Question 5,7,8

Q5. We have seen that we can fit an SVM with a non-linear kernel in order to perform classification using a non-linear decision boundary. We will now see that we can also obtain a non-linear decision boundary by performing logistic regression using non-linear transformations of the features.
a. Generate a data set with n = 500 and p =2, such that the observations belong to two classes with a quadratic decision boundary between them.

set.seed(421)
x1 = runif(500) - 0.5
x2 = runif(500) - 0.5
y = 1 * (x1^2 - x2^2  >  0 )
  1. Plot the observations, colored according to their class labels. Your plot should display x1 on the x axis and x2 on the y axis
plot(x1 [y == 0], x2[ y == 0], col = 'grey', xlab = "x1", ylab= "x2", pch = "+")
points(x1[ y== 1], x2[ y == 1], col = 'orange', pch = 5 )

  1. Fit a logistic regression model to the data, using x1 and x2 as predictors.
lm.fit = glm(y ~ x1 + x2, family = binomial)
summary(lm.fit)
## 
## Call:
## glm(formula = y ~ x1 + x2, family = binomial)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.278  -1.227   1.089   1.135   1.175  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.11999    0.08971   1.338    0.181
## x1          -0.16881    0.30854  -0.547    0.584
## x2          -0.08198    0.31476  -0.260    0.795
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 691.35  on 499  degrees of freedom
## Residual deviance: 690.99  on 497  degrees of freedom
## AIC: 696.99
## 
## Number of Fisher Scoring iterations: 3
  1. Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be linear.
data = data.frame(x1 = x1, x2 = x2, y = y )
lm.prob = predict( lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.52, 1, 0 )
data.pos = data[lm.pred == 1, ]
data.neg = data[lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = 'grey', xlab = "x1", ylab = 'x2', pch = "+")
points(data.neg$x1, data.neg$x2, col = 'blue', pch = 5)

  1. Now fit a logistic regression model to the data using non-linear functions of x1 and x2 as predictors e.g. X2 1 , X1×X2, log(X2), and so forth). ``
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.2
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.2
lm.fit = glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), data = data, family = binomial)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
  1. Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be obviously non-linear. If it is not, then repeat (a)-(e) until you come up with an example in which the predicted class labels are obviously non-linear.
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.5, 1, 0)
data.pos = data [lm.pred == 1, ]
data.neg = data [lm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "grey", xlab = "x1", ylab = "x2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 5 )

g.Fit a support vector classifier to the data with X1 and X2 as predictors. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.

library(e1071)
## Warning: package 'e1071' was built under R version 4.0.2
svm.fit = svm(as.factor(y) ~ x1 + x2, data, kernel = "linear", cost = 0.1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "grey", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 4)

  1. Fit a SVM using a non-linear kernel to the data. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.
svm.fit = svm(as.factor(y) ~ x1 + x2, gamma = 1)
svm.pred = predict(svm.fit, data)
data.pos = data[svm.pred == 1, ]
data.neg = data[svm.pred == 0, ]
plot(data.pos$x1, data.pos$x2, col = "grey", xlab = "X1", ylab = "X2", pch = "+")
points(data.neg$x1, data.neg$x2, col = "red", pch = 5)

Q7. In this problem, you will use support vector approaches in order to predict whether a given car gets high or low gas mileage based on the Auto data set.

  1. Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.
library(ISLR)
gas.med = median(Auto$mpg)
new.var = ifelse(Auto$mpg > gas.med, 1, 0)
Auto$mpglevel = as.factor(new.var)
  1. Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter. Comment on your results.
library(e1071)
set.seed(3255)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "linear", ranges = list(cost = c(0.01, 
    0.1, 1, 5, 10, 100)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##     1
## 
## - best performance: 0.01269231 
## 
## - Detailed performance results:
##    cost      error dispersion
## 1 1e-02 0.07397436 0.06863413
## 2 1e-01 0.05102564 0.06923024
## 3 1e+00 0.01269231 0.02154160
## 4 5e+00 0.01519231 0.01760469
## 5 1e+01 0.02025641 0.02303772
## 6 1e+02 0.03294872 0.02898463
  1. Now repeat (b), this time using SVMs with radial and polynomial basis kernels, with different values of gamma and degree and cost. Comment on your results.
set.seed(21)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.1, 
    1, 5, 10), degree = c(2, 3, 4)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost degree
##    10      2
## 
## - best performance: 0.5435897 
## 
## - Detailed performance results:
##    cost degree     error dispersion
## 1   0.1      2 0.5587821 0.04538579
## 2   1.0      2 0.5587821 0.04538579
## 3   5.0      2 0.5587821 0.04538579
## 4  10.0      2 0.5435897 0.05611162
## 5   0.1      3 0.5587821 0.04538579
## 6   1.0      3 0.5587821 0.04538579
## 7   5.0      3 0.5587821 0.04538579
## 8  10.0      3 0.5587821 0.04538579
## 9   0.1      4 0.5587821 0.04538579
## 10  1.0      4 0.5587821 0.04538579
## 11  5.0      4 0.5587821 0.04538579
## 12 10.0      4 0.5587821 0.04538579
set.seed(463)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.1, 
    1, 5, 10), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost gamma
##    10  0.01
## 
## - best performance: 0.02551282 
## 
## - Detailed performance results:
##    cost gamma      error dispersion
## 1   0.1 1e-02 0.09429487 0.04814900
## 2   1.0 1e-02 0.07897436 0.03875105
## 3   5.0 1e-02 0.05352564 0.02532795
## 4  10.0 1e-02 0.02551282 0.02417610
## 5   0.1 1e-01 0.07891026 0.03847631
## 6   1.0 1e-01 0.05602564 0.02881876
## 7   5.0 1e-01 0.03826923 0.03252085
## 8  10.0 1e-01 0.03320513 0.02964746
## 9   0.1 1e+00 0.57660256 0.05479863
## 10  1.0 1e+00 0.06628205 0.02996211
## 11  5.0 1e+00 0.06115385 0.02733573
## 12 10.0 1e+00 0.06115385 0.02733573
## 13  0.1 5e+00 0.57660256 0.05479863
## 14  1.0 5e+00 0.51538462 0.06642516
## 15  5.0 5e+00 0.50775641 0.07152757
## 16 10.0 5e+00 0.50775641 0.07152757
## 17  0.1 1e+01 0.57660256 0.05479863
## 18  1.0 1e+01 0.53833333 0.05640443
## 19  5.0 1e+01 0.53070513 0.05708644
## 20 10.0 1e+01 0.53070513 0.05708644
## 21  0.1 1e+02 0.57660256 0.05479863
## 22  1.0 1e+02 0.57660256 0.05479863
## 23  5.0 1e+02 0.57660256 0.05479863
## 24 10.0 1e+02 0.57660256 0.05479863
  1. Make some plots to back up your assertions in (b) and (c).
svm.linear = svm(mpglevel ~ ., data = Auto, kernel = "linear", cost = 1)
svm.poly = svm(mpglevel ~ ., data = Auto, kernel = "polynomial", cost = 10, 
    degree = 2)
svm.radial = svm(mpglevel ~ ., data = Auto, kernel = "radial", cost = 10, gamma = 0.01)
plotpairs = function(fit) {
    for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {
        plot(fit, Auto, as.formula(paste("mpg~", name, sep = "")))
    }
}
plotpairs(svm.linear)

8.This problem involves the OJ data set which is part of the ISLR package. 372 9. Support Vector Machines

  1. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
library(ISLR)
set.seed(9004)
train=sample(dim(OJ)[1], 800 )
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]

b.Fit a support vector classifier to the training data using cost=0.01, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics, and describe the results obtained.

library(e1071)
svm.linear = svm(Purchase ~., kernel = "linear", data = OJ.train, cost= 0.01 )
summary(svm.linear)
## 
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  0.01 
## 
## Number of Support Vectors:  442
## 
##  ( 222 220 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM
  1. what are the training and test error rates?
train.pred = predict(svm.linear, OJ.train )
table(OJ.train$Purchase, train.pred )
##     train.pred
##       CH  MM
##   CH 432  51
##   MM  80 237
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 146  24
##   MM  22  78
  1. Use the tune() function to select an optimal cost. Consider values in the range 0.01 to 10
set.seed(1554)
tune.out = tune(svm, Purchase ~., data = OJ.train, kernel = "linear", ranges = list (cost = 10 ^seq(-2,1, by = 0.25)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##      cost
##  3.162278
## 
## - best performance: 0.1625 
## 
## - Detailed performance results:
##           cost   error dispersion
## 1   0.01000000 0.16750 0.03395258
## 2   0.01778279 0.16875 0.02960973
## 3   0.03162278 0.16625 0.02638523
## 4   0.05623413 0.16875 0.03076005
## 5   0.10000000 0.16875 0.02901748
## 6   0.17782794 0.16750 0.02838231
## 7   0.31622777 0.17000 0.02898755
## 8   0.56234133 0.16875 0.02841288
## 9   1.00000000 0.16500 0.03106892
## 10  1.77827941 0.16500 0.03106892
## 11  3.16227766 0.16250 0.03118048
## 12  5.62341325 0.16375 0.02664713
## 13 10.00000000 0.16750 0.02581989
  1. compute the training and test error rates using this new value for cost
svm.linear = svm(Purchase ~., kernel = "linear", data = OJ.train, cost = tune.out$best.parameters$cost)
train.pred = predict (svm.linear, OJ.train)
table(OJ.train$Purchase,train.pred)
##     train.pred
##       CH  MM
##   CH 428  55
##   MM  74 243
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 146  24
##   MM  20  80

f.Repeat parts b through e using SVM with a radial kernel. Use default value for gamma

set.seed(410)
svm.radial = svm(Purchase ~ ., data = OJ.train  , kernel = "radial")
summary(svm.radial)
## 
## Call:
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "radial")
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  371
## 
##  ( 188 183 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 441  42
##   MM  74 243
test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 148  22
##   MM  27  73
set.seed(755)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = 10^seq(-2, 
    1, by = 0.25)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##       cost
##  0.3162278
## 
## - best performance: 0.1675 
## 
## - Detailed performance results:
##           cost   error dispersion
## 1   0.01000000 0.39625 0.06615691
## 2   0.01778279 0.39625 0.06615691
## 3   0.03162278 0.35375 0.09754807
## 4   0.05623413 0.20000 0.04249183
## 5   0.10000000 0.17750 0.04073969
## 6   0.17782794 0.17125 0.03120831
## 7   0.31622777 0.16750 0.04216370
## 8   0.56234133 0.16750 0.03782269
## 9   1.00000000 0.17250 0.03670453
## 10  1.77827941 0.17750 0.03374743
## 11  3.16227766 0.18000 0.04005205
## 12  5.62341325 0.18000 0.03446012
## 13 10.00000000 0.18625 0.04427267
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial", cost = tune.out$best.parameters$cost)
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 440  43
##   MM  81 236