# Ejercicio 1 #
library(readxl)
Conductancia_Estomatica<-read_excel("Conductancia Estomatica.xlsx")
CE_Col<- as.numeric(Conductancia_Estomatica$Colombia)
CE_Oca<- as.numeric(Conductancia_Estomatica$Ocarina)
df_CE<-data.frame(CE_Col,CE_Oca)
Med_Col= mean(CE_Col);Med_Col
## [1] 0.455
Med_Oca= mean(na.omit (CE_Oca)); Med_Oca
## [1] 0.36
Desv_Col= sd(CE_Col); Desv_Col
## [1] 0.03524639
Desv_Oca= sd(na.omit(CE_Oca)); Desv_Oca
## [1] 0.05147815
CV_Col= cv<-100*Desv_Col/Med_Col ; CV_Col
## [1] 7.746458
CV_Oca= cv<-100*Desv_Oca/Med_Oca ; CV_Oca
## [1] 14.29949
cambio_a_CE = Med_Col- Med_Oca;cambio_a_CE # cambio absoluto
## [1] 0.095
cambio_r=100*(Med_Col- Med_Oca)/Med_Oca;cambio_r # cambio relativo
## [1] 26.38889
\[H_0:Datos~son~normales\\Ha:Datos~no~son~normales \]
Prueba_norm_Col= shapiro.test(CE_Col)
Prueba_norm_Oca= shapiro.test(CE_Oca)
ifelse(Prueba_norm_Col$p.value<0.05,"Rechazo Ho","No rechazo Ho")
## [1] "No rechazo Ho"
ifelse(Prueba_norm_Oca$p.value<0.05,"Rechazo Ho","No rechazo Ho")
## [1] "No rechazo Ho"
\[H_0: \sigma^2_{Colombia} =\sigma^2_{Ocarina}\\Ha:\sigma^2_{Colombia} \neq \sigma^2_{Ocarina} \]
Prueba_Var1=var.test(CE_Col,CE_Oca,ratio = 1,alternative = "t",conf.level = 0.95)
Prueba_Var1
##
## F test to compare two variances
##
## data: CE_Col and CE_Oca
## F = 0.4688, num df = 13, denom df = 12, p-value = 0.1899
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1447228 1.4781939
## sample estimates:
## ratio of variances
## 0.4687954
ifelse(Prueba_Var1$p.value<0.05,"Heterocedasticidad","Homocedasticidad")
## [1] "Homocedasticidad"
\[H_0: \mu_{Colombia} = \mu_{Ocarina}\\Ha:\mu_{Colombia} \neq \mu_{Ocarina} \]
Prueba_T1= t.test(CE_Col,CE_Oca,alternative ="t",mu=0,conf.level =0.95)
ifelse(Prueba_T1$p.value<0.05,"Rechazo Ho","No rechazo Ho")
## [1] "Rechazo Ho"
CONCLUSIONES
# Ejercicio 2 #
Peso_tuberculos<-read_excel("Peso tuberculos.xlsx")
Peso_45<- as.numeric(Peso_tuberculos$`Peso 45 d`)
Peso_77<- as.numeric(Peso_tuberculos$`Peso 77 d`)
df_Peso<-data.frame(Peso_45,Peso_77);df_Peso
## Peso_45 Peso_77
## 1 69 873
## 2 66 850
## 3 72 832
## 4 68 834
## 5 65 843
## 6 66 840
## 7 67 875
## 8 68 790
## 9 69 905
## 10 67 910
## 11 66 920
## 12 68 840
## 13 64 832
## 14 67 800
## 15 60 759
## 16 68 812
Med_45= mean(Peso_45);Med_45
## [1] 66.875
Med_77= mean(Peso_77);Med_77
## [1] 844.6875
Desv_45= sd(Peso_45);Desv_45
## [1] 2.604483
Desv_77= sd(Peso_77);Desv_77
## [1] 44.12515
cv_45=100*Desv_45/Med_45;cv_45
## [1] 3.894554
cv_77=100*Desv_77/Med_77;cv_77
## [1] 5.223844
cambio_a_Peso=Med_77-Med_45;cambio_a_Peso # cambio absoluto
## [1] 777.8125
cambio_r_Peso=100*(Med_77-Med_45)/Med_45;cambio_r_Peso # cambio relativo
## [1] 1163.084
cor(Peso_45,Peso_77)
## [1] 0.3343536
Cor_Peso =cor.test(Peso_45,Peso_77,alternative = "t",method = "pearson")
Cor_Peso
##
## Pearson's product-moment correlation
##
## data: Peso_45 and Peso_77
## t = 1.3274, df = 14, p-value = 0.2056
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1934072 0.7120442
## sample estimates:
## cor
## 0.3343536
ifelse(Cor_Peso$p.value< 0.05 , "Rechazo Ho", "No rechazo Ho")
## [1] "No rechazo Ho"
\[H_0:Datos~normales\\Ha:Datos~no~son~normales \]
Prueba_norm1= shapiro.test(Peso_45);Prueba_norm1
##
## Shapiro-Wilk normality test
##
## data: Peso_45
## W = 0.91678, p-value = 0.1497
Prueba_norm2= shapiro.test(Peso_77);Prueba_norm2
##
## Shapiro-Wilk normality test
##
## data: Peso_77
## W = 0.9645, p-value = 0.7435
ifelse(Prueba_norm1$p.value<0.05,"Datos no son Normales","Datos Normales")
## [1] "Datos Normales"
ifelse(Prueba_norm2$p.value<0.05,"Datos no son Normales","Datos Normales")
## [1] "Datos Normales"
\[H_0: \sigma^2_{Peso~45} =\sigma^2_{Peso~77}\\Ha:\sigma^2_{Peso~45} \neq \sigma^2_{Peso~77} \]
Prueba_Var2= var.test(Peso_45,Peso_77,ratio = 1,alternative = "t",conf.level = 0.95)
Prueba_Var2
##
## F test to compare two variances
##
## data: Peso_45 and Peso_77
## F = 0.0034839, num df = 15, denom df = 15, p-value = 2.332e-15
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.001217270 0.009971359
## sample estimates:
## ratio of variances
## 0.00348394
ifelse(Prueba_Var2$p.value<0.05,"Heterocedasticidad","Homocedasticidad")
## [1] "Heterocedasticidad"
\[H_0: \mu_{Peso~45} = \mu_{Peso~77}\\Ha:\mu_{Peso~45} \neq \mu_{Peso~77} \]
Prueba_T2=t.test(Peso_45,Peso_77,alternative ="t",mu =0,var.equal = F, conf.level =0.95)
Prueba_T2
##
## Welch Two Sample t-test
##
## data: Peso_45 and Peso_77
## t = -70.387, df = 15.105, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -801.3519 -754.2731
## sample estimates:
## mean of x mean of y
## 66.8750 844.6875
ifelse(Prueba_T2$p.value<0.05,"Medias son diferentes","Medias son iguales")
## [1] "Medias son diferentes"
Conclusión:
# Ejercicio 3 #
library(readxl)
Calidad_Fritura<-read_excel("C:\\Users\\ERICK\\OneDrive\\Documentos\\Trabajos en R\\Calidad Fritura.xlsx")
Palma<- as.numeric(Calidad_Fritura$Palma)
Maiz<- as.numeric(Calidad_Fritura$Maíz)
median(Palma)
## [1] 4
median(Maiz)
## [1] 4
Prueba_W1=wilcox.test(Palma,Maiz,alternative = "t",mu = 0)
## Warning in wilcox.test.default(Palma, Maiz, alternative = "t", mu = 0): cannot
## compute exact p-value with ties
Prueba_W1
##
## Wilcoxon rank sum test with continuity correction
##
## data: Palma and Maiz
## W = 185.5, p-value = 0.3111
## alternative hypothesis: true location shift is not equal to 0
ifelse(Prueba_W1$p.value <0.05, "Rechazo Ho", "No rechazo Ho")
## [1] "No rechazo Ho"
CONCLUSIÓN
Se puede escoger cualquiera de los dos tipos de aceites para realizar la fritura sin cambiar la calidad de ésta.
# Ejercicio 4 #
DATOS L
Datos_L<-read_excel("C:\\Users\\ERICK\\OneDrive\\Documentos\\Trabajos en R\\Datos L.xlsx")
Grade_4_L<- as.numeric(Datos_L$`4°C`)
Grades_12_L<- as.numeric(Datos_L$`12°C`)
median(Grade_4_L)
## [1] 69.17
median(Grades_12_L)
## [1] 62.55
Prueba_W_L=wilcox.test(Grade_4_L,Grades_12_L, paired = TRUE,alternative = "t")
Prueba_W_L
##
## Wilcoxon signed rank exact test
##
## data: Grade_4_L and Grades_12_L
## V = 120, p-value = 6.104e-05
## alternative hypothesis: true location shift is not equal to 0
ifelse(Prueba_W_L$p.value <0.05, "Rechazo Ho", "No rechazo Ho")
## [1] "Rechazo Ho"
DATOS A
Datos_a<-read_excel("C:\\Users\\ERICK\\OneDrive\\Documentos\\Trabajos en R\\Datos a.xlsx")
Grade_4_a<- as.numeric(Datos_a$`4°C`)
Grades_12_a<- as.numeric(Datos_a$`12°C`)
median(Grade_4_a)
## [1] -1.29
median(Grades_12_a)
## [1] 0.55
Prueba_W_A=wilcox.test(Grade_4_a,Grades_12_a, paired = TRUE,alternative = "t")
## Warning in wilcox.test.default(Grade_4_a, Grades_12_a, paired = TRUE,
## alternative = "t"): cannot compute exact p-value with ties
Prueba_W_A
##
## Wilcoxon signed rank test with continuity correction
##
## data: Grade_4_a and Grades_12_a
## V = 0, p-value = 0.0007069
## alternative hypothesis: true location shift is not equal to 0
ifelse(Prueba_W_A$p.value <0.05, "Rechazo Ho", "No rechazo Ho")
## [1] "Rechazo Ho"
DATOS B
Datos_b<-read_excel("C:\\Users\\ERICK\\OneDrive\\Documentos\\Trabajos en R\\Datos b.xlsx")
Grade_4_b<- as.numeric(Datos_b$`4°C`)
Grades_12_b<- as.numeric(Datos_b$`12°C`)
median(Grade_4_b)
## [1] 27.66
median(Grades_12_b)
## [1] 36.12
Prueba_W_B=wilcox.test(Grade_4_b,Grades_12_b, paired = TRUE,alternative = "t")
Prueba_W_B
##
## Wilcoxon signed rank exact test
##
## data: Grade_4_b and Grades_12_b
## V = 0, p-value = 6.104e-05
## alternative hypothesis: true location shift is not equal to 0
ifelse(Prueba_W_B$p.value <0.05, "Rechazo Ho", "No rechazo Ho")
## [1] "Rechazo Ho"
deltae<-sqrt(((Grades_12_L-Grade_4_L)^2)+((Grades_12_a-Grade_4_a)^2)+((Grades_12_b-Grade_4_b)^2))
deltae
## [1] 11.349665 11.458992 10.499452 11.342610 12.584506 12.005736 11.998721
## [8] 10.496709 8.671937 8.724872 5.347570 9.862789 8.768746 13.504362
## [15] 13.284344
CONCLUSION:
# Ejercicio 5 #
Tasa_de_infiltracion<-read_excel("C:\\Users\\ERICK\\OneDrive\\Documentos\\Trabajos en R\\Tasa de Infiltración.xlsx")
Tasa_A<- as.numeric(Tasa_de_infiltracion$A)
Tasa_B<- as.numeric(Tasa_de_infiltracion$B)
Media_T_A=mean(Tasa_A); Media_T_A
## [1] 0.2225
Media_T_B=mean(Tasa_B); Media_T_B
## [1] 0.2583333
Desv_T_A= sd(Tasa_A);Desv_T_A
## [1] 0.07471096
Desv_T_B= sd(Tasa_B);Desv_T_B
## [1] 0.07555772
CV_T_A=cv=100*Desv_T_A/Media_T_A;CV_T_A
## [1] 33.57796
CV_T_B=cv=100*Desv_T_B/Media_T_B;CV_T_B
## [1] 29.24815
\[H_0: \sigma^2_{TasaA} =\sigma^2_{TasaB}\\Ha:\sigma^2_{TasaA} \neq \sigma^2_{TasaB} \]
Prueba_Var5=var.test(Tasa_A,Tasa_B,ratio = 1,alternative = "t",conf.level = 0.95)
Prueba_Var5
##
## F test to compare two variances
##
## data: Tasa_A and Tasa_B
## F = 0.97771, num df = 11, denom df = 11, p-value = 0.9709
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.2814613 3.3962767
## sample estimates:
## ratio of variances
## 0.9777118
ifelse(Prueba_Var5$p.value<0.05,"Heterocedasticidad","Homocedasticidad")
## [1] "Homocedasticidad"
\[H_0: \mu_{TasaA} = \mu_{TasaB}\\Ha:\mu_{TasaA} \neq \mu_{TasaB} \] #T-student para datos no pareados
Prueba_T5_I= t.test(Tasa_A,Tasa_B,alternative ="t",mu=0,var.equal = T, conf.level =0.95)
Prueba_T5_I
##
## Two Sample t-test
##
## data: Tasa_A and Tasa_B
## t = -1.1682, df = 22, p-value = 0.2552
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.09944722 0.02778055
## sample estimates:
## mean of x mean of y
## 0.2225000 0.2583333
ifelse(Prueba_T5_I$p.value<0.05,"Medias son diferentes","Medias son iguales")
## [1] "Medias son iguales"
#T-student para datos pareados
Prueba_T5_P= t.test(Tasa_A,Tasa_B,alternative ="t",mu=0,var.equal = T,paired = T, conf.level =0.95)
Prueba_T5_P
##
## Paired t-test
##
## data: Tasa_A and Tasa_B
## t = -2.6453, df = 11, p-value = 0.02278
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.065648151 -0.006018515
## sample estimates:
## mean of the differences
## -0.03583333
ifelse(Prueba_T5_P$p.value<0.05,"Medias son diferentes","Medias son iguales")
## [1] "Medias son diferentes"
# Ejercicio 6 #
set.seed(1617)
lote1=round(runif(100,0,0.36),0)
xy=expand.grid(x=seq(1,10,1),y=seq(1,10,1))
color1=ifelse(lote1==0,"darkgreen", "red")
plot(xy,col=color1,pch=8,main="Distribución palmas lote 1")
set.seed(1617)
lote2=round(runif(100,0,0.45),0)
xy=expand.grid(x=seq(1,10,1),y=seq(1,10,1))
color2=ifelse(lote2==0,"darkgreen","red")
plot(xy,col=color2,pch=8,main="Distribución palmas lote 2")
Tabla1= table(lote1);Tabla1
## lote1
## 0
## 100
Tabla2= table(lote2);Tabla2
## lote2
## 0
## 100
Prev_1=100*25/100; Prev_1
## [1] 25
Prev_2=100*37/100; Prev_2
## [1] 37
\[H_0:Prev_1 = Prev_2\\Ha:Prev_1 \neq Prev_2 \]
prueba_Z <- prop.test(x = c(25, 37), n = c(100, 100))
ifelse(prueba_Z$p.value<0.05,"Rechazo Ho","No rechazo Ho")
## [1] "No rechazo Ho"
# Ejercicio 8 #
library(readxl)
Contenido_de_fósforo_en_suelos <- read_excel("~/Trabajos en R/Contenido de fósforo en suelos.xlsx")
Datos_phosphoro=Contenido_de_fósforo_en_suelos
Datos_phosphoro
## # A tibble: 66 x 2
## Fosforo Metodos
## <dbl> <chr>
## 1 7.1 Bray
## 2 6.8 Bray
## 3 6.6 Bray
## 4 6.7 Bray
## 5 6.8 Bray
## 6 6.7 Bray
## 7 6.9 Bray
## 8 6.8 Bray
## 9 6.7 Bray
## 10 6.6 Bray
## # ... with 56 more rows
Datos_phosphoro$Metodos = as.factor(Datos_phosphoro$Metodos)
medias = tapply(Datos_phosphoro$Fosforo,Datos_phosphoro$Metodos, mean); medias
## Bray Mehlich-3 Olsen
## 6.804545 7.490909 6.409091
Desv = tapply(Datos_phosphoro$Fosforo,Datos_phosphoro$Metodos, sd); Desv
## Bray Mehlich-3 Olsen
## 0.2034869 0.7321912 0.2408499
CV=cv=100*Desv/medias;CV
## Bray Mehlich-3 Olsen
## 2.990456 9.774397 3.757941
boxplot(Datos_phosphoro$Fosforo~Datos_phosphoro$Metodos,col=c(rep("lightblue",1),rep("lightgreen",1),rep("pink",1)),ylab="mg Fosforo / Kg de suelo",main=" Resultados de muestras de fosforo en\n\ suelo usando tres metodos distintos",cex.main=1)
points(c(1:3),medias,col="yellow",pch=16)
ANOVA = aov(Fosforo~Metodos,Datos_phosphoro)
summary(ANOVA)
## Df Sum Sq Mean Sq F value Pr(>F)
## Metodos 2 13.18 6.592 31.12 3.99e-10 ***
## Residuals 63 13.35 0.212
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Norm_ANOVA= shapiro.test(ANOVA$residuals)
Norm_ANOVA
##
## Shapiro-Wilk normality test
##
## data: ANOVA$residuals
## W = 0.75253, p-value = 3.33e-09
ifelse(Norm_ANOVA$p.value<0.05,"No Normal","Normal")
## [1] "No Normal"
Var_ANOVA =bartlett.test(ANOVA$residuals,Datos_phosphoro$Metodos)
Var_ANOVA
##
## Bartlett test of homogeneity of variances
##
## data: ANOVA$residuals and Datos_phosphoro$Metodos
## Bartlett's K-squared = 41.111, df = 2, p-value = 1.182e-09
ifelse(Var_ANOVA$p.value<0.05,"Heterocedasticidad","Homocedasticidad")
## [1] "Heterocedasticidad"