0.006
397 uninsure O 0.006
398 uninsure O 0.006
399 uninsure O 0.006
400 uninsure O 0.006
401 uninsure O 0.006
402 uninsure O 0.006
403 uninsure O 0.006
404 uninsure O 0.006
405 uninsure O 0.006
406 uninsure O 0.006
407 uninsure O 0.006
408 uninsure O 0.006
409 uninsure O 0.006
410 uninsure O 0.006
411 uninsure O 0.006
412 uninsure O 0.006
413 uninsure O 0.006
414 uninsure O 0.006
415 uninsure O 0.006
416 uninsure O 0.006
417 uninsure O 0.006
418 uninsure O 0.006
419 uninsure O 0.006
420 uninsure O 0.006
421 uninsure O 0.006
422 uninsure O 0.006
423 uninsure O 0.006
424 uninsure O 0.006
425 uninsure O 0.006
426 uninsure O 0.006
427 uninsure O 0.006
428 uninsure O 0.006
429 uninsure O 0.006
430 uninsure O 0.006
431 uninsure O 0.006
432 uninsure O 0.006
433 uninsure O 0.006
434 uninsure O 0.006
435 uninsure O 0.006
436 uninsure O 0.006
437 uninsure O 0.006
438 uninsure O 0.006
439 uninsure O 0.006
440 uninsure O 0.006
441 uninsure O 0.006
442 uninsure O 0.006
443 uninsure O 0.006
444 uninsure O 0.006
445 uninsure O 0.006
446 uninsure O 0.006
447 uninsure O 0.006
448 uninsure O 0.006
449 uninsure O 0.006
450 uninsure O 0.006
451 uninsure O 0.006
452 uninsure O 0.006
453 uninsure O 0.006
454 uninsure O 0.006
455 uninsure O 0.006
456 uninsure O 0.006
457 uninsure O 0.006
458 uninsure O 0.006
459 uninsure O 0.006
460 uninsure O 0.006
461 uninsure O 0.005
462 uninsure O 0.005
463 uninsure O 0.005
464 uninsure O 0.005
465 uninsure O 0.005
466 uninsure O 0.005
467 uninsure O 0.005
468 uninsure O 0.005
469 uninsure O 0.005
470 uninsure O 0.005
471 uninsure O 0.005
472 uninsure O 0.005
473 uninsure O 0.005
474 uninsure O 0.005
475 uninsure O 0.005
476 uninsure O 0.005
477 uninsure O 0.005
478 uninsure O 0.005
479 uninsure O 0.005
480 uninsure O 0.005
481 uninsure O 0.005
482 uninsure O 0.005
483 uninsure O 0.005
484 uninsure O 0.005
485 uninsure O 0.005
486 uninsure O 0.005
487 uninsure O 0.005
488 uninsure O 0.005
489 uninsure O 0.005
490 uninsure O 0.005
491 uninsure O 0.005
492 uninsure O 0.005
493 uninsure O 0.005
494 uninsure O 0.005
495 uninsure O 0.005
496 uninsure O 0.005
497 uninsure O 0.005
498 uninsure O 0.005
499 uninsure O 0.005
500 uninsure O 0.005
501 uninsure O 0.005
502 uninsure O 0.005
503 uninsure O 0.005
504 uninsure O 0.005
505 uninsure O 0.005
506 uninsure O 0.005
507 uninsure O 0.005
508 uninsure O 0.005
509 uninsure O 0.005
510 uninsure O 0.005
511 uninsure O 0.005
512 uninsure O 0.005
513 uninsure O 0.005
514 uninsure O 0.005
515 uninsure O 0.005
516 uninsure O 0.005
517 uninsure O 0.005
518 uninsure O 0.005
519 uninsure O 0.005
520 uninsure O 0.005
521 uninsure O 0.005
1 wship O 0.004
2 wship O 0.004
3 wship O 0.004
4 wship O 0.004
5 wship O 0.004
6 wship O 0.004
7 wship O 0.004
8 wship O 0.004
9 wship O 0.004
10 wship O 0.004
11 wship O 0.004
12 wship O 0.004
13 wship O 0.004
14 wship O 0.004
15 wship O 0.004
16 wship O 0.004
17 wship O 0.004
18 wship O 0.004
19 wship O 0.004
20 wship O 0.004
21 wship O 0.004
22 wship O 0.004
23 wship O 0.004
24 wship O 0.004
25 wship O 0.004
26 wship O 0.004
27 wship O 0.004
28 wship O 0.004
29 wship O 0.004
30 wship O 0.004
31 wship O 0.004
32 wship O 0.004
33 wship O 0.004
34 wship O 0.004
35 wship O 0.004
36 wship O 0.004
37 wship O 0.004
38 wship O 0.004
39 wship O 0.004
40 wship O 0.004
41 wship O 0.004
42 wship O 0.004
43 wship O 0.004
44 wship O 0.004
45 wship O 0.004
46 wship O 0.004
47 wship O 0.004
48 wship O 0.004
49 wship O 0.004
50 wship O 0.004
51 wship O 0.004
52 wship O 0.004
53 wship O 0.004
54 wship O 0.004
55 wship O 0.004
56 wship O 0.004
57 wship O 0.004
58 wship O 0.004
59 wship O 0.004
60 wship O 0.004
61 wship O 0.004
62 wship O 0.004
63 wship O 0.004
64 wship O 0.004
65 wship O 0.004
66 wship O 0.004
67 wship O 0.004
68 wship O 0.004
69 wship O 0.004
70 wship O 0.004
71 wship O 0.004
72 wship O 0.004
73 wship O 0.004
74 wship O 0.004
75 wship O 0.004
76 wship O 0.004
77 wship O 0.004
78 wship O 0.004
79 wship O 0.004
80 wship O 0.004
81 wship O 0.004
82 wship O 0.004
83 wship O 0.004
84 wship O 0.004
85 wship O 0.004
86 wship O 0.004
87 wship O 0.004
88 wship O 0.004
89 wship O 0.004
90 wship O 0.004
91 wship O 0.004
92 wship O 0.004
93 wship O 0.004
94 wship O 0.004
95 wship O 0.004
96 wship O 0.004
97 wship O 0.004
98 wship O 0.004
99 wship O 0.004
100 wship O 0.004
101 wship O 0.004
102 wship O 0.004
103 wship O 0.004
104 wship O 0.004
105 wship O 0.004
106 wship O 0.004
107 wship O 0.004
108 wship O 0.004
109 wship O 0.004
110 wship O 0.004
111 wship O 0.004
112 wship O 0.004
113 wship O 0.004
114 wship O 0.004
115 wship O 0.004
116 wship O 0.004
117 wship O 0.004
118 wship O 0.004
119 wship O 0.004
120 wship O 0.004
121 wship O 0.004
122 wship O 0.004
123 wship O 0.004
124 wship O 0.004
125 wship O 0.004
126 wship O 0.004
127 wship O 0.004
128 wship O 0.004
129 wship O 0.004
130 wship O 0.004
131 wship O 0.004
132 wship O 0.004
133 wship O 0.004
134 wship O 0.004
135 wship O 0.004
136 wship O 0.004
137 wship O 0.004
138 wship O 0.004
139 wship O 0.004
140 wship O 0.004
141 wship O 0.004
142 wship O 0.004
143 wship O 0.004
144 wship O 0.004
145 wship O 0.004
146 wship O 0.004
147 wship O 0.004
148 wship O 0.004
149 wship O 0.004
150 wship O 0.004
151 wship O 0.004
152 wship O 0.004
153 wship O 0.004
154 wship O 0.004
155 wship O 0.004
156 wship O 0.004
157 wship O 0.004
158 wship O 0.004
159 wship O 0.004
160 wship O 0.004
161 wship O 0.004
162 wship O 0.004
163 wship O 0.004
164 wship O 0.004
165 wship O 0.004
166 wship O 0.004
167 wship O 0.004
168 wship O 0.004
169 wship O 0.004
170 wship O 0.004
171 wship O 0.004
172 wship O 0.004
173 wship O 0.004
174 wship O 0.004
175 wship O 0.004
176 wship O 0.004
177 wship O 0.004
178 wship O 0.004
179 wship O 0.004
180 wship O 0.004
181 wship O 0.004
182 wship O 0.004
183 wship O 0.004
184 wship O 0.004
185 wship O 0.004
186 wship O 0.004
187 wship O 0.004
188 wship O 0.004
189 wship O 0.004
190 wship O 0.004
191 wship O 0.004
192 wship O 0.004
193 wship O 0.004
194 wship O 0.004
195 wship O 0.004
196 wship O 0.004
197 wship O 0.004
198 wship O 0.004
199 wship O 0.004
200 wship O 0.004
201 wship O 0.004
202 wship O 0.004
203 wship O 0.004
204 wship O 0.004
205 wship O 0.004
206 wship O 0.004
207 wship O 0.004
208 wship O 0.004
209 wship O 0.004
210 wship O 0.004
211 wship O 0.004
212 wship O 0.004
213 wship O 0.004
214 wship O 0.004
215 wship O 0.004
216 wship O 0.004
217 wship O 0.004
218 wship O 0.004
219 wship O 0.004
220 wship O 0.004
221 wship O 0.004
222 wship O 0.004
223 wship O 0.004
224 wship O 0.004
225 wship O 0.004
226 wship O 0.004
227 wship O 0.004
228 wship O 0.004
229 wship O 0.004
230 wship O 0.004
231 wship O 0.004
232 wship O 0.004
233 wship O 0.004
234 wship O 0.004
235 wship O 0.004
236 wship O 0.004
237 wship O 0.004
238 wship O 0.004
239 wship O 0.004
240 wship O 0.004
241 wship O 0.004
242 wship O 0.004
243 wship O 0.004
244 wship O 0.004
245 wship O 0.004
246 wship O 0.004
247 wship O 0.004
248 wship O 0.004
249 wship O 0.004
250 wship O 0.004
251 wship O 0.004
252 wship O 0.004
253 wship O 0.004
254 wship O 0.004
255 wship O 0.004
256 wship O 0.004
257 wship O 0.004
258 wship O 0.004
259 wship O 0.004
260 wship O 0.004
261 wship O 0.004
262 wship O 0.004
263 wship O 0.004
264 wship O 0.004
265 wship O 0.004
266 wship O 0.004
267 wship O 0.004
268 wship O 0.004
269 wship O 0.004
270 wship O 0.004
271 wship O 0.004
272 wship O 0.004
273 wship O 0.004
274 wship O 0.004
275 wship O 0.004
276 wship O 0.004
277 wship O 0.004
278 wship O 0.004
279 wship O 0.004
280 wship O 0.004
281 wship O 0.004
282 wship O 0.004
283 wship O 0.004
284 wship O 0.004
285 wship O 0.004
286 wship O 0.004
287 wship O 0.004
288 wship O 0.004
289 wship O 0.004
290 wship O 0.004
291 wship O 0.004
292 wship O 0.004
293 wship O 0.004
294 wship O 0.004
295 wship O 0.004
296 wship O 0.004
297 wship O 0.004
298 wship O 0.004
299 wship O 0.004
300 wship O 0.004
301 wship O 0.004
302 wship O 0.004
303 wship O 0.004
304 wship O 0.004
305 wship O 0.004
306 wship O 0.004
307 wship O 0.004
308 wship O 0.004
309 wship O 0.004
310 wship O 0.004
311 wship O 0.004
312 wship O 0.004
313 wship O 0.004
314 wship O 0.004
315 wship O 0.004
316 wship O 0.004
317 wship O 0.004
318 wship O 0.004
319 wship O 0.004
320 wship O 0.004
321 wship O 0.004
322 wship O 0.004
323 wship O 0.004
324 wship O 0.004
325 wship O 0.004
326 wship O 0.004
327 wship O 0.004
328 wship O 0.004
329 wship O 0.004
330 wship O 0.004
331 wship O 0.004
332 wship O 0.004
333 wship O 0.004
334 wship O 0.004
335 wship O 0.004
336 wship O 0.004
337 wship O 0.004
338 wship O 0.004
339 wship O 0.004
340 wship O 0.004
341 wship O 0.004
342 wship O 0.004
343 wship O 0.004
344 wship O 0.004
345 wship O 0.004
346 wship O 0.004
347 wship O 0.004
348 wship O 0.004
349 wship O 0.004
350 wship O 0.004
351 wship O 0.004
352 wship O 0.004
353 wship O 0.004
354 wship O 0.004
355 wship O 0.004
356 wship O 0.004
357 wship O 0.004
358 wship O 0.004
359 wship O 0.004
360 wship O 0.004
361 wship O 0.004
362 wship O 0.004
363 wship O 0.004
364 wship O 0.004
365 wship O 0.004
366 wship O 0.004
367 wship O 0.004
368 wship O 0.004
369 wship O 0.004
370 wship O 0.004
371 wship O 0.004
372 wship O 0.004
373 wship O 0.004
374 wship O 0.004
375 wship O 0.004
376 wship O 0.004
377 wship O 0.004
378 wship O 0.004
379 wship O 0.004
380 wship O 0.004
381 wship O 0.004
382 wship O 0.004
383 wship O 0.004
384 wship O 0.004
385 wship O 0.004
386 wship O 0.004
387 wship O 0.004
388 wship O 0.004
389 wship O 0.004
390 wship O 0.004
391 wship O 0.004
392 wship O 0.004
393 wship O 0.004
394 wship O 0.004
395 wship O 0.004
396 wship O 0.004
397 wship O 0.004
398 wship O 0.004
399 wship O 0.004
400 wship O 0.004
401 wship O 0.004
402 wship O 0.004
403 wship O 0.004
404 wship O 0.004
405 wship O 0.004
406 wship O 0.004
407 wship O 0.004
408 wship O 0.004
409 wship O 0.004
410 wship O 0.004
411 wship O 0.004
412 wship O 0.004
413 wship O 0.004
414 wship O 0.004
415 wship O 0.004
416 wship O 0.004
417 wship O 0.004
418 wship O 0.004
419 wship O 0.004
420 wship O 0.004
421 wship O 0.004
422 wship O 0.004
423 wship O 0.004
424 wship O 0.004
425 wship O 0.004
426 wship O 0.004
427 wship O 0.004
428 wship O 0.004
429 wship O 0.004
430 wship O 0.004
431 wship O 0.004
432 wship O 0.004
433 wship O 0.004
434 wship O 0.004
435 wship O 0.004
436 wship O 0.004
437 wship O 0.004
438 wship O 0.004
439 wship O 0.004
440 wship O 0.004
441 wship O 0.004
442 wship O 0.004
443 wship O 0.004
444 wship O 0.004
445 wship O 0.004
446 wship O 0.004
447 wship O 0.004
448 wship O 0.004
449 wship O 0.004
450 wship O 0.004
451 wship O 0.004
452 wship O 0.004
453 wship O 0.004
454 wship O 0.004
455 wship O 0.004
456 wship O 0.004
457 wship O 0.004
458 wship O 0.004
459 wship O 0.004
460 wship O 0.004
461 wship O 0.004
462 wship O 0.004
463 wship O 0.004
464 wship O 0.004
465 wship O 0.004
466 wship O 0.004
467 wship O 0.004
468 wship O 0.004
469 wship O 0.004
470 wship O 0.004
471 wship O 0.004
472 wship O 0.004
473 wship O 0.004
474 wship O 0.004
475 wship O 0.004
476 wship O 0.004
477 wship O 0.004
478 wship O 0.004
479 wship O 0.004
480 wship O 0.004
481 wship O 0.004
482 wship O 0.004
483 wship O 0.004
484 wship O 0.004
485 wship O 0.004
486 wship O 0.004
487 wship O 0.004
488 wship O 0.004
489 wship O 0.004
490 wship O 0.004
491 wship O 0.004
492 wship O 0.004
493 wship O 0.004
494 wship O 0.004
495 wship O 0.004
496 wship O 0.004
497 wship O 0.004
498 wship O 0.004
499 wship O 0.004
500 wship O 0.004
501 wship O 0.004
502 wship O 0.004
503 wship O 0.004
504 wship O 0.004
505 wship O 0.004
506 wship O 0.004
507 wship O 0.004
508 wship O 0.004
509 wship O 0.004
510 wship O 0.004
511 wship O 0.004
512 wship O 0.004
513 wship O 0.004
514 wship O 0.004
515 wship O 0.004
516 wship O 0.004
517 wship O 0.004
518 wship O 0.004
519 wship O 0.004
520 wship O 0.004
521 wship O 0.004

Hazard curves

Note the piece-wise structure. It looks odd at the individual hazard level, and some of the transitions are quite abrupt, but the population level survival curves in the next section are pretty smooth. The one concern is the Weibull piece for Black, public insurance, which suggests an increasing disenrollment rate over time.

ggplot(data = adap_data$pred.disenroll, 
       aes(x = week, y = disenroll_prob, color = insurance)) + 
  geom_line() + facet_wrap(~race) +
  labs(title = "Piecewise hazard curves by race and insurance",
       x = "Week",
       y = "Prob of disenrolling") 

Survival curves for ADAP clients

Note: the figures are read in here, but are contructed on the secure terminal server in Scripts/DAPoutputs.R

Race
grid.raster(readTIFF(here::here("MakeData", "Zoe", "EconModelBook", "data",
                                "p_dropout1.tiff")))

Insurance
grid.raster(readTIFF(here::here("MakeData", "Zoe", "EconModelBook", "data",
                                "p_dropout2.tiff")))

PDAP

demog

Demographics of PDAP clients.

Data inputs

  • Number of PDAP clients by year, race, and region from DOH DAP data
  • Popsize of HIV- from WApopdata (pop.racexregion.neg)
  • Fraction of HIV- on PrEP from WHAMP survey

Parameter outputs

  • prop - proportion of HIV- in PDAP, by race x region x year (year 4 used for intial distribution)
  • prop.pdap - Client race x region distribution by year (for insurance assignment). NB: this is not included in ADAP demog

Target outputs (for comparison to WHAMP)

  • pdap.frac - Estimated % of PrEP users on PDAP: PDAPclients / (popHIV- * WhampPrEPfrac). Calculated in data section above.
### PDAP
### we again use num_ub, which for HIV- will be a the lower value

pop.racexregion.neg <- bind_rows(msm.pop.totals_2014$pop.racexregion.neg,
                                 msm.pop.totals_2015$pop.racexregion.neg,
                                 msm.pop.totals_2016$pop.racexregion.neg,
                                 msm.pop.totals_2017$pop.racexregion.neg,
                                 msm.pop.totals_2018$pop.racexregion.neg) %>%
  bind_cols(year, .) %>% #year is made in the adap section
  select(year, region, race, popsize.neg = num_ub) %>%
  data.table()

# ZK modifies the original data here, we use tidytools instead of data.table
# object will have the same structure as ADAP, with one extra column: 
# prop.pdap: race x region distn of clients by year for insurance assignment
pdap_data$demog <- merge(pdap_data$demog, 
                         pop.racexregion.neg, 
                         by = c("year", "race", "region"),
                         all.x = T) %>%
  mutate(prop = N / popsize.neg, 
         year = year - 2013) %>%
  filter(year >= 4) %>% # 2017 & 18 only
  group_by(year) %>%
  mutate(prop.pdap = N/sum(N)) %>%
  ungroup() %>%
  data.table() %>%
  setkeyv(c("year", "race", "region"))

PDAP Prevalence estimates

As with ADAP participation rates, we have 2 sources for estimating the fraction of PrEP users on PDAP: DOH DAP data, and the WHAMP survey.

In this case, the DOH estimate is not completely independent of WHAMP, because DOH do not have a population estimate of number of MSM on PrEP (analogous to the number on ART). DOH do have an estimate of the prevalence of PrEP use among HIV- MSM from Darcy’s 2018 WHPP: 18%. That is a bit lower than the WHAMP 2019 survey estimate, (22.4%), so we rely on the WHAMP estimate of the PrEP fraction to adjust the denominator for the DOH estimate of the fraction of PrEP users in PDAP.

The two estimates are not consistent:

  • DOH 2018 data: 6.1%
  • WHAMP 2019 survey: 16.7% (95% CI, 10.8% - 22.5%)

The PDAP program, unlike ADAP, is changing rapidly as it scales up. The program size more than doubled from 2017 to 2018 (see the Targets section). So it’s possible that the discrepancy is due to the difference in observation years, and the WHAMP survey estimate is correct.

In any case, we will need to calibrate this input parameter to overall program size.

DOH PDAP estimates

The plot and table below show the fraction of HIV+ in PDAP, based on the DOH DAP and WApop data. The estimates are based on DAPclients(yr)/PopHIV+(yr) by attribute. Note the denominator is not PrEP users.

Plot

p <- ggplot(pdap_data$demog, 
            aes(x = region, y = prop, text = N)) + 
  geom_bar(aes(fill = race), alpha = 0.7,
           stat = "identity", size = 1.2, 
           position = position_dodge2(width = 0.9)) + 
  labs(title = "Demographics of PDAP clients", 
       ylab = "proportion") + 
  facet_wrap(~year)

ggplotly(p, tooltip = "text")
gp <- ggplotly(p, tooltip = "text")
gp %>% layout_1x2

Table

kable(pdap_data$demog, 
      digits = c(0, 0, 0, 0, 0, 4), 
      caption= "Demographics of PDAP clients by year, race, and region") %>% 
  kable_styling(full_width=F, position="center", bootstrap_options = c("striped"))
Demographics of PDAP clients by year, race, and region
year race region N popsize.neg prop prop.pdap
4 B EasternWA 0 252 0.0000 0
4 B King 9 4658 0.0019 0
4 B WesternWA 7 1980 0.0035 0
4 H EasternWA 3 2191 0.0014 0
4 H King 60 5478 0.0110 0
4 H WesternWA 12 3390 0.0035 0
4 O EasternWA 20 9676 0.0021 0
4 O King 429 56734 0.0076 1
4 O WesternWA 81 35822 0.0023 0
5 B EasternWA 0 256 0.0000 0
5 B King 43 4813 0.0089 0
5 B WesternWA 13 2061 0.0063 0
5 H EasternWA 18 2249 0.0080 0
5 H King 276 5620 0.0491 0
5 H WesternWA 66 3556 0.0186 0
5 O EasternWA 50 9765 0.0051 0
5 O King 1005 57656 0.0174 1
5 O WesternWA 195 36230 0.0054 0

ins

Distribution of insurance among PDAP clients

Data source: DOH DAP data

  • Number of PDAP clients by race x region x insurance x year

  • 3 insurance categories: individual, employer, and none.

  • The race x region x ins stratification leads to many empty cells for B PDAP clients if we restrict to 2017-18. So we use all yrs of data for the prediction.

  • Data notes:

  • In the original data, there were only 17 Medicare records so we removed the Medicare insurance in the data.

  • There were no Medicaid clients in the PDAP claims data

Parameter Output

  • Model based predicted insurance category probs by race x region.
  • Insurance of new PDAP clients was assigned using this data.table.
# ZK modifies the original data here
pdap_data$ins[, sum_N := sum(n), by = list(year, race, region)]
pdap_data$ins[, prop := n / sum_N]
pdap_data$ins[, sum_N := NULL]
pdap_data$ins[, year := year - 2013]
#pdap_data$ins <- pdap_data$ins[year >= 4]

ins.levels <- data.table(expand.grid(year = 1:5, 
                               race = c("B", "H", "O"), 
                               region = c("EasternWA", "King", "WesternWA"), 
                               insurance = c("employer", "individual", "none")))

pdap_data$ins <- merge(ins.levels, pdap_data$ins, 
                       by = c("year", "race", "region", "insurance"), 
                       all.x = T)
pdap_data$ins[is.na(n)]$n <- 0
pdap_data$ins[is.na(prop)]$prop <- 0

Tables

We compare all yrs to 2017-18, to see the impact on the distributions for non-B. Region is collapsed to KC vs. other WA to reduce empty cells. The distributions are close enough that we will use all years to estimate the multinomial model for insurance.

allyrs <- pdap_data$ins %>% 
  mutate(region2 = if_else(region == "King", "King", "Other WA")) %>%
  group_by(race, region2, insurance) %>%
  summarize(num = sum(n)) %>%
  mutate(pct = 100*round(num/sum(num), 3)) 

last2yrs <- pdap_data$ins %>% filter(year > 3) %>%
  mutate(region2 = if_else(region == "King", "King", "Other WA")) %>%
  group_by(race, region2, insurance) %>%
  summarize(num = sum(n)) %>%
  mutate(pct = 100*round(num/sum(num), 3)) 

comp <- left_join(allyrs, last2yrs, 
                  by = c("race", "region2", "insurance"),
                  suffix = c(".all", ".l2yr")) %>%
  mutate(diff = pct.all - pct.l2yr) 

comp %>%
  kable(digits = c(0, 0, 0, 0, 1, 0, 1, 1), 
        caption= "All years:  Insurance distn for PDAP clients") %>%
  add_header_above(c(" " = 3, "All yrs" = 2, "2017-18" = 2, " " = 1)) %>%
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
All years: Insurance distn for PDAP clients
All yrs
2017-18
race region2 insurance num.all pct.all num.l2yr pct.l2yr diff
B King employer 56 62.2 30 57.7 4.5
B King individual 12 13.3 5 9.6 3.7
B King none 22 24.4 17 32.7 -8.3
B Other WA employer 21 72.4 14 70.0 2.4
B Other WA individual 4 13.8 4 20.0 -6.2
B Other WA none 4 13.8 2 10.0 3.8
H King employer 241 47.2 177 52.7 -5.5
H King individual 84 16.4 40 11.9 4.5
H King none 186 36.4 119 35.4 1.0
H Other WA employer 61 44.2 48 48.5 -4.3
H Other WA individual 20 14.5 12 12.1 2.4
H Other WA none 57 41.3 39 39.4 1.9
O King employer 1463 62.4 923 64.4 -2.0
O King individual 541 23.1 323 22.5 0.6
O King none 340 14.5 188 13.1 1.4
O Other WA employer 305 55.4 193 55.8 -0.4
O Other WA individual 131 23.8 76 22.0 1.8
O Other WA none 115 20.9 77 22.3 -1.4

Model and predicted probs

# PDAP insurance prediction
  
mult_dat <- pdap_data$ins %>%
    mutate(region2 = if_else(region == "King", "King", "Other WA")) %>%
  group_by(race, region2, insurance) %>%
  summarize(n = sum(n))

mult_fit <- nnet::multinom(insurance ~ race + region2, 
                            weights = n, data = mult_dat) 
## # weights:  15 (8 variable)
## initial  value 4024.216813 
## iter  10 value 3457.259892
## final  value 3454.716377 
## converged
summary(mult_fit)
## Call:
## nnet::multinom(formula = insurance ~ race + region2, data = mult_dat, 
##     weights = n)
## 
## Coefficients:
##            (Intercept)     raceH      raceO region2Other WA
## individual   -1.596415 0.5094920  0.6092373       0.1071063
## none         -1.180985 0.8841925 -0.2518469       0.3665687
## 
## Std. Errors:
##            (Intercept)     raceH     raceO region2Other WA
## individual   0.2759613 0.2974104 0.2785476       0.1058176
## none         0.2291814 0.2432541 0.2334088       0.1055024
## 
## Residual Deviance: 6909.433 
## AIC: 6925.433
pred.ins.probs <- bind_cols( 
   mult_dat[seq(1, nrow(mult_dat), by = 3), c("race", "region2")], 
   as.data.frame(predict( 
     mult_fit, newdata = mult_dat[seq(1, nrow(mult_dat), by = 3), 
                                  c("race", "region2")], 
     type = "probs"))) %>% 
   as.data.table() %>%
 setkey("race", "region2") 

pred.ins.probs %>%
  kable(digits = c(0, 0, 3, 3, 3), 
        caption= "Predicted insurance types for PDAP clients") %>%
  footnote("Multinomial model based on all years, 2014-18") %>%
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
Predicted insurance types for PDAP clients
race region2 employer individual none
B King 0.662 0.134 0.203
B Other WA 0.599 0.135 0.265
H King 0.481 0.162 0.357
H Other WA 0.409 0.153 0.438
O King 0.621 0.231 0.148
O Other WA 0.568 0.236 0.196
Note:
Multinomial model based on all years, 2014-18

Plot

These are the predicted insurance types, by race and region.

tmp <- pred.ins.probs %>%
  pivot_longer(c("employer":"none"), names_to = "insurance")

p <- ggplot(tmp, 
            aes(x = insurance, y = value, 
                group = region2, color = region2,
                text = scales::percent(tmp$value, accuracy = .1))) + 
  geom_line(alpha = 0.7) + 
  facet_grid(~race) +
  theme(axis.text.x = element_text(size = 9, angle = 40, hjust = 1)) +
  labs(title = "Predicted insurance type for PDAP clients") +
  xlab("race") + ylab("proportion")
  
ggplotly(p, tooltip = "text")
# filter ins dt to yrs 4-5

pdap_data$ins <- pdap_data$ins[year >= 4]

# reformat pred dt for 3-region use; E&W WA will have same values
# new component in pdap list: ins.pred (replaces placeholder)

mult_dat <- pdap_data$ins %>%
    mutate(region2 = if_else(region == "King", "King", "Other WA")) 

pdap_data$ins.pred <- left_join(mult_dat, tmp,
                                by = c("race", "region2", "insurance")) %>%
  select(-c(region2, n, prop)) %>%
  pivot_wider(names_from = insurance)

cost.pday

Average daily PDAP cost per person

The calculation method is very similar to the ADAP cost.pday. The primary differences are date range (2017 - 2018) and insurance categories (none, employer, and individual).

Data inputs: DOH DAP data

  • Number of clients
  • Number of enrollment days on PDAP
  • Costs by category of spending
  • By race x insurance

Parameter outputs:

  • Costs stratified by race x insurance x year
  • Total category costs = sum over all persons, all days (annual cost)
  • Daily category cost per person = Total / sum(person-days of enrollment)
  • Overall program costs summed the category costs.
tmpDF <- data.table(expand.grid(year = c(2017, 2018), 
                                race = c("B", "H", "O"), 
                                insurance = c("none", "employer", "individual")))

# ZK modifies the original data here
pdap_data$cost.pday <- pdap_data$cost.pday %>%
  select(year, race, insurance, pdtruvCost, Overallpdcost) %>%
  rename(cTruv = pdtruvCost, 
         cTotCost = Overallpdcost)

pdap_data$cost.pday <- merge(tmpDF, pdap_data$cost.pday, 
                             by = c("year", "race", "insurance"), 
                             all.x = T)
pdap_data$cost.pday[is.na(pdap_data$cost.pday)] <- 0

Plots

Truvada
p <- ggplot(pdap_data$cost.pday, 
            aes(x = insurance, y = cTruv, text = round(cTruv,2))) + 
  geom_bar(aes(fill = race), stat = "identity", 
           alpha = 0.7, size = 1.2, 
           position = position_dodge2(width = 0.9)) +
  facet_wrap(~ year, nrow = 2) + 
  labs(title = "Truvada cost per person-day", y = "cost ($)") 

ggplotly(p, tooltip = "text")
Total costs
p <- ggplot(pdap_data$cost.pday, 
            aes(x = insurance, y = cTotCost, text = round(cTotCost,2))) + 
  geom_bar(aes(fill = race), stat = "identity", 
           alpha = 0.7, size = 1.2, 
           position = position_dodge2(width = 0.9)) +
  facet_wrap(~ year, nrow = 2) + 
  labs(title = "Total cost per person-day", y = "cost ($)") 

ggplotly(p, tooltip = "text")

Table

kable(pdap_data$cost.pday, digits = c(0, 0, 0, 2, 2, 2, 2), 
      caption = "Daily PDAP cost by race and insurance") %>% 
  kable_styling(full_width=F, position="center", bootstrap_options = c("striped"))
Daily PDAP cost by race and insurance
year race insurance cTruv cTotCost
2017 B employer 3.00 3.10
2017 B individual 0.00 0.00
2017 B none 0.09 0.09
2017 H employer 5.47 5.48
2017 H individual 11.52 11.52
2017 H none 25.30 25.49
2017 O employer 5.30 5.34
2017 O individual 9.92 9.93
2017 O none 10.59 10.65
2018 B employer 1.15 1.63
2018 B individual 2.02 2.02
2018 B none 4.84 6.48
2018 H employer 1.15 1.45
2018 H individual 6.43 6.66
2018 H none 3.35 5.90
2018 O employer 1.82 2.19
2018 O individual 5.46 5.62
2018 O none 8.56 10.14

pred.disenroll_pdap

Disenrollment from PDAP

This is not used in the simulation, but we include it in the report.

It is likely that pausing/quitting PrEP is the primary reason for disenrollment. The DOH PDAP data include a field called endReason, but “stopped using PrEP” is unfortunately not one of the response options. The distribution of endReason is shown below (from secure terminal server analysis):


Overall     
n                                                        4621        
endReason (%)                                                        
Address Update                                           6 ( 0.1) 
Apple Health                                             7 ( 0.2) 
Benefit Change                                          40 ( 0.9) 
Benefit Level Change                                   251 ( 5.4) 
Client's Request                                         1 ( 0.0) 
Deceased                                                 2 ( 0.0) 
Did not recertify                                      621 (13.4) 
Dropped out, no reason given                             2 ( 0.0) 
Eligibility expired                                   1345 (29.1) 
End of year: client remains eligible                  1237 (26.8) 
Enrollment renewal                                     601 (13.0) 
Health Benefits Update                                 491 (10.6) 
Incomplete Application                                   4 ( 0.1) 
Ineligible for PrEP                                      6 ( 0.1) 
Ineligible for PrEP, no longer meets PrEP eligibility    6 ( 0.1) 
PAP                                                      1 ( 0.0)

When the enrollGap variable is NA this signifies no subsequent enrollment (so, this person has dropped out of PDAP).

> round(100*proportions(table(PDAP$endReason, is.na(PDAP$enrollGap)), 2), 1)

FALSE TRUE
Address Update                                          0.2  0.0
Apple Health                                            0.1  0.2
Benefit Change                                          0.1  1.8
Benefit Level Change                                    0.0 11.7
Client's Request                                        0.0  0.0
Deceased                                                0.0  0.1
Did not recertify                                       2.3 26.3
Dropped out, no reason given                            0.0  0.1
Eligibility expired                                     3.9 58.2
End of year: client remains eligible                   49.8  0.1
Enrollment renewal                                     24.2  0.0
Health Benefits Update                                 19.2  0.7
Incomplete Application                                  0.0  0.1
Ineligible for PrEP                                     0.0  0.3
Ineligible for PrEP, no longer meets PrEP eligibility   0.0  0.3
PAP                                                     0.0  0.0

Based on this, it looks like 84% of the dropouts (TRUE column above) are coming from Did not recertify and Eligibility expired – categories which suggest a personal choice not to re-enroll.

We can’t be certain, but this does suggest the person may no longer have any need for PDAP because they are no longer taking PrEP.

Model

We are preserving ZK’s model for the probability of disenrollment, and it’s predictions, primarily for eventual comparison to WHAMP survey data predictions of the probability of stopping PrEP. These are not used as parameters in the EpiModel PrEP dynamics modules.

  • Logistic regression to predict the probability of PDAP disenrollment at the end of year on PDAP.

  • Covariates: years on PDAP (year 1, 2 or 3), race, and insurance type (none, individual, and employer).

summary(pdap_data$model.disenroll)
## 
## Call:
## glm(formula = event ~ factor(years) + RaceCat + Insurance, family = binomial(link = "logit"), 
##     data = PDAPexpand %>% filter(cateYear >= 2016 & Insurance != 
##         "Public"))
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0268  -1.2224   0.7484   1.0368   1.4471  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          0.58545    0.23153   2.529   0.0115 *  
## factor(years)2       0.23476    0.08720   2.692   0.0071 ** 
## factor(years)3+      0.77688    0.13538   5.739 9.55e-09 ***
## RaceCatHispanic      0.01032    0.24848   0.042   0.9669    
## RaceCatOther        -0.48017    0.23284  -2.062   0.0392 *  
## InsuranceIndividual -0.72000    0.09900  -7.273 3.52e-13 ***
## InsuranceNone        0.54403    0.10480   5.191 2.09e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 3901.7  on 2864  degrees of freedom
## Residual deviance: 3728.0  on 2858  degrees of freedom
## AIC: 3742
## 
## Number of Fisher Scoring iterations: 4

Table

tmpDF <- pdap_data$pred.disenroll

kable(tmpDF, digits = c(0, 0, 0, 3), 
      caption = "Probability of PDAP disenrollment at year end") %>% 
  kable_styling(full_width=F, position="center", bootstrap_options = c("striped"))
Probability of PDAP disenrollment at year end
race insurance years Prob
B employer 1 0.642
H employer 1 0.645
O employer 1 0.526
B individual 1 0.466
H individual 1 0.469
O individual 1 0.351
B none 1 0.756
H none 1 0.758
O none 1 0.657
B employer 2 0.694
H employer 2 0.696
O employer 2 0.584
B individual 2 0.525
H individual 2 0.528
O individual 2 0.406
B none 2 0.796
H none 2 0.798
O none 2 0.708
B employer 3 0.796
H employer 3 0.798
O employer 3 0.707
B individual 3 0.655
H individual 3 0.658
O individual 3 0.540
B none 3 0.871
H none 3 0.872
O none 3 0.806

Plot

p <- ggplot(tmpDF, 
            aes(x = years, y = Prob, 
                text = scales::percent(Prob,1))) + 
  geom_line(aes(group=race, color = race)) +
  facet_wrap(~ insurance) + 
  labs(title = "Probability of disenrollment from PDAP",
       y = "probability") 

ggplotly(p, tooltip = "text")

Targets

Program size

ADAP

Data inputs:

  • Number of ADAP clients from DOH DAP data
  • Popsize HIV+ from WApopdata

Target outcomes:

  • adap.size$prop – ADAP program size expressed as a % of the HIV+ population, by year
adap.size <- adap_data$demog %>%
  group_by(year) %>%
  summarize(adapN = sum(N),
            popsize = sum(popsize.pos)) %>%
  mutate(prop = adapN/popsize) %>%
  data.table()

setkeyv(adap.size, c("year")) # check if we need this

p <- ggplot(data = adap.size %>% mutate(year = year+2013), 
            aes(x = factor(year), y = prop, text = adapN)) +
  geom_bar(fill = "blue", alpha = 0.5,
           stat="identity") + 
  labs(title = "ADAP program size: Proportion of HIV+ population",
       x = "year", y = "proportion")

ggplotly(p, tooltip = "text")

PDAP

Data inputs:

  • Number of PDAP clients from DOH DAP data
  • Popsize HIV- from WApopdata

Target outcomes:

  • pdap.size$prop – PDAP program size expressed as a % of the HIV- population, by year. Note, given the dynamic nature of this program (it doubles in size from 2017 to 2018), this should not be used as an “equilibrium” target value. The estimate from the WHAMP survey in 2019 is substantially higher.
pdap.size <- pdap_data$demog %>%
  group_by(year) %>%
  summarize(pdapN = sum(N),
            popsize = sum(popsize.neg)) %>%
  mutate(prop = pdapN/popsize) %>%
  data.table()

setkeyv(pdap.size, c("year")) # check if we need this

p <- ggplot(data = pdap.size %>% mutate(year = year+2013), 
            aes(x = factor(year), y = prop, text = pdapN)) +
  geom_bar(fill = "blue", alpha = 0.5,
           stat="identity") + 
  labs(title = "PDAP program size: Proportion of HIV- population",
       x = "year", y = "proportion")

ggplotly(p, tooltip = "text")

Program cost

To construct overall cost targets, the DOH DAP total costs need to be adjusted for population size, if the simulated population size is different than the estimated WApopdata size.

In general the scale factor will be:

DAP.total.cost * sim$pop.size/WApopdata$pop.size

which can be calculated overall, or stratified by group.

We leave the scaling adjustment to the EpiModel run. Here we just calculate the total annual cost.

ADAP

Data inputs:

  • Total program costs from DOH ADAP data
  • ZK uses 3 periods: 2014-15, 2016, and 2017-18, because there were changes in how WADOH recorded insurance type, esp. for “employer”.

Target outcomes:

  • adap.annual.cost – ADAP annual total cost, for each period (the 2-yr periods are divided by 2)
adap.cost <- adap_data$cost.pyr %>%
  mutate(year = case_when(yr_ix==1 ~ 1,
                          yr_ix==2 ~ 3,
                          yr_ix==3 ~ 5)) %>%
  group_by(year, race) %>%
  summarize(cost.tot = sum(cTotCost)) %>%
  mutate(cost.tot = if_else(year==3, cost.tot, cost.tot/2)) %>%
  data.table() %>%
  setkeyv(c("year", "race"))

p <- ggplot(data = adap.cost %>% mutate(year = year+2013), 
            aes(x = factor(year), y = cost.tot, 
                group = race, fill = race,
                text = scales::comma(cost.tot))) +
  geom_bar(alpha = 0.5,
           stat="identity") + 
  labs(title = "ADAP total annual cost",
       x = "year", y = "$ cost")+
  scale_y_continuous(labels = scales::comma)

ggplotly(p, tooltip = "text")

PDAP

Data inputs:

  • Total program costs from DOH PDAP data
  • Here we just use the last year of data, 2018.

Target outcomes:

  • pdap.annual.cost – PDAP annual total cost
pdap.cost <- orig_pdap_data$PDAPcost_pd %>%
  filter(year == 2018) %>%
  group_by(race) %>%
  summarize(cost.tot = sum(Overalltcost)) %>%
  data.table() %>%
  setkeyv("race")

p <- ggplot(data = data.frame(year = "2018", pdap.cost), 
       aes(x = year, y = cost.tot, 
           group = race, fill = race,
           text = scales::comma(cost.tot))) +
  geom_bar(alpha = 0.5,
           stat="identity") + 
  labs(title = "PDAP total annual cost",
       x = "year", y = "$ cost") +
  scale_y_continuous(labels = scales::comma)

ggplotly(p, tooltip = "text")

Viral suppression

DOH provided data on viral load that was pulled from the EHARS system and matched to the ADAP records. Unmatched records from EHARS indicate a person engaged in care, but not enrolled in ADAP. The purpose of this analysis is to identify the relative rate of viral suppression by ADAP enrollment and race.

Notes on the data:

  • The definition of viral suppression is viral load < 200 copies of HIV per milliliter of blood.

  • Individuals might get checked multiple times a year. We used the viral load of the last visit in a year for each individual. In addition, if an individual did not visit clinic for viral load in a year, we assumed that the individual is not virally suppressed.

Target ouput

  • The proportion of individuals who were virally suppressed by ADAP status x race in the last two years.

Plot

  • This is a plot ZK originally made on the TS so I can’t easily pull the N for the tooltip.
p <- ggplot(adap_data$vl.race %>%
              mutate(ADAP = ifelse(ADAP==0, "no", "yes")), 
            aes(x = race, y = avg_vl_supp, text = round(avg_vl_supp, 2),
                group = ADAP, fill = ADAP)) +
  geom_bar(stat = "identity", alpha = 0.7, position = "dodge") +
  labs(title = "Viral suppression by race and ADAP status",
       x = "Race", y = "proportion")

ggplotly(p, tooltip = "text")
# grid.raster(readTIFF(here::here("MakeData", "Zoe", "EconModelBook", "data", 
#                                 "vl_race.tiff")))

Table

kable(adap_data$vl.race %>%
        select(ADAP, race, avg_vl_supp), digits = c(0, 0, 2), 
      caption= "proportion of viral suppression") %>% 
  kable_styling(full_width=F, position="center", 
                bootstrap_options = c("striped"))
proportion of viral suppression
ADAP race avg_vl_supp
0 B 0.72
1 B 0.91
0 H 0.74
1 H 0.94
0 O 0.81
1 O 0.96

Save out

DAP parameters

# Parameters -- just the updated adap_data and pdap_data

dap_params <- list(adap = adap_data,
                   pdap = pdap_data,
                   makefile = "make_DOHDAPdynamics.Rmd")
descTable <- 
  tibble(Objects = names(dap_params), 
         Description = c("Updated object from ZK analysis, incl. VL", 
                         "Updated object from ZK analysis",
                         "source file"),
         DataSource = c("DOH ADAP client data, EHARS, WApopdata",
                        "DOH PDAP client data, WApopdata",
                        " "))

dap_params <- c(dap_params, list(descTable = descTable))

kable(dap_params$descTable, 
      caption= "ADAP & PDAP related parameter object") %>% 
  kable_styling(position = "center", 
                bootstrap_options = c("striped"))
ADAP & PDAP related parameter object
Objects Description DataSource
adap Updated object from ZK analysis, incl. VL DOH ADAP client data, EHARS, WApopdata
pdap Updated object from ZK analysis DOH PDAP client data, WApopdata
makefile source file
kable(dap_params$adap$descTable, 
      caption= "ADAP related parameter object") %>% 
  kable_styling(position = "center", 
                bootstrap_options = c("striped"))
ADAP related parameter object
Component Description Method Levels Source Group
adap.frac ADAP fraction of ART users or HIV+ clients/(art_current or pop.pos) overall ADAP claims, Census, DOH report ADAP-related
demog demographics of ADAP clients Obs summary enroll yr x race x region ADAP claims data ADAP-related
init.demog demographics in first yr Obs summary race x region ADAP claims data ADAP-related
ins insurance of ADAP clients Obs summary enroll yr x race x region ADAP claims data ADAP-related
new.clients demographics of new ADAP clients Obs summary enroll yr x race x region ADAP claims data ADAP-related
cost.pday daily cost by component and total Obs summary yr x race x insurance ADAP claims data ADAP-related
cost.pyr annual cost by component and total Obs summary yr x race x insurance ADAP claims data ADAP-related
model.disenroll survival model calc outputs Exp + Weibull survival model day x race x insurance x type ADAP claims data ADAP-related
pred.disenroll pred prob ADAP disenroll/wk Exp + Weibull survival model wk x race x insurance ADAP claims data ADAP-related
vl.race prop virally suppressed Obs summary race x ADAP status ADAP claims data + EHARS ADAP-related
makefile source files
kable(dap_params$pdap$descTable, 
      caption= "PDAP related parameter object") %>% 
  kable_styling(position = "center", 
                bootstrap_options = c("striped"))
PDAP related parameter object
Component Description Method Levels Source Group
pdap.frac PDAP fraction of PrEP users or HIV- clients/(prep.current or pop.neg) overall PDAP claims, Census, WHAMP survey PDAP-related
demog demographics of PDAP clients Obs summary enroll yr x race x region PDAP claims data PDAP-related
init.demog demographics before first yr (2016) Obs summary race x region PDAP claims data PDAP-related
ins observed insurance of PDAP clients Obs summary enroll yr x race x region PDAP claims data PDAP-related
ins.pred predicted insurance for PDAP clients multinomial regression race x region PDAP claims data PDAP-related
new.clients demographics of new PDAP clients Obs summary enroll yr x race x region PDAP claims data PDAP-related
cost.pday daily cost by component and total Obs summary enroll yr x race x insurance PDAP claims data PDAP-related
model.disenroll disenroll model fit object Logistic regression yr x race x insurance PDAP claims data PDAP-related
pred.disenroll pred prob PDAP disenroll/wk Logistic regression yr x race x insurance PDAP claims data PDAP-related
init.dur time on PDAP at start of first yr (days) Obs summary race x insurance x region PDAP claims data PDAP-related
makefile source files
### Params  
saveRDS(dap_params, here::here("Data", "Params", "DohDapParam.RDS"))

DAP targets

dap_targets = list(adap.size = adap.size,
                   adap.annual.cost = adap.cost,
                   pdap.size = pdap.size,
                   pdap.annual.cost = pdap.cost,
                   vl.suppressed = adap_data$vl.race,
                   makefile = "make_DOHDAPdynamics.Rmd")

descTable <- 
  tibble(Targets = names(dap_targets), 
         Description = c("ADAP program size", 
                         "ADAP annual cost",
                         "PDAP program size",
                         "PDAP annual cost",
                         "VL suppression rates",
                         "source file"),
         Subset = c(rep("ADAP clients",2),
                    rep("PDAP clients",2),
                    "Dx HIV+ on ART",
                    " "),
         Method = c(rep("obs summaries", 5), " "),
         Levels = c("yr", "yr x race",
                    "yr", "race (2018)",
                    "race x ADAP",
                    " "),
         DataSource = c(rep("DOH ADAP data",2),
                        rep("DOH PDAP data",2), 
                        "DOH ADAP data and EHARS",
                        " "))

kable(descTable, 
      caption= "ADAP & PDAP related targets") %>% 
  kable_styling(position = "center", 
                bootstrap_options = c("striped"))
ADAP & PDAP related targets
Targets Description Subset Method Levels DataSource
adap.size ADAP program size ADAP clients obs summaries yr DOH ADAP data
adap.annual.cost ADAP annual cost ADAP clients obs summaries yr x race DOH ADAP data
pdap.size PDAP program size PDAP clients obs summaries yr DOH PDAP data
pdap.annual.cost PDAP annual cost PDAP clients obs summaries race (2018) DOH PDAP data
vl.suppressed VL suppression rates Dx HIV+ on ART obs summaries race x ADAP DOH ADAP data and EHARS
makefile source file
dap_targets <- c(dap_targets, list(descTable = descTable))

### Targets  
saveRDS(dap_targets, here::here("Data", "Targets", "DohDapTargets.RDS"))