- Generate a data set with n = 500 and p = 2, such that the observations belong to two classes with a quadratic decision boundary between them.
set.seed(421)
x1 = runif(500) - 0.5
x2 = runif(500) - 0.5
y = 1 * (x1^2 - x2^2 > 0)
- Plot the observations, colored according to their class labels. Your plot should display X1 on the x-axis, and X2 on the yaxis.
plot(x1[y == 0], x2[y == 0], col = "red", xlab = "X1", ylab = "X2", pch = "+")
points(x1[y == 1], x2[y == 1], col = "blue", pch = 4)
- Fit a logistic regression model to the data, using X1 and X2 as predictors.
lm.fit = glm(y ~ x1 + x2, family = binomial)
summary(lm.fit)
##
## Call:
## glm(formula = y ~ x1 + x2, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.278 -1.227 1.089 1.135 1.175
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.11999 0.08971 1.338 0.181
## x1 -0.16881 0.30854 -0.547 0.584
## x2 -0.08198 0.31476 -0.260 0.795
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 691.35 on 499 degrees of freedom
## Residual deviance: 690.99 on 497 degrees of freedom
## AIC: 696.99
##
## Number of Fisher Scoring iterations: 3
- Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be linear
data = data.frame(x1 = x1, x2 = x2, y = y)
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.52, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
- Now fit a logistic regression model to the data using non-linear functions of X1 and X2 as predictors (e.g. X2 1 , X1×X2, log(X2), and so forth).
lm.fit = glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), data = data, family = binomial)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
- Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be obviously non-linear. If it is not, then repeat (a)-(e) until you come up with an example in which the predicted class labels are obviously non-linear.
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.5, 1, 0)
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
- Fit a support vector classifier to the data with X1 and X2 as predictors. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.
library(e1071)
svm.fit = svm(as.factor(y) ~ x1 + x2, data, kernel = "linear", cost = 0.1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "blue", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)
- Fit a SVM using a non-linear kernel to the data. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.
data$y <- as.factor(data$y)
svmnl.fit <- svm(y ~ x1 + x2, data, kernel = "radial", gamma = 1)
preds <- predict(svmnl.fit, data)
plot(data[preds == 0, ]$x1, data[preds == 0, ]$x2, col = (4 - 0), pch = (3 - 0), xlab = "X1", ylab = "X2")
points(data[preds == 1, ]$x1, data[preds == 1, ]$x2, col = (4 - 1), pch = (3 - 1))
- Comment on your results.
SVMS are important for finding non linear models.
- Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.
library(ISLR)
gas.med = median(Auto$mpg)
new.var = ifelse(Auto$mpg > gas.med, 1, 0)
Auto$mpglevel = as.factor(new.var)
- Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter
library(e1071)
set.seed(3255)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "linear", ranges = list(cost = c(0.01,
0.1, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 1
##
## - best performance: 0.01269231
##
## - Detailed performance results:
## cost error dispersion
## 1 1e-02 0.07397436 0.06863413
## 2 1e-01 0.05102564 0.06923024
## 3 1e+00 0.01269231 0.02154160
## 4 5e+00 0.01519231 0.01760469
## 5 1e+01 0.02025641 0.02303772
## 6 1e+02 0.03294872 0.02898463
- Now repeat (b), this time using SVMs with radial and polynomial basis kernels, with different values of gamma and degree and cost.
set.seed(21)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.1,
1, 5, 10), degree = c(2, 3, 4)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost degree
## 10 2
##
## - best performance: 0.5435897
##
## - Detailed performance results:
## cost degree error dispersion
## 1 0.1 2 0.5587821 0.04538579
## 2 1.0 2 0.5587821 0.04538579
## 3 5.0 2 0.5587821 0.04538579
## 4 10.0 2 0.5435897 0.05611162
## 5 0.1 3 0.5587821 0.04538579
## 6 1.0 3 0.5587821 0.04538579
## 7 5.0 3 0.5587821 0.04538579
## 8 10.0 3 0.5587821 0.04538579
## 9 0.1 4 0.5587821 0.04538579
## 10 1.0 4 0.5587821 0.04538579
## 11 5.0 4 0.5587821 0.04538579
## 12 10.0 4 0.5587821 0.04538579
set.seed(463)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.1,
1, 5, 10), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost gamma
## 10 0.01
##
## - best performance: 0.02551282
##
## - Detailed performance results:
## cost gamma error dispersion
## 1 0.1 1e-02 0.09429487 0.04814900
## 2 1.0 1e-02 0.07897436 0.03875105
## 3 5.0 1e-02 0.05352564 0.02532795
## 4 10.0 1e-02 0.02551282 0.02417610
## 5 0.1 1e-01 0.07891026 0.03847631
## 6 1.0 1e-01 0.05602564 0.02881876
## 7 5.0 1e-01 0.03826923 0.03252085
## 8 10.0 1e-01 0.03320513 0.02964746
## 9 0.1 1e+00 0.57660256 0.05479863
## 10 1.0 1e+00 0.06628205 0.02996211
## 11 5.0 1e+00 0.06115385 0.02733573
## 12 10.0 1e+00 0.06115385 0.02733573
## 13 0.1 5e+00 0.57660256 0.05479863
## 14 1.0 5e+00 0.51538462 0.06642516
## 15 5.0 5e+00 0.50775641 0.07152757
## 16 10.0 5e+00 0.50775641 0.07152757
## 17 0.1 1e+01 0.57660256 0.05479863
## 18 1.0 1e+01 0.53833333 0.05640443
## 19 5.0 1e+01 0.53070513 0.05708644
## 20 10.0 1e+01 0.53070513 0.05708644
## 21 0.1 1e+02 0.57660256 0.05479863
## 22 1.0 1e+02 0.57660256 0.05479863
## 23 5.0 1e+02 0.57660256 0.05479863
## 24 10.0 1e+02 0.57660256 0.05479863
- Make some plots to back up your assertions in (b) and (c).
svm.linear = svm(mpglevel ~ ., data = Auto, kernel = "linear", cost = 1)
svm.poly = svm(mpglevel ~ ., data = Auto, kernel = "polynomial", cost = 10,
degree = 2)
svm.radial = svm(mpglevel ~ ., data = Auto, kernel = "radial", cost = 10, gamma = 0.01)
plotpairs = function(fit) {
for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {
plot(fit, Auto, as.formula(paste("mpg~", name, sep = "")))
}
}
plotpairs(svm.linear)
plotpairs(svm.poly)
- Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
library(ISLR)
set.seed(9004)
train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]
- Fit a support vector classifier to the training data using cost=0.01, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics, and describe the results obtained.
library(e1071)
svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = 0.01)
summary(svm.linear)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.01)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
## cost: 0.01
##
## Number of Support Vectors: 442
##
## ( 222 220 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
- What are the training and test error rates?
train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 432 51
## MM 80 237
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 146 24
## MM 22 78
- Use the tune() function to select an optimal cost. Consider values in the range 0.01 to 10.
set.seed(1554)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 3.162278
##
## - best performance: 0.1625
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.16750 0.03395258
## 2 0.01778279 0.16875 0.02960973
## 3 0.03162278 0.16625 0.02638523
## 4 0.05623413 0.16875 0.03076005
## 5 0.10000000 0.16875 0.02901748
## 6 0.17782794 0.16750 0.02838231
## 7 0.31622777 0.17000 0.02898755
## 8 0.56234133 0.16875 0.02841288
## 9 1.00000000 0.16500 0.03106892
## 10 1.77827941 0.16500 0.03106892
## 11 3.16227766 0.16250 0.03118048
## 12 5.62341325 0.16375 0.02664713
## 13 10.00000000 0.16750 0.02581989
- Compute the training and test error rates using this new value for cost
svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = tune.out$best.parameters$cost)
train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 428 55
## MM 74 243
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 146 24
## MM 20 80
- Repeat parts (b) through (e) using a support vector machine with a radial kernel. Use the default value for gamma.
set.seed(410)
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial")
summary(svm.radial)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial")
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 1
##
## Number of Support Vectors: 371
##
## ( 188 183 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 441 42
## MM 74 243
test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 148 22
## MM 27 73
set.seed(755)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 0.3162278
##
## - best performance: 0.1675
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.39625 0.06615691
## 2 0.01778279 0.39625 0.06615691
## 3 0.03162278 0.35375 0.09754807
## 4 0.05623413 0.20000 0.04249183
## 5 0.10000000 0.17750 0.04073969
## 6 0.17782794 0.17125 0.03120831
## 7 0.31622777 0.16750 0.04216370
## 8 0.56234133 0.16750 0.03782269
## 9 1.00000000 0.17250 0.03670453
## 10 1.77827941 0.17750 0.03374743
## 11 3.16227766 0.18000 0.04005205
## 12 5.62341325 0.18000 0.03446012
## 13 10.00000000 0.18625 0.04427267
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial", cost = tune.out$best.parameters$cost)
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 440 43
## MM 81 236
- Repeat parts (b) through (e) using a support vector machine with a polynomial kernel. Set degree=2.
svm.poly <- svm(Purchase ~ ., kernel = "polynomial", data = OJ.train, degree = 2)
summary(svm.poly)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "polynomial",
## degree = 2)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 1
## degree: 2
## coef.0: 0
##
## Number of Support Vectors: 456
##
## ( 232 224 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred <- predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 450 33
## MM 111 206
(105 + 33) / (461 + 201 + 105 + 33)
## [1] 0.1725
test.pred <- predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 149 21
## MM 34 66
(41 + 10) / (149 + 70 + 41 + 10)
## [1] 0.1888889
set.seed(2)
tune.out <- tune(svm, Purchase ~ ., data = OJ.train, kernel = "polynomial", degree = 2, ranges = list(cost = 10^seq(-2,
1, by = 0.25)))
summary(tune.out)
##
## Parameter tuning of 'svm':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
## cost
## 5.623413
##
## - best performance: 0.18
##
## - Detailed performance results:
## cost error dispersion
## 1 0.01000000 0.39250 0.05006940
## 2 0.01778279 0.37375 0.03793727
## 3 0.03162278 0.36375 0.03747684
## 4 0.05623413 0.35000 0.04526159
## 5 0.10000000 0.31250 0.05103104
## 6 0.17782794 0.24875 0.03458584
## 7 0.31622777 0.21000 0.03622844
## 8 0.56234133 0.20250 0.03987829
## 9 1.00000000 0.19750 0.03322900
## 10 1.77827941 0.19000 0.02993047
## 11 3.16227766 0.18125 0.03076005
## 12 5.62341325 0.18000 0.03129164
## 13 10.00000000 0.18500 0.02813657
svm.poly <- svm(Purchase ~ ., kernel = "polynomial", degree = 2, data = OJ.train, cost = tune.out$best.parameter$cost)
summary(svm.poly)
##
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "polynomial",
## degree = 2, cost = tune.out$best.parameter$cost)
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: polynomial
## cost: 5.623413
## degree: 2
## coef.0: 0
##
## Number of Support Vectors: 365
##
## ( 184 181 )
##
##
## Number of Classes: 2
##
## Levels:
## CH MM
train.pred <- predict(svm.poly, OJ.train)
table(OJ.train$Purchase, train.pred)
## train.pred
## CH MM
## CH 448 35
## MM 84 233
(72 + 44) / (450 + 234 + 72 + 44)
## [1] 0.145
test.pred <- predict(svm.poly, OJ.test)
table(OJ.test$Purchase, test.pred)
## test.pred
## CH MM
## CH 149 21
## MM 30 70
(31 + 19) / (140 + 80 + 31 + 19)
## [1] 0.1851852
- Overall, which approach seems to give the best results on this data?
Overall, radial basis kernel seems to give the best results on this data.