2번 모델이다 일단 데이터 만들어 봤다
x<-rnorm(100)
w1<-rnorm(100)+ x^2
w2<-rnorm(100)+ abs(x)
y<-rnorm(100, 0,1) + w1*x + w2*x
co1<-rnorm(100)
d<-data.frame(x,w1,w2,y,co1)
CI 구하면 머 대충 이렇게 나온다
boot2<-function(xxx,mmm, mmm2,yyy,d,bootnum){
###estimate a*m
boot2_1<-function(xxx,mmm,mmm2, yyy,d){
n<-sample(1:nrow(d),nrow(d),replace = T)
nnk<-d[n,]
nnk<-as.data.frame(nnk)
k2<-lm(nnk[,yyy]~ nnk[,xxx]+nnk[,mmm] + nnk[,mmm2]+ nnk[,xxx]*nnk[,mmm] + nnk[,xxx]*nnk[,mmm2], data=nnk)
s2<-summary(k2)
coem<-s2$coefficients
eff<-as.data.frame(coem)
eff1<-eff[nrow(eff)-1,1]
eff2<-eff[nrow(eff),1]
efff<-c(eff1, eff2)
efff<-matrix(efff, ncol = 2)
efff
}
k<-1
l<-matrix(rep(NA,bootnum*2),ncol = 2)
l<-as.data.frame(l)
repeat{
l[k,]<-boot2_1(xxx,mmm, mmm2,yyy,d)
k<-k+1
if(k>=bootnum+1) break
}
estimates<-list(l)
ci1<-quantile(l[,1],probs = c(.001,0.01,0.05,0.10,0.90,0.95,0.99,.999))
ci2<-quantile(l[,2],probs = c(.001,0.01,0.05,0.10,0.90,0.95,0.99,.999))
kmkmkmkm<-list(c(mean(l[,1]),sd(l[,1])),ci1, c(mean(l[,2]), sd(l[,2])),ci2)
names(kmkmkmkm)<-c("moderation_mean_BootSE_x*w1", "moderation_CI_x*w1","moderation_mean_BootSE_x*w2", "moderation_CI_x*w2" )
kmkmkmkm
}
boot2(1,2,3,4,d,1000)
## $`moderation_mean_BootSE_x*w1`
## [1] 0.9857817 0.0582682
##
## $`moderation_CI_x*w1`
## 0.1% 1% 5% 10% 90% 95% 99% 99.9%
## 0.8152156 0.8688174 0.9044641 0.9196585 1.0570230 1.0913943 1.1656862 1.2587117
##
## $`moderation_mean_BootSE_x*w2`
## [1] 1.1668624 0.1288602
##
## $`moderation_CI_x*w2`
## 0.1% 1% 5% 10% 90% 95% 99% 99.9%
## 0.7367057 0.8980585 0.9645952 1.0009907 1.3334755 1.3900402 1.4834823 1.6405540