rm(list=ls())
#variable respuesta clorofila (192 datos, distribucion libre) fijar semilla con la cedula factor 1: genotipo, 3 factor 2: tercio del arbol, 3, bajo, medio, alto factor 3: horario, 2, diurno, nocturno factor 4, sensores, 2 repeticiones? tratamientos?? diagrama de arbol con conteos por nodo estadisticas descriptivas simultaneas para todos los tratamientos usar libreria lattice (representaciones, diagramas de caja, intentar aparecer los promedios ademas de las medianas, cambiar los colores por defecto de los paneles) coeficientes de variacion, decidir cual es el mejor tratamiento, se desea un maximo valor de clorofila porque es una variable de interes en fisiologia?? contexto del cultivo escogido (Se trabajará en cannabis)
set.seed(1249)
clorofila = rnorm(192,4.25,1)
genotipo = gl(3,64,192, c('Sativa','Indica','Ruderalis'))
tercio_arbol = gl(2,32,192, c('m','b'))
horario = gl(2,16,192,c('d','n'))
sensor = gl(2,8,192, c('A','B'))
repe = seq(1,8,1)
(dta=data.frame(clorofila,genotipo,tercio_arbol,horario,sensor,repe))
## clorofila genotipo tercio_arbol horario sensor repe
## 1 2.644610 Sativa m d A 1
## 2 3.533345 Sativa m d A 2
## 3 3.873292 Sativa m d A 3
## 4 5.266635 Sativa m d A 4
## 5 4.421849 Sativa m d A 5
## 6 5.203219 Sativa m d A 6
## 7 4.159986 Sativa m d A 7
## 8 5.069379 Sativa m d A 8
## 9 3.942029 Sativa m d B 1
## 10 5.468835 Sativa m d B 2
## 11 3.171935 Sativa m d B 3
## 12 5.448294 Sativa m d B 4
## 13 4.174336 Sativa m d B 5
## 14 3.747473 Sativa m d B 6
## 15 3.418591 Sativa m d B 7
## 16 1.655101 Sativa m d B 8
## 17 1.542575 Sativa m n A 1
## 18 4.638005 Sativa m n A 2
## 19 3.928407 Sativa m n A 3
## 20 3.893530 Sativa m n A 4
## 21 3.938533 Sativa m n A 5
## 22 2.951356 Sativa m n A 6
## 23 2.796324 Sativa m n A 7
## 24 4.716294 Sativa m n A 8
## 25 4.976672 Sativa m n B 1
## 26 2.668324 Sativa m n B 2
## 27 5.225054 Sativa m n B 3
## 28 5.130973 Sativa m n B 4
## 29 2.619885 Sativa m n B 5
## 30 4.274622 Sativa m n B 6
## 31 2.697461 Sativa m n B 7
## 32 4.653976 Sativa m n B 8
## 33 3.426708 Sativa b d A 1
## 34 4.913127 Sativa b d A 2
## 35 4.120802 Sativa b d A 3
## 36 4.340950 Sativa b d A 4
## 37 3.432451 Sativa b d A 5
## 38 4.986268 Sativa b d A 6
## 39 3.777400 Sativa b d A 7
## 40 5.765395 Sativa b d A 8
## 41 3.613064 Sativa b d B 1
## 42 4.114703 Sativa b d B 2
## 43 4.940952 Sativa b d B 3
## 44 4.717202 Sativa b d B 4
## 45 5.032046 Sativa b d B 5
## 46 4.421183 Sativa b d B 6
## 47 4.612052 Sativa b d B 7
## 48 3.489676 Sativa b d B 8
## 49 3.877554 Sativa b n A 1
## 50 3.271023 Sativa b n A 2
## 51 3.996548 Sativa b n A 3
## 52 3.662194 Sativa b n A 4
## 53 4.551608 Sativa b n A 5
## 54 3.637241 Sativa b n A 6
## 55 4.190951 Sativa b n A 7
## 56 4.959123 Sativa b n A 8
## 57 2.377216 Sativa b n B 1
## 58 4.517493 Sativa b n B 2
## 59 4.450624 Sativa b n B 3
## 60 4.069468 Sativa b n B 4
## 61 4.054202 Sativa b n B 5
## 62 3.122615 Sativa b n B 6
## 63 4.575129 Sativa b n B 7
## 64 2.953580 Sativa b n B 8
## 65 5.625422 Indica m d A 1
## 66 5.348372 Indica m d A 2
## 67 4.295825 Indica m d A 3
## 68 3.823332 Indica m d A 4
## 69 3.443484 Indica m d A 5
## 70 1.748029 Indica m d A 6
## 71 4.023180 Indica m d A 7
## 72 3.867134 Indica m d A 8
## 73 2.797187 Indica m d B 1
## 74 3.422404 Indica m d B 2
## 75 4.685412 Indica m d B 3
## 76 3.851536 Indica m d B 4
## 77 5.288223 Indica m d B 5
## 78 4.756721 Indica m d B 6
## 79 4.209140 Indica m d B 7
## 80 5.481203 Indica m d B 8
## 81 5.379517 Indica m n A 1
## 82 2.207541 Indica m n A 2
## 83 4.428815 Indica m n A 3
## 84 4.369891 Indica m n A 4
## 85 3.534761 Indica m n A 5
## 86 5.430918 Indica m n A 6
## 87 5.067173 Indica m n A 7
## 88 6.336428 Indica m n A 8
## 89 5.163631 Indica m n B 1
## 90 1.912024 Indica m n B 2
## 91 2.321188 Indica m n B 3
## 92 4.296721 Indica m n B 4
## 93 3.992532 Indica m n B 5
## 94 3.575832 Indica m n B 6
## 95 3.323700 Indica m n B 7
## 96 4.730980 Indica m n B 8
## 97 3.673636 Indica b d A 1
## 98 2.933940 Indica b d A 2
## 99 6.516291 Indica b d A 3
## 100 4.739770 Indica b d A 4
## 101 4.137419 Indica b d A 5
## 102 4.753581 Indica b d A 6
## 103 4.772431 Indica b d A 7
## 104 4.747828 Indica b d A 8
## 105 3.615890 Indica b d B 1
## 106 5.800976 Indica b d B 2
## 107 3.264659 Indica b d B 3
## 108 3.883106 Indica b d B 4
## 109 3.830063 Indica b d B 5
## 110 3.244412 Indica b d B 6
## 111 5.320302 Indica b d B 7
## 112 6.482434 Indica b d B 8
## 113 5.680405 Indica b n A 1
## 114 3.845351 Indica b n A 2
## 115 2.737919 Indica b n A 3
## 116 7.061106 Indica b n A 4
## 117 5.063071 Indica b n A 5
## 118 4.222080 Indica b n A 6
## 119 3.093502 Indica b n A 7
## 120 4.715618 Indica b n A 8
## 121 5.218920 Indica b n B 1
## 122 4.059403 Indica b n B 2
## 123 5.214486 Indica b n B 3
## 124 4.715013 Indica b n B 4
## 125 3.263303 Indica b n B 5
## 126 4.585533 Indica b n B 6
## 127 2.815432 Indica b n B 7
## 128 4.850100 Indica b n B 8
## 129 3.770923 Ruderalis m d A 1
## 130 4.632019 Ruderalis m d A 2
## 131 4.900308 Ruderalis m d A 3
## 132 4.275791 Ruderalis m d A 4
## 133 3.322752 Ruderalis m d A 5
## 134 3.914935 Ruderalis m d A 6
## 135 2.804387 Ruderalis m d A 7
## 136 5.821305 Ruderalis m d A 8
## 137 4.912288 Ruderalis m d B 1
## 138 5.508982 Ruderalis m d B 2
## 139 5.375056 Ruderalis m d B 3
## 140 4.514653 Ruderalis m d B 4
## 141 3.434355 Ruderalis m d B 5
## 142 3.772719 Ruderalis m d B 6
## 143 3.714176 Ruderalis m d B 7
## 144 4.317182 Ruderalis m d B 8
## 145 5.184524 Ruderalis m n A 1
## 146 3.132029 Ruderalis m n A 2
## 147 3.718464 Ruderalis m n A 3
## 148 3.601257 Ruderalis m n A 4
## 149 2.170622 Ruderalis m n A 5
## 150 5.339169 Ruderalis m n A 6
## 151 3.707311 Ruderalis m n A 7
## 152 5.307379 Ruderalis m n A 8
## 153 4.500363 Ruderalis m n B 1
## 154 4.186482 Ruderalis m n B 2
## 155 3.245151 Ruderalis m n B 3
## 156 5.746431 Ruderalis m n B 4
## 157 5.956506 Ruderalis m n B 5
## 158 3.914488 Ruderalis m n B 6
## 159 5.920240 Ruderalis m n B 7
## 160 5.960018 Ruderalis m n B 8
## 161 3.404872 Ruderalis b d A 1
## 162 4.389665 Ruderalis b d A 2
## 163 2.938139 Ruderalis b d A 3
## 164 5.961969 Ruderalis b d A 4
## 165 3.372543 Ruderalis b d A 5
## 166 5.171201 Ruderalis b d A 6
## 167 4.981383 Ruderalis b d A 7
## 168 1.760937 Ruderalis b d A 8
## 169 2.820731 Ruderalis b d B 1
## 170 3.948689 Ruderalis b d B 2
## 171 5.158792 Ruderalis b d B 3
## 172 3.883628 Ruderalis b d B 4
## 173 4.070564 Ruderalis b d B 5
## 174 2.710517 Ruderalis b d B 6
## 175 6.693869 Ruderalis b d B 7
## 176 2.625658 Ruderalis b d B 8
## 177 4.524572 Ruderalis b n A 1
## 178 5.450632 Ruderalis b n A 2
## 179 4.744637 Ruderalis b n A 3
## 180 2.474692 Ruderalis b n A 4
## 181 5.957431 Ruderalis b n A 5
## 182 3.243529 Ruderalis b n A 6
## 183 3.090565 Ruderalis b n A 7
## 184 4.129588 Ruderalis b n A 8
## 185 4.117902 Ruderalis b n B 1
## 186 5.078196 Ruderalis b n B 2
## 187 2.044607 Ruderalis b n B 3
## 188 3.962491 Ruderalis b n B 4
## 189 5.307350 Ruderalis b n B 5
## 190 4.031616 Ruderalis b n B 6
## 191 4.170642 Ruderalis b n B 7
## 192 4.718313 Ruderalis b n B 8
collapsibleTree(dta,fontSize = 10, hierarchy = c('genotipo', 'tercio_arbol', 'horario', 'sensor', 'repe'), tooltip = T, fill=c(
"gray",
rep("red",length(unique(dta$genotipo))),
rep("blue",length(unique(paste(dta$genotipo,dta$tercio_arbol)))),
rep("orange",length(unique(paste(dta$genotipo,dta$tercio_arbol,dta$horario)))),
rep("black",length(unique(paste(dta$genotipo,dta$tercio_arbol,dta$horario,dta$sensor)))),
rep("green",length(unique(paste(dta$genotipo,dta$tercio_arbol,dta$horario,dta$sensor,dta$repe))))
)
)
(media_cloro = tapply(dta$clorofila, list(dta$genotipo,dta$tercio_arbol,dta$horario,dta$sensor),mean))
## , , d, A
##
## m b
## Sativa 4.271539 4.345388
## Indica 4.021847 4.534362
## Ruderalis 4.180302 3.997589
##
## , , n, A
##
## m b
## Sativa 3.550628 4.018280
## Indica 4.594380 4.552382
## Ruderalis 4.020094 4.201956
##
## , , d, B
##
## m b
## Sativa 3.878324 4.367610
## Indica 4.311478 4.430230
## Ruderalis 4.443676 3.989056
##
## , , n, B
##
## m b
## Sativa 4.030871 3.765041
## Indica 3.664576 4.340274
## Ruderalis 4.928710 4.178890
(sd_cloro= tapply(dta$clorofila,list(dta$genotipo,dta$tercio_arbol,dta$horario,dta$sensor),sd))
## , , d, A
##
## m b
## Sativa 0.9165352 0.8280762
## Indica 1.1936907 1.0406248
## Ruderalis 0.9480064 1.3745009
##
## , , n, A
##
## m b
## Sativa 1.063170 0.5411755
## Indica 1.280184 1.4083011
## Ruderalis 1.154272 1.2060513
##
## , , d, B
##
## m b
## Sativa 1.2396080 0.5805296
## Indica 0.9231857 1.2518630
## Ruderalis 0.7786494 1.3919248
##
## , , n, B
##
## m b
## Sativa 1.171319 0.8337505
## Indica 1.127053 0.8912805
## Ruderalis 1.093432 1.0000442
\[CV=\frac{S}{\bar x}*100\]
(cv_cloro= sd_cloro/media_cloro*100)
## , , d, A
##
## m b
## Sativa 21.45679 19.05644
## Indica 29.68016 22.94975
## Ruderalis 22.67794 34.38325
##
## , , n, A
##
## m b
## Sativa 29.94315 13.46784
## Indica 27.86413 30.93548
## Ruderalis 28.71255 28.70214
##
## , , d, B
##
## m b
## Sativa 31.96246 13.29170
## Indica 21.41228 28.25729
## Ruderalis 17.52264 34.89359
##
## , , n, B
##
## m b
## Sativa 29.05870 22.14453
## Indica 30.75536 20.53512
## Ruderalis 22.18496 23.93086
dta$tratamiento = interaction(dta$genotipo,dta$tercio_arbol,dta$horario,dta$sensor)
dta
## clorofila genotipo tercio_arbol horario sensor repe tratamiento
## 1 2.644610 Sativa m d A 1 Sativa.m.d.A
## 2 3.533345 Sativa m d A 2 Sativa.m.d.A
## 3 3.873292 Sativa m d A 3 Sativa.m.d.A
## 4 5.266635 Sativa m d A 4 Sativa.m.d.A
## 5 4.421849 Sativa m d A 5 Sativa.m.d.A
## 6 5.203219 Sativa m d A 6 Sativa.m.d.A
## 7 4.159986 Sativa m d A 7 Sativa.m.d.A
## 8 5.069379 Sativa m d A 8 Sativa.m.d.A
## 9 3.942029 Sativa m d B 1 Sativa.m.d.B
## 10 5.468835 Sativa m d B 2 Sativa.m.d.B
## 11 3.171935 Sativa m d B 3 Sativa.m.d.B
## 12 5.448294 Sativa m d B 4 Sativa.m.d.B
## 13 4.174336 Sativa m d B 5 Sativa.m.d.B
## 14 3.747473 Sativa m d B 6 Sativa.m.d.B
## 15 3.418591 Sativa m d B 7 Sativa.m.d.B
## 16 1.655101 Sativa m d B 8 Sativa.m.d.B
## 17 1.542575 Sativa m n A 1 Sativa.m.n.A
## 18 4.638005 Sativa m n A 2 Sativa.m.n.A
## 19 3.928407 Sativa m n A 3 Sativa.m.n.A
## 20 3.893530 Sativa m n A 4 Sativa.m.n.A
## 21 3.938533 Sativa m n A 5 Sativa.m.n.A
## 22 2.951356 Sativa m n A 6 Sativa.m.n.A
## 23 2.796324 Sativa m n A 7 Sativa.m.n.A
## 24 4.716294 Sativa m n A 8 Sativa.m.n.A
## 25 4.976672 Sativa m n B 1 Sativa.m.n.B
## 26 2.668324 Sativa m n B 2 Sativa.m.n.B
## 27 5.225054 Sativa m n B 3 Sativa.m.n.B
## 28 5.130973 Sativa m n B 4 Sativa.m.n.B
## 29 2.619885 Sativa m n B 5 Sativa.m.n.B
## 30 4.274622 Sativa m n B 6 Sativa.m.n.B
## 31 2.697461 Sativa m n B 7 Sativa.m.n.B
## 32 4.653976 Sativa m n B 8 Sativa.m.n.B
## 33 3.426708 Sativa b d A 1 Sativa.b.d.A
## 34 4.913127 Sativa b d A 2 Sativa.b.d.A
## 35 4.120802 Sativa b d A 3 Sativa.b.d.A
## 36 4.340950 Sativa b d A 4 Sativa.b.d.A
## 37 3.432451 Sativa b d A 5 Sativa.b.d.A
## 38 4.986268 Sativa b d A 6 Sativa.b.d.A
## 39 3.777400 Sativa b d A 7 Sativa.b.d.A
## 40 5.765395 Sativa b d A 8 Sativa.b.d.A
## 41 3.613064 Sativa b d B 1 Sativa.b.d.B
## 42 4.114703 Sativa b d B 2 Sativa.b.d.B
## 43 4.940952 Sativa b d B 3 Sativa.b.d.B
## 44 4.717202 Sativa b d B 4 Sativa.b.d.B
## 45 5.032046 Sativa b d B 5 Sativa.b.d.B
## 46 4.421183 Sativa b d B 6 Sativa.b.d.B
## 47 4.612052 Sativa b d B 7 Sativa.b.d.B
## 48 3.489676 Sativa b d B 8 Sativa.b.d.B
## 49 3.877554 Sativa b n A 1 Sativa.b.n.A
## 50 3.271023 Sativa b n A 2 Sativa.b.n.A
## 51 3.996548 Sativa b n A 3 Sativa.b.n.A
## 52 3.662194 Sativa b n A 4 Sativa.b.n.A
## 53 4.551608 Sativa b n A 5 Sativa.b.n.A
## 54 3.637241 Sativa b n A 6 Sativa.b.n.A
## 55 4.190951 Sativa b n A 7 Sativa.b.n.A
## 56 4.959123 Sativa b n A 8 Sativa.b.n.A
## 57 2.377216 Sativa b n B 1 Sativa.b.n.B
## 58 4.517493 Sativa b n B 2 Sativa.b.n.B
## 59 4.450624 Sativa b n B 3 Sativa.b.n.B
## 60 4.069468 Sativa b n B 4 Sativa.b.n.B
## 61 4.054202 Sativa b n B 5 Sativa.b.n.B
## 62 3.122615 Sativa b n B 6 Sativa.b.n.B
## 63 4.575129 Sativa b n B 7 Sativa.b.n.B
## 64 2.953580 Sativa b n B 8 Sativa.b.n.B
## 65 5.625422 Indica m d A 1 Indica.m.d.A
## 66 5.348372 Indica m d A 2 Indica.m.d.A
## 67 4.295825 Indica m d A 3 Indica.m.d.A
## 68 3.823332 Indica m d A 4 Indica.m.d.A
## 69 3.443484 Indica m d A 5 Indica.m.d.A
## 70 1.748029 Indica m d A 6 Indica.m.d.A
## 71 4.023180 Indica m d A 7 Indica.m.d.A
## 72 3.867134 Indica m d A 8 Indica.m.d.A
## 73 2.797187 Indica m d B 1 Indica.m.d.B
## 74 3.422404 Indica m d B 2 Indica.m.d.B
## 75 4.685412 Indica m d B 3 Indica.m.d.B
## 76 3.851536 Indica m d B 4 Indica.m.d.B
## 77 5.288223 Indica m d B 5 Indica.m.d.B
## 78 4.756721 Indica m d B 6 Indica.m.d.B
## 79 4.209140 Indica m d B 7 Indica.m.d.B
## 80 5.481203 Indica m d B 8 Indica.m.d.B
## 81 5.379517 Indica m n A 1 Indica.m.n.A
## 82 2.207541 Indica m n A 2 Indica.m.n.A
## 83 4.428815 Indica m n A 3 Indica.m.n.A
## 84 4.369891 Indica m n A 4 Indica.m.n.A
## 85 3.534761 Indica m n A 5 Indica.m.n.A
## 86 5.430918 Indica m n A 6 Indica.m.n.A
## 87 5.067173 Indica m n A 7 Indica.m.n.A
## 88 6.336428 Indica m n A 8 Indica.m.n.A
## 89 5.163631 Indica m n B 1 Indica.m.n.B
## 90 1.912024 Indica m n B 2 Indica.m.n.B
## 91 2.321188 Indica m n B 3 Indica.m.n.B
## 92 4.296721 Indica m n B 4 Indica.m.n.B
## 93 3.992532 Indica m n B 5 Indica.m.n.B
## 94 3.575832 Indica m n B 6 Indica.m.n.B
## 95 3.323700 Indica m n B 7 Indica.m.n.B
## 96 4.730980 Indica m n B 8 Indica.m.n.B
## 97 3.673636 Indica b d A 1 Indica.b.d.A
## 98 2.933940 Indica b d A 2 Indica.b.d.A
## 99 6.516291 Indica b d A 3 Indica.b.d.A
## 100 4.739770 Indica b d A 4 Indica.b.d.A
## 101 4.137419 Indica b d A 5 Indica.b.d.A
## 102 4.753581 Indica b d A 6 Indica.b.d.A
## 103 4.772431 Indica b d A 7 Indica.b.d.A
## 104 4.747828 Indica b d A 8 Indica.b.d.A
## 105 3.615890 Indica b d B 1 Indica.b.d.B
## 106 5.800976 Indica b d B 2 Indica.b.d.B
## 107 3.264659 Indica b d B 3 Indica.b.d.B
## 108 3.883106 Indica b d B 4 Indica.b.d.B
## 109 3.830063 Indica b d B 5 Indica.b.d.B
## 110 3.244412 Indica b d B 6 Indica.b.d.B
## 111 5.320302 Indica b d B 7 Indica.b.d.B
## 112 6.482434 Indica b d B 8 Indica.b.d.B
## 113 5.680405 Indica b n A 1 Indica.b.n.A
## 114 3.845351 Indica b n A 2 Indica.b.n.A
## 115 2.737919 Indica b n A 3 Indica.b.n.A
## 116 7.061106 Indica b n A 4 Indica.b.n.A
## 117 5.063071 Indica b n A 5 Indica.b.n.A
## 118 4.222080 Indica b n A 6 Indica.b.n.A
## 119 3.093502 Indica b n A 7 Indica.b.n.A
## 120 4.715618 Indica b n A 8 Indica.b.n.A
## 121 5.218920 Indica b n B 1 Indica.b.n.B
## 122 4.059403 Indica b n B 2 Indica.b.n.B
## 123 5.214486 Indica b n B 3 Indica.b.n.B
## 124 4.715013 Indica b n B 4 Indica.b.n.B
## 125 3.263303 Indica b n B 5 Indica.b.n.B
## 126 4.585533 Indica b n B 6 Indica.b.n.B
## 127 2.815432 Indica b n B 7 Indica.b.n.B
## 128 4.850100 Indica b n B 8 Indica.b.n.B
## 129 3.770923 Ruderalis m d A 1 Ruderalis.m.d.A
## 130 4.632019 Ruderalis m d A 2 Ruderalis.m.d.A
## 131 4.900308 Ruderalis m d A 3 Ruderalis.m.d.A
## 132 4.275791 Ruderalis m d A 4 Ruderalis.m.d.A
## 133 3.322752 Ruderalis m d A 5 Ruderalis.m.d.A
## 134 3.914935 Ruderalis m d A 6 Ruderalis.m.d.A
## 135 2.804387 Ruderalis m d A 7 Ruderalis.m.d.A
## 136 5.821305 Ruderalis m d A 8 Ruderalis.m.d.A
## 137 4.912288 Ruderalis m d B 1 Ruderalis.m.d.B
## 138 5.508982 Ruderalis m d B 2 Ruderalis.m.d.B
## 139 5.375056 Ruderalis m d B 3 Ruderalis.m.d.B
## 140 4.514653 Ruderalis m d B 4 Ruderalis.m.d.B
## 141 3.434355 Ruderalis m d B 5 Ruderalis.m.d.B
## 142 3.772719 Ruderalis m d B 6 Ruderalis.m.d.B
## 143 3.714176 Ruderalis m d B 7 Ruderalis.m.d.B
## 144 4.317182 Ruderalis m d B 8 Ruderalis.m.d.B
## 145 5.184524 Ruderalis m n A 1 Ruderalis.m.n.A
## 146 3.132029 Ruderalis m n A 2 Ruderalis.m.n.A
## 147 3.718464 Ruderalis m n A 3 Ruderalis.m.n.A
## 148 3.601257 Ruderalis m n A 4 Ruderalis.m.n.A
## 149 2.170622 Ruderalis m n A 5 Ruderalis.m.n.A
## 150 5.339169 Ruderalis m n A 6 Ruderalis.m.n.A
## 151 3.707311 Ruderalis m n A 7 Ruderalis.m.n.A
## 152 5.307379 Ruderalis m n A 8 Ruderalis.m.n.A
## 153 4.500363 Ruderalis m n B 1 Ruderalis.m.n.B
## 154 4.186482 Ruderalis m n B 2 Ruderalis.m.n.B
## 155 3.245151 Ruderalis m n B 3 Ruderalis.m.n.B
## 156 5.746431 Ruderalis m n B 4 Ruderalis.m.n.B
## 157 5.956506 Ruderalis m n B 5 Ruderalis.m.n.B
## 158 3.914488 Ruderalis m n B 6 Ruderalis.m.n.B
## 159 5.920240 Ruderalis m n B 7 Ruderalis.m.n.B
## 160 5.960018 Ruderalis m n B 8 Ruderalis.m.n.B
## 161 3.404872 Ruderalis b d A 1 Ruderalis.b.d.A
## 162 4.389665 Ruderalis b d A 2 Ruderalis.b.d.A
## 163 2.938139 Ruderalis b d A 3 Ruderalis.b.d.A
## 164 5.961969 Ruderalis b d A 4 Ruderalis.b.d.A
## 165 3.372543 Ruderalis b d A 5 Ruderalis.b.d.A
## 166 5.171201 Ruderalis b d A 6 Ruderalis.b.d.A
## 167 4.981383 Ruderalis b d A 7 Ruderalis.b.d.A
## 168 1.760937 Ruderalis b d A 8 Ruderalis.b.d.A
## 169 2.820731 Ruderalis b d B 1 Ruderalis.b.d.B
## 170 3.948689 Ruderalis b d B 2 Ruderalis.b.d.B
## 171 5.158792 Ruderalis b d B 3 Ruderalis.b.d.B
## 172 3.883628 Ruderalis b d B 4 Ruderalis.b.d.B
## 173 4.070564 Ruderalis b d B 5 Ruderalis.b.d.B
## 174 2.710517 Ruderalis b d B 6 Ruderalis.b.d.B
## 175 6.693869 Ruderalis b d B 7 Ruderalis.b.d.B
## 176 2.625658 Ruderalis b d B 8 Ruderalis.b.d.B
## 177 4.524572 Ruderalis b n A 1 Ruderalis.b.n.A
## 178 5.450632 Ruderalis b n A 2 Ruderalis.b.n.A
## 179 4.744637 Ruderalis b n A 3 Ruderalis.b.n.A
## 180 2.474692 Ruderalis b n A 4 Ruderalis.b.n.A
## 181 5.957431 Ruderalis b n A 5 Ruderalis.b.n.A
## 182 3.243529 Ruderalis b n A 6 Ruderalis.b.n.A
## 183 3.090565 Ruderalis b n A 7 Ruderalis.b.n.A
## 184 4.129588 Ruderalis b n A 8 Ruderalis.b.n.A
## 185 4.117902 Ruderalis b n B 1 Ruderalis.b.n.B
## 186 5.078196 Ruderalis b n B 2 Ruderalis.b.n.B
## 187 2.044607 Ruderalis b n B 3 Ruderalis.b.n.B
## 188 3.962491 Ruderalis b n B 4 Ruderalis.b.n.B
## 189 5.307350 Ruderalis b n B 5 Ruderalis.b.n.B
## 190 4.031616 Ruderalis b n B 6 Ruderalis.b.n.B
## 191 4.170642 Ruderalis b n B 7 Ruderalis.b.n.B
## 192 4.718313 Ruderalis b n B 8 Ruderalis.b.n.B
boxplot(dta$clorofila~dta$tratamiento,las=3,xlab="",ylab="Clorofila (µg/g)",col=c(rep("lightblue",6),rep("yellow",6),rep("green",6),rep("pink",6)))
points(c(1:24),media_cloro,col="red",pch=16)
library(lattice)
bwplot(dta$clorofila~dta$tratamiento)
bwplot(dta$clorofila~dta$genotipo|dta$tercio_arbol*dta$horario*dta$sensor,ylab="clorofila (µg/g)")
#Basado en los diagramas y las inferencias anteriores, el mejor tratamiento del estudio seria el (ruderalis.m.n.B) #