4번 모델이다. 가장 많이 쓰는 매개 모델이다.
#model 4
x<-rnorm(100)
me<-rnorm(100)+ x
y<-rnorm(100, 0,1) + me
co1<-rnorm(100)
d<-data.frame(x,me,y,co1)
간접효과는 유의하고 직접효과는 유의하지 않았다. 갠저긍로 직접-간접매개 구분 자체가 이상하다 생각하지만 그래도 이쁘게 나왔다(그렇게 나오게 임의로 데이터를 만들었으니 당연하다.)
boot4<-function(xxx,mmm,yyy,d,bootnum){
###estimate a*m
boot4_1<-function(xxx,mmm,yyy,d){
n<-sample(1:nrow(d),replace = T)
nnk<-d[n,]
nnk<-as.data.frame(nnk)
k1<-lm(nnk[,mmm]~ nnk[,xxx], data=nnk)
s1<-summary(k1)
coem<-s1$coefficients
eff<-as.data.frame(coem)
eff<-eff[nrow(eff),1]
k2<-lm(nnk[,yyy] ~ nnk[,xxx]+ nnk[,mmm], data = nnk)
s2<-summary(k2)
coem2<-s2$coefficients
eff2<-as.data.frame(coem2)
eff3<-as.data.frame(coem2)
eff2<-eff2[nrow(eff2),1]
eff3<-eff3[nrow(eff3)-1, 1]
indi<-eff*eff2
di<-eff3
efff<-c(indi,di)
efff<-matrix(efff, ncol = 2)
efff
}
k<-1
l<-matrix(rep(NA,bootnum*2),ncol = 2)
l<-as.data.frame(l)
repeat{
l[k,]<-boot4_1(xxx,mmm,yyy,d)
k<-k+1
if(k>=bootnum+1) break
}
estimates<-list(l)
ci1<-quantile(l[,1],probs = c(.001,0.01,0.05,0.10,0.90,0.95,0.99,.999))
ci2<-quantile(l[,2],probs = c(.001,0.01,0.05,0.10,0.90,0.95,0.99,.999))
kmkmkmkm<-list(c(mean(l[,1]),sd(l[,1])),ci1, c(mean(l[,2]),sd(l[,2])),ci2)
names(kmkmkmkm)<-c("indirect_mean_BootSE", "indirect_CI",
"direct_mean_BootSE", "direct_CI")
kmkmkmkm
}
boot4(1,2,3,d,1000)
## $indirect_mean_BootSE
## [1] 1.0102746 0.1467172
##
## $indirect_CI
## 0.1% 1% 5% 10% 90% 95% 99% 99.9%
## 0.6055365 0.6843508 0.7821000 0.8323691 1.1975599 1.2781653 1.4008436 1.5089090
##
## $direct_mean_BootSE
## [1] -0.156218 0.158940
##
## $direct_CI
## 0.1% 1% 5% 10% 90% 95% 99%
## -0.6719708 -0.5540935 -0.4226542 -0.3669941 0.0552478 0.1009094 0.1768974
## 99.9%
## 0.2456666