9장
1.데이터 생성
raw_df <- read.table("e:/R_Project/all_data.txt",header = T)
df <- raw_df
2.전처리
table(is.na(df$speed))
##
## FALSE
## 4542
table(df$speed)
##
## fast habitual slow
## 1509 1515 1518
3.vowel_speakingrate 그래프 만들기
vowel_speakingrate <- df %>%
filter(phoneme %in% c("AE1","EH1","IH1")) %>%
group_by(voice,speed) %>%
summarise(mean_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(vowel_speakingrate,aes(x=speed,y=mean_duration,fill=voice)) + geom_col(position="dodge")

4.coda_speakingrate 그래프 만들기
coda_speakingrate <- df %>%
filter(phoneme %in% c("G","K","T")) %>%
group_by(voice,speed) %>%
summarise(mean_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(coda_speakingrate,aes(x=speed,y=mean_duration,fill=voice)) + geom_col(position = "dodge")

5.vowel_position 그래프 만들기
vowel_position <- df %>%
filter(phoneme %in% c("AE1","EH1","IH1")) %>%
group_by(voice,position) %>%
summarise(mean_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(vowel_position,aes(x=position,y=mean_duration,fill=voice)) + geom_col(position = "dodge")

6 .coda_position 그래프 만들기
coda_position <- df %>%
filter(phoneme %in% c("G","K","T")) %>%
group_by(voice,position) %>%
summarise(mean_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(coda_position,aes(x=position,y=mean_duration,fill=voice)) + geom_col(position = "dodge")

7.vowel_height 그래프 만들기
vowel_height <- df %>%
filter(phoneme %in% c("AE1","EH1","IH1")) %>%
group_by(voice,height) %>%
summarise(mean_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(vowel_height,aes(x=height,y=mean_duration,fill=voice)) + geom_col(position = "dodge")

8.coda_height 그래프 만들기
coda_height <- df %>%
filter(phoneme %in% c("G","K","T")) %>%
group_by(voice,height) %>%
summarise(mean_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(coda_height,aes(x=height,y=mean_duration,fill=voice)) + geom_col(position = "dodge")
