library(SummarizedExperiment)
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
## colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
## colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
## colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
## colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
## colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
## colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
## colWeightedMeans, colWeightedMedians, colWeightedSds,
## colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
## rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
## rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
## rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
## rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
## rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
## rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
## rowWeightedSds, rowWeightedVars
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
## anyDuplicated, append, as.data.frame, basename, cbind, colnames,
## dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
## grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
## order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
## rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
## union, unique, unsplit, which.max, which.min
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
## Loading required package: IRanges
##
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
##
## windows
## Loading required package: GenomeInfoDb
## Loading required package: Biobase
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## 'browseVignettes()'. To cite Bioconductor, see
## 'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
## rowMedians
## The following objects are masked from 'package:matrixStats':
##
## anyMissing, rowMedians
# Load the covid19 dds object that was already filtered out genes with less information
covid19_dds_2 <- readRDS("F:/BAI HC/Research 2/Covid19/covid19_dds_2.RDS")
patient_data <-as.data.frame(colData(covid19_dds_2))
## Loading required package: DESeq2
library(ggplot2)
# The count data from patient_data
bar_df <- data.frame(name= c("fe_covid_case", "ma_covid_case",
"fe_colon_case", "ma_colon_case", "no_info_control"),
count= c(4, 5, 4, 5, 20))
head(bar_df)
## name count
## 1 fe_covid_case 4
## 2 ma_covid_case 5
## 3 fe_colon_case 4
## 4 ma_colon_case 5
## 5 no_info_control 20
# The bar plot comparing sex of the samples
ggplot(bar_df, aes(x=name, y=count)) +
geom_col()+
ggtitle("Gender balance in case and control samples")
There are no record for gender of all control samples.
library(DESeq2)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:Biobase':
##
## combine
## The following object is masked from 'package:BiocGenerics':
##
## combine
# Load the vst_ df already filtered
vsd <-readRDS("F:/BAI HC/Research 2/Covid19/vsd_2_already_filtered.RDS")
# PCA analysis with sex and condition
p1 <- plotPCA(vsd, intgroup = c("condition")) + theme(legend.position = "top")
p2 <-plotPCA(vsd, intgroup= c("sex")) + theme(legend.position = "top")
grid.arrange(p1, p2, ncol=2)
From the PCA plot, male lung samples in the covid19 case group are clustering together, but colon samples from the same male patient in covid19 cases are scattering.