Actividad 1
\[\sum_{i=1}^{100}\frac{1}{(2^i)}\]
misum1.1=function(i){
sumatoria1 = 0
vecsumatoria1 = NULL
for (i in seq(i)){
s_i = 1/(2^i)
sumatoria1 = sumatoria1 + s_i
vecsumatoria1 [i] = sumatoria1
}
return(vecsumatoria1)
}
misum1.1(100)
## [1] 0.5000000 0.7500000 0.8750000 0.9375000 0.9687500 0.9843750 0.9921875
## [8] 0.9960938 0.9980469 0.9990234 0.9995117 0.9997559 0.9998779 0.9999390
## [15] 0.9999695 0.9999847 0.9999924 0.9999962 0.9999981 0.9999990 0.9999995
## [22] 0.9999998 0.9999999 0.9999999 1.0000000 1.0000000 1.0000000 1.0000000
## [29] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [36] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [43] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [50] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [57] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [64] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [71] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [78] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [85] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [92] 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [99] 1.0000000 1.0000000
\[\sum_{n=0}^{\infty}\frac{1}{n!}\]
misum1.2=function(n){
sumatoria2 = 0
vecsumatoria2 = NULL
for (i in seq(n)){
s_n = 1/factorial(i)
sumatoria2 = sumatoria2 + s_n
vecsumatoria2 [i] = sumatoria2
}
return(vecsumatoria2)
}
misum1.2(5)
## [1] 1.000000 1.500000 1.666667 1.708333 1.716667
\[\prod_{n=1}^{6}(1+(x^(2^n)))\]
mipro1.3=function(n){
productoria1 = 1
vecproductoria1 = NULL
x = 1
for (i in seq(n)){
p_n = 1 + (x^(2^n))
productoria1 = productoria1 * p_n
vecproductoria1 [i] = productoria1
}
return(vecproductoria1)
}
mipro1.3(6)
## [1] 2 4 8 16 32 64
\[\prod_{n=0}^{\infty}\frac{x^(2^n)}{(2n)!}\]
mipro1.5=function(n){
productoria3 = 1
vecproductoria3 = NULL
x = 1
for (i in seq(n)){
p_k = (x^(2^n))/factorial(2*n)
productoria3 = productoria3 * p_k
vecproductoria3 [i] = productoria3
}
return(vecproductoria3)
}
mipro1.5(5)
## [1] 2.755732e-07 7.594058e-14 2.092719e-20 5.766972e-27 1.589223e-33
\[\sum_{k=0}^{\infty}\frac{(-1)^n(x^2)^(n+1)}{(2n+1)!}\]
misum1.6=function(n){
sumatoria3 = 1
vecsumatoria3 = NULL
x = 1
for (i in seq(n)){
s_k = (((-1)^n)*((x^2)^(n+1)))/factorial((2*n)+1)
sumatoria3 = sumatoria3 * s_k
vecsumatoria3 [i] = sumatoria3
}
return(vecsumatoria3)
}
misum1.6(5)
## [1] -2.505211e-08 6.276081e-16 -1.572291e-23 3.938920e-31 -9.867824e-39
Actividad 2
\[ y= x^5-7x^4-162x^3+878x^2+3937x-15015\]
eje2.1=function(x){
y=(x^5)-(7*x^4)-(162*x^3)+(878*x^2)+(3937*x)-15015
return(y)
}
(mis_x = seq(-40,10,0.5))
## [1] -40.0 -39.5 -39.0 -38.5 -38.0 -37.5 -37.0 -36.5 -36.0 -35.5 -35.0 -34.5
## [13] -34.0 -33.5 -33.0 -32.5 -32.0 -31.5 -31.0 -30.5 -30.0 -29.5 -29.0 -28.5
## [25] -28.0 -27.5 -27.0 -26.5 -26.0 -25.5 -25.0 -24.5 -24.0 -23.5 -23.0 -22.5
## [37] -22.0 -21.5 -21.0 -20.5 -20.0 -19.5 -19.0 -18.5 -18.0 -17.5 -17.0 -16.5
## [49] -16.0 -15.5 -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5
## [61] -10.0 -9.5 -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5
## [73] -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
## [85] 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
## [97] 8.0 8.5 9.0 9.5 10.0
prueba2.1 = eje2.1(x=mis_x)
plot(x=mis_x, y=prueba2.1, col="3")
\[ y= \frac{senx}{x}\]
eje2.2=function(x){
y=sin(x)/x
return(y)
}
(mis_x2 = seq(-10,10,0.25))
## [1] -10.00 -9.75 -9.50 -9.25 -9.00 -8.75 -8.50 -8.25 -8.00 -7.75
## [11] -7.50 -7.25 -7.00 -6.75 -6.50 -6.25 -6.00 -5.75 -5.50 -5.25
## [21] -5.00 -4.75 -4.50 -4.25 -4.00 -3.75 -3.50 -3.25 -3.00 -2.75
## [31] -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25
## [41] 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
## [51] 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
## [61] 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25
## [71] 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75
## [81] 10.00
prueba2.2 = eje2.2(x=mis_x2)
plot(x=mis_x2, y=prueba2.2, col="2")
\[ y= \frac{cosx-1}{x}\]
eje2.3=function(x){
y=(cos(x))-1/x
return(y)
}
(mis_x3 = seq(-15,15,0.25))
## [1] -15.00 -14.75 -14.50 -14.25 -14.00 -13.75 -13.50 -13.25 -13.00 -12.75
## [11] -12.50 -12.25 -12.00 -11.75 -11.50 -11.25 -11.00 -10.75 -10.50 -10.25
## [21] -10.00 -9.75 -9.50 -9.25 -9.00 -8.75 -8.50 -8.25 -8.00 -7.75
## [31] -7.50 -7.25 -7.00 -6.75 -6.50 -6.25 -6.00 -5.75 -5.50 -5.25
## [41] -5.00 -4.75 -4.50 -4.25 -4.00 -3.75 -3.50 -3.25 -3.00 -2.75
## [51] -2.50 -2.25 -2.00 -1.75 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25
## [61] 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
## [71] 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
## [81] 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25
## [91] 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75
## [101] 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25
## [111] 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75
## [121] 15.00
prueba2.3 = eje2.3(x=mis_x3)
plot(x=mis_x3, y=prueba2.3, col="4")
\[ y= x^5-3x^4+x^2-x-5\]
eje2.4=function(x){
y=x^5-3*x^4+x^2-x-5
return(y)
}
(mis_x4 = seq(-15,15,0.5))
## [1] -15.0 -14.5 -14.0 -13.5 -13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5
## [13] -9.0 -8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5
## [25] -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
## [37] 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
## [49] 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
## [61] 15.0
prueba2.4 = eje2.4(x=mis_x4)
plot(x=mis_x4, y=prueba2.4, col="5")
Actividad 3
Ejercicio 3.1
\[\sum_{k=0}^{\infty}\frac{8}{(4k+1)(4k+3)} \]
eje3.1 <- function(k){
ki = 0
suma_valores = 0
while(suma_valores <= 3.141593){
suma_i = 8/((4*ki+1)*(4*ki+3))
suma_valores = suma_valores + suma_i
suma_valores = suma_valores
if (ki == k) break
ki = ki+1
}
return(list(ki = ki,
suma_valores))
}
eje3.1(3256000)
## $ki
## [1] 3256000
##
## [[2]]
## [1] 3.141593
Ejercicio 3.2 \[\sqrt{6\sum_{k=1}^{\infty}\frac{1}{k^2}}\]
eje3.2 <- function(k){
ki2 = 1
suma_i2 = 0
while(suma_i2 <= pi){
suma_i2 = ((cumsum(1/(ki2^2)))*6)^(1/2)
if (ki2 == k) break
ki2 = ki2+1
}
return(list(ki2,
suma_i2))
}
eje3.2(20000000)
## [[1]]
## [1] 2e+07
##
## [[2]]
## [1] 1.224745e-07
#k=seq(1:100000000)
#(cumsum(1/(k^2))*6)^(1/2)
Actividad 4
Ejercicio 1
\[ 1+x+\frac{x^2}{2}+\frac{x^3}{3}+...+\frac{x^n}{n}\]
ejer4=function(x,n){
if (n>0){
ejer4=1+x+(x^n)/n
return(ejer4)
}
}
x1=c(5)
n1=c(1:20)
int_R=cumsum(ejer4(n1,x1))
int_R
## [1] 2.2 11.6 64.2 274.0 905.0 2467.2 5836.6
## [8] 12399.2 24219.0 44230.0 76452.2 126231.6 200504.2 308084.0
## [15] 459975.0 669707.2 953696.6 1331629.2 1826869.0 2466890.0
plot(int_R)
lines(n1,int_R,col="red")
Actividad 5
Ejercicio 5.1
(x=c(seq(3,6,0.1)))
## [1] 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
## [20] 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0
(vector5.1=(exp(1)^x)*cos(x))
## [1] -19.884531 -22.178753 -24.490697 -26.773182 -28.969238 -31.011186
## [7] -32.819775 -34.303360 -35.357194 -35.862834 -35.687732 -34.685042
## [13] -32.693695 -29.538816 -25.032529 -18.975233 -11.157417 -1.362099
## [19] 10.632038 25.046705 42.099201 61.996630 84.929067 111.061586
## [25] 140.525075 173.405776 209.733494 249.468441 292.486707 338.564378
## [31] 387.360340
Ejercicio 5.2
n=c(1:25)
(y=c(2^n/n))
## [1] 2.000000e+00 2.000000e+00 2.666667e+00 4.000000e+00 6.400000e+00
## [6] 1.066667e+01 1.828571e+01 3.200000e+01 5.688889e+01 1.024000e+02
## [11] 1.861818e+02 3.413333e+02 6.301538e+02 1.170286e+03 2.184533e+03
## [16] 4.096000e+03 7.710118e+03 1.456356e+04 2.759411e+04 5.242880e+04
## [21] 9.986438e+04 1.906502e+05 3.647221e+05 6.990507e+05 1.342177e+06
Ejercicio 5.3
paste(c("trat"),... = 1:30, sep="")
## [1] "trat1" "trat2" "trat3" "trat4" "trat5" "trat6" "trat7" "trat8"
## [9] "trat9" "trat10" "trat11" "trat12" "trat13" "trat14" "trat15" "trat16"
## [17] "trat17" "trat18" "trat19" "trat20" "trat21" "trat22" "trat23" "trat24"
## [25] "trat25" "trat26" "trat27" "trat28" "trat29" "trat30"
Ejercicio 5.4
paste(c('gen'),... = 1:10, sep="")
## [1] "gen1" "gen2" "gen3" "gen4" "gen5" "gen6" "gen7" "gen8" "gen9"
## [10] "gen10"
Ejercicio 5.5
set.seed(123)
(ejer5.5=replicate(20,expr = rnorm(40,3,0.3)))
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 2.831857 2.791588 3.001729 3.035294 3.315813 3.659643 2.763413 2.499757
## [2,] 2.930947 2.937625 3.115584 2.715758 2.685247 3.393724 2.849340 3.220949
## [3,] 3.467612 2.620381 2.888802 2.852833 2.621953 2.920456 3.448818 3.115808
## [4,] 3.021153 3.650687 3.193313 2.923172 3.972312 3.162958 2.658809 2.920305
## [5,] 3.038786 3.362389 2.933854 3.553159 2.874943 2.875698 2.946285 3.035443
## [6,] 3.514519 2.663067 3.099535 2.804415 3.089468 2.857126 3.570709 3.040212
## [7,] 3.138275 2.879135 3.329052 3.070616 3.190971 2.763419 2.969708 3.066306
## [8,] 2.620482 2.860003 3.130554 3.023388 2.854866 2.821615 2.592048 3.492254
## [9,] 2.793944 3.233990 2.902221 2.711443 3.155059 3.495272 2.800569 2.934285
## [10,] 2.866301 2.974989 3.344642 2.978608 3.110689 2.983792 3.145638 3.050420
## [11,] 3.367225 3.075996 3.298051 3.433365 2.935386 3.035774 2.887319 3.350515
## [12,] 3.107944 2.991436 3.164519 3.135451 3.019588 3.073106 2.831437 3.316254
## [13,] 3.120231 2.987139 3.071620 3.012370 2.989780 3.369743 2.896825 3.343579
## [14,] 3.033205 3.410581 2.811628 2.873251 3.638536 2.845181 3.027149 2.826760
## [15,] 2.833248 2.932269 3.408196 2.384026 2.777599 2.702248 3.479553 3.600745
## [16,] 3.536074 3.454941 2.819922 3.339401 2.671201 3.502709 2.973430 3.020010
## [17,] 3.149355 2.535374 3.656200 2.561808 3.011337 2.867651 3.324240 3.560056
## [18,] 2.410015 3.175384 3.459783 3.221984 3.093144 2.783080 3.189226 2.594729
## [19,] 3.210407 3.037156 2.929290 3.572731 3.130957 2.629118 2.965908 3.006295
## [20,] 2.858163 3.064782 2.692074 2.566832 2.862490 2.614585 2.540129 3.374974
## [21,] 2.679653 3.113892 2.786878 3.210535 2.681002 2.827808 2.843665 2.785427
## [22,] 2.934608 2.849303 3.077065 2.921341 3.378956 3.185396 2.853039 2.774193
## [23,] 2.692199 2.900038 2.925992 2.528357 2.895105 3.332954 3.014146 2.718438
## [24,] 2.781333 2.694427 2.895737 2.545600 2.740346 3.212277 3.390060 2.684246
## [25,] 2.812488 2.678463 2.714514 2.519539 2.929116 2.890903 3.687924 2.868852
## [26,] 2.493992 3.091059 2.986492 2.840728 2.940847 3.017925 3.464274 3.099354
## [27,] 3.251336 3.134463 2.764529 2.561473 3.332976 2.788621 2.960055 2.395737
## [28,] 3.046012 3.015901 2.499617 3.206375 3.025421 2.784835 2.473042 3.063594
## [29,] 2.658559 3.276680 2.885932 3.630033 3.226216 3.265395 2.883366 3.371003
## [30,] 3.376144 3.615025 3.275699 2.613891 2.850212 2.695322 3.026762 3.611272
## [31,] 3.127939 2.852691 2.827396 3.236322 3.064334 3.586588 3.253504 3.390353
## [32,] 2.911479 2.307249 3.182389 3.230713 2.902594 2.972904 3.288758 3.227032
## [33,] 3.268538 3.301722 2.514635 3.099661 3.028375 3.064362 3.205293 2.481981
## [34,] 3.263440 2.787240 2.983331 2.697487 2.731391 2.778442 2.581418 2.819548
## [35,] 3.246474 2.793597 3.155822 2.964164 2.606760 2.827683 3.254893 2.894386
## [36,] 3.206592 3.307671 3.090346 2.915881 3.599164 2.604895 2.866033 3.211057
## [37,] 3.166175 2.914568 3.031703 3.168897 3.180213 2.945122 3.052441 2.968299
## [38,] 2.981426 2.633785 2.807788 2.888268 2.624619 3.125695 3.022365 2.622405
## [39,] 2.908211 3.054391 2.745089 3.293092 2.816650 3.097291 3.128450 3.505331
## [40,] 2.885859 2.958333 2.692761 2.887626 2.644356 2.765539 3.007402 3.273417
## [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]
## [1,] 3.071229 2.938410 2.977933 2.627687 3.006135 3.290180 2.749847 3.322204
## [2,] 3.365433 3.195358 2.649405 3.136431 3.094217 2.967516 3.173617 2.991796
## [3,] 2.598368 3.082130 2.809576 3.197971 3.398464 2.790474 2.673726 2.990001
## [4,] 3.198246 3.307402 2.991348 2.940033 3.036396 2.917216 3.445209 2.545180
## [5,] 2.843126 3.245298 3.201209 2.806466 3.213853 3.334395 2.644138 3.237116
## [6,] 3.205124 2.937062 2.504836 3.049596 3.233658 3.165013 3.030324 2.936780
## [7,] 2.981753 3.113450 2.895074 3.131646 3.274432 3.371003 3.159897 2.802977
## [8,] 3.189888 2.716377 3.226922 3.264991 2.827682 3.041729 3.176021 2.576392
## [9,] 3.400655 3.257077 2.838357 2.384299 3.488064 3.123083 2.909476 2.910071
## [10,] 3.002187 2.861688 3.068188 2.509086 2.885713 2.832463 3.023851 2.745282
## [11,] 3.305268 3.725032 3.147669 3.429121 2.968265 3.181611 3.288379 2.880891
## [12,] 2.643470 2.504685 3.080351 3.313989 3.421215 2.848100 2.563060 2.634720
## [13,] 2.783519 2.860804 3.195977 3.130587 3.388225 2.573830 2.765478 3.506277
## [14,] 3.455765 3.247614 2.963187 3.214554 2.673002 3.038398 3.096121 2.995199
## [15,] 3.113216 3.153040 2.875897 3.275152 2.738079 3.583755 2.866565 3.322484
## [16,] 2.384333 2.823156 2.207055 2.201723 2.592576 3.240274 3.411001 2.219490
## [17,] 2.590789 2.700966 2.972118 3.333083 3.054554 3.349576 3.201976 2.864041
## [18,] 2.939766 3.043343 3.129085 2.854504 3.049452 3.107657 3.021650 2.797355
## [19,] 3.259734 2.995708 3.160620 3.069185 3.109234 2.817433 2.547673 2.633122
## [20,] 2.969435 2.462916 2.833416 2.911453 3.165647 2.939328 3.007830 3.463983
## [21,] 3.187256 3.010365 3.533851 3.261589 2.819432 2.918026 2.905075 2.575415
## [22,] 3.287702 3.057069 3.085927 2.895458 2.701890 2.859390 2.969296 3.095517
## [23,] 3.501316 3.052418 3.037895 3.155551 3.308036 3.211250 2.645532 3.253931
## [24,] 3.016805 2.683495 3.381680 2.882795 3.225318 2.640791 3.149597 3.053457
## [25,] 2.984405 3.142840 2.784460 2.672164 2.547250 3.259910 2.688313 2.737423
## [26,] 2.474029 3.413571 2.864898 3.363003 2.971456 3.259246 2.932133 3.282350
## [27,] 3.029798 3.136871 3.719236 3.222270 2.731216 2.640413 3.114428 3.051176
## [28,] 2.828445 2.659323 3.003339 3.517279 2.378775 3.191848 2.764945 2.680951
## [29,] 2.707797 2.869306 3.490071 3.019546 3.045036 3.729068 3.174897 2.583585
## [30,] 2.946028 3.103831 2.568448 3.337501 2.976236 2.832835 2.605047 3.626015
## [31,] 3.304483 2.805886 2.942845 3.592626 2.970789 3.253471 2.157068 2.796449
## [32,] 2.402175 2.352706 3.113527 2.915555 3.064846 2.765339 3.139490 2.443329
## [33,] 2.871816 3.265275 3.090012 2.603115 3.264740 3.333213 3.252162 3.159978
## [34,] 3.034991 2.751157 2.698309 2.928195 3.061679 3.074947 2.914246 3.093069
## [35,] 2.732038 2.827932 3.005778 2.935788 2.815069 3.495575 3.151238 2.593850
## [36,] 3.100171 3.451170 2.676774 3.045504 2.779560 2.562309 2.653225 2.417113
## [37,] 3.123429 2.767757 3.213811 3.513691 2.960459 2.984611 2.961855 2.965109
## [38,] 2.990089 3.253719 3.325433 2.902157 3.093005 2.841922 2.417544 3.341819
## [39,] 2.260231 2.621795 2.332504 3.111901 2.688096 2.940821 3.354354 3.190837
## [40,] 3.771437 2.893637 3.370708 2.931695 2.944707 2.811126 3.557973 2.852119
## [,17] [,18] [,19] [,20]
## [1,] 2.749744 3.114692 2.687498 3.161937
## [2,] 3.081320 3.294634 2.481509 3.184937
## [3,] 3.047206 2.781785 3.192549 3.184970
## [4,] 3.188914 2.700948 2.541207 2.492370
## [5,] 2.881261 2.687493 3.000505 3.110623
## [6,] 3.269806 2.875623 3.075074 3.290358
## [7,] 2.750757 2.928291 3.169160 3.382974
## [8,] 2.900837 3.145085 3.056828 2.932512
## [9,] 3.222244 2.903603 2.780144 2.903432
## [10,] 3.296991 2.376453 3.295910 3.446351
## [11,] 2.418449 2.972570 3.521590 2.499622
## [12,] 3.032157 3.356156 3.264354 2.868951
## [13,] 3.182634 3.357480 2.416905 3.137239
## [14,] 2.564753 2.763311 3.419873 2.514668
## [15,] 3.144188 2.535667 2.983183 3.083888
## [16,] 2.751548 3.737418 3.157474 3.563359
## [17,] 3.306076 2.951273 3.186610 2.998782
## [18,] 3.161545 2.970765 2.970994 2.916464
## [19,] 3.230716 3.126172 2.977421 3.142474
## [20,] 3.036216 2.515788 3.305747 2.916278
## [21,] 3.259095 2.781534 3.213481 3.244020
## [22,] 3.414154 2.537867 3.297079 3.271331
## [23,] 3.589874 2.792072 3.714878 3.000807
## [24,] 2.991481 3.035655 3.199325 2.646992
## [25,] 2.325285 2.590587 3.062214 2.604534
## [26,] 3.009458 3.176995 2.336810 2.822101
## [27,] 3.061668 3.086803 3.807514 3.239214
## [28,] 2.953396 2.728735 2.855197 2.412538
## [29,] 3.170487 3.067897 3.712420 2.434102
## [30,] 3.303203 3.224424 3.112393 2.803866
## [31,] 2.844605 3.318329 3.461529 3.118318
## [32,] 2.911771 2.936146 2.967087 2.725930
## [33,] 3.119353 2.971909 3.153441 3.266025
## [34,] 2.834933 2.973986 3.064187 3.100011
## [35,] 3.027380 3.432439 2.944164 2.948808
## [36,] 2.411488 3.337522 2.963882 3.245648
## [37,] 2.664030 3.250320 3.303850 3.116510
## [38,] 2.601673 2.913798 2.939563 2.866219
## [39,] 2.743913 3.111972 2.388695 3.069334
## [40,] 2.792009 3.120987 2.941233 3.194254
(y5.5=c(colMeans(ejer5.5)))
## [1] 3.013555 2.997985 3.002357 2.968247 3.005000 3.003171 3.027936 3.053390
## [9] 2.996394 2.982291 2.999193 3.039723 2.999162 3.052979 2.956606 2.929221
## [17] 2.981165 2.987130 3.073087 2.996569
Ejercicio 5.6
(desv5.5=c(apply(ejer5.5, 2, sd)))
## [1] 0.2693354 0.2879017 0.2532419 0.3142630 0.2982670 0.2775668 0.2867802
## [8] 0.3214475 0.3274135 0.2871015 0.3090161 0.3077469 0.2555555 0.2751171
## [15] 0.3005222 0.3254278 0.2854671 0.2881477 0.3444641 0.2865597
Ejercicio 5.7
(coef5.5=c(y5.5/desv5.5))
## [1] 11.188856 10.413224 11.855689 9.445105 10.074866 10.819635 10.558386
## [8] 9.498875 9.151710 10.387584 9.705620 9.877347 11.735852 11.097015
## [15] 9.838229 9.001140 10.443112 10.366663 8.921355 10.457050
Actividad 6
vec6.1=c(1,2,-4,1,9,5,3,3,1)
(matriz6.1=matrix(vec6.1, nrow=3, ncol=3))
## [,1] [,2] [,3]
## [1,] 1 1 3
## [2,] 2 9 3
## [3,] -4 5 1
t(matriz6.1) #transponer
## [,1] [,2] [,3]
## [1,] 1 2 -4
## [2,] 1 9 5
## [3,] 3 3 1
solve(matriz6.1) #invertir
## [,1] [,2] [,3]
## [1,] -0.05084746 0.11864407 -0.20338983
## [2,] -0.11864407 0.11016949 0.02542373
## [3,] 0.38983051 -0.07627119 0.05932203
det(matriz6.1) #determinante
## [1] 118
sum(diag(matriz6.1)) #traza
## [1] 11
qr(matriz6.1)$rank #rango
## [1] 3
dim(matriz6.1) #dimensión
## [1] 3 3
matriz6.1*matriz6.1
## [,1] [,2] [,3]
## [1,] 1 1 9
## [2,] 4 81 9
## [3,] 16 25 1
matriz6.1%*%matriz6.1
## [,1] [,2] [,3]
## [1,] -9 25 9
## [2,] 8 98 36
## [3,] 2 46 4
matriz6.1*matriz6.1*matriz6.1
## [,1] [,2] [,3]
## [1,] 1 1 27
## [2,] 8 729 27
## [3,] -64 125 1
matriz6.1%*%matriz6.1%*%matriz6.1
## [,1] [,2] [,3]
## [1,] 5 261 57
## [2,] 60 1070 354
## [3,] 78 436 148
MB=c(0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,1,0)
(B=matrix(MB, nrow = 6))
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 0 0 0
## [2,] 1 0 1 0 0 0
## [3,] 0 1 0 1 0 0
## [4,] 0 0 1 0 1 0
## [5,] 0 0 0 1 0 1
## [6,] 0 0 0 0 1 0
row(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 1 1 1 1
## [2,] 2 2 2 2 2 2
## [3,] 3 3 3 3 3 3
## [4,] 4 4 4 4 4 4
## [5,] 5 5 5 5 5 5
## [6,] 6 6 6 6 6 6
col(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 2 3 4 5 6
## [2,] 1 2 3 4 5 6
## [3,] 1 2 3 4 5 6
## [4,] 1 2 3 4 5 6
## [5,] 1 2 3 4 5 6
## [6,] 1 2 3 4 5 6
nrow(B)
## [1] 6
NROW(B)
## [1] 6
NCOL(B)
## [1] 6
ncol(B)
## [1] 6
anyNA(B)
## [1] FALSE
as.matrix(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 0 0 0
## [2,] 1 0 1 0 0 0
## [3,] 0 1 0 1 0 0
## [4,] 0 0 1 0 1 0
## [5,] 0 0 0 1 0 1
## [6,] 0 0 0 0 1 0
as.raw(B)
## [1] 00 01 00 00 00 00 01 00 01 00 00 00 00 01 00 01 00 00 00 00 01 00 01 00 00
## [26] 00 00 01 00 01 00 00 00 00 01 00
colnames(B)
## NULL
colSums(B)
## [1] 1 2 2 2 2 1
cummax(B)
## [1] 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cummin(B)
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cumprod(B)
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cumsum(B)
## [1] 0 1 1 1 1 1 2 2 3 3 3 3 3 4 4 5 5 5 5 5 6 6 7 7 7
## [26] 7 7 8 8 9 9 9 9 9 10 10
det(B)
## [1] -1
diag(B)
## [1] 0 0 0 0 0 0
diff(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 -1 1 0 0 0
## [2,] -1 1 -1 1 0 0
## [3,] 0 -1 1 -1 1 0
## [4,] 0 0 -1 1 -1 1
## [5,] 0 0 0 -1 1 -1
dimnames(B)
## NULL
exp(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1.000000 2.718282 1.000000 1.000000 1.000000 1.000000
## [2,] 2.718282 1.000000 2.718282 1.000000 1.000000 1.000000
## [3,] 1.000000 2.718282 1.000000 2.718282 1.000000 1.000000
## [4,] 1.000000 1.000000 2.718282 1.000000 2.718282 1.000000
## [5,] 1.000000 1.000000 1.000000 2.718282 1.000000 2.718282
## [6,] 1.000000 1.000000 1.000000 1.000000 2.718282 1.000000
is.matrix(B)
## [1] TRUE
is.unsorted(B)
## [1] TRUE
is.vector(B)
## [1] FALSE
isSymmetric(B)
## [1] TRUE
length(B)
## [1] 36
lengths(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1
log10(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -Inf 0 -Inf -Inf -Inf -Inf
## [2,] 0 -Inf 0 -Inf -Inf -Inf
## [3,] -Inf 0 -Inf 0 -Inf -Inf
## [4,] -Inf -Inf 0 -Inf 0 -Inf
## [5,] -Inf -Inf -Inf 0 -Inf 0
## [6,] -Inf -Inf -Inf -Inf 0 -Inf
lower.tri(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] FALSE FALSE FALSE FALSE FALSE FALSE
## [2,] TRUE FALSE FALSE FALSE FALSE FALSE
## [3,] TRUE TRUE FALSE FALSE FALSE FALSE
## [4,] TRUE TRUE TRUE FALSE FALSE FALSE
## [5,] TRUE TRUE TRUE TRUE FALSE FALSE
## [6,] TRUE TRUE TRUE TRUE TRUE FALSE
margin.table(B)
## [1] 10
marginSums(B)
## [1] 10
max(B)
## [1] 1
max.col(B)
## [1] 2 1 4 3 4 5
mean(B)
## [1] 0.2777778
min(B)
## [1] 0
nchar(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1
norm(B)
## [1] 2
order(B)
## [1] 1 3 4 5 6 8 10 11 12 13 15 17 18 19 20 22 24 25 26 27 29 31 32 33 34
## [26] 36 2 7 9 14 16 21 23 28 30 35
plot(B, xlim = c(0,2), ylim = c(0,2)) #aiuda
pmax(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 0 0 0
## [2,] 1 0 1 0 0 0
## [3,] 0 1 0 1 0 0
## [4,] 0 0 1 0 1 0
## [5,] 0 0 0 1 0 1
## [6,] 0 0 0 0 1 0
pmin(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 0 0 0
## [2,] 1 0 1 0 0 0
## [3,] 0 1 0 1 0 0
## [4,] 0 0 1 0 1 0
## [5,] 0 0 0 1 0 1
## [6,] 0 0 0 0 1 0
range(B)
## [1] 0 1
rank(B)
## [1] 13.5 31.5 13.5 13.5 13.5 13.5 31.5 13.5 31.5 13.5 13.5 13.5 13.5 31.5 13.5
## [16] 31.5 13.5 13.5 13.5 13.5 31.5 13.5 31.5 13.5 13.5 13.5 13.5 31.5 13.5 31.5
## [31] 13.5 13.5 13.5 13.5 31.5 13.5
row(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 1 1 1 1
## [2,] 2 2 2 2 2 2
## [3,] 3 3 3 3 3 3
## [4,] 4 4 4 4 4 4
## [5,] 5 5 5 5 5 5
## [6,] 6 6 6 6 6 6
solve(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 -1 0 1
## [2,] 1 0 0 0 0 0
## [3,] 0 0 0 1 0 -1
## [4,] -1 0 1 0 0 0
## [5,] 0 0 0 0 0 1
## [6,] 1 0 -1 0 1 0
sort(B)
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
sum(B)
## [1] 10
t(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0 1 0 0 0 0
## [2,] 1 0 1 0 0 0
## [3,] 0 1 0 1 0 0
## [4,] 0 0 1 0 1 0
## [5,] 0 0 0 1 0 1
## [6,] 0 0 0 0 1 0
upper.tri(B)
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] FALSE TRUE TRUE TRUE TRUE TRUE
## [2,] FALSE FALSE TRUE TRUE TRUE TRUE
## [3,] FALSE FALSE FALSE TRUE TRUE TRUE
## [4,] FALSE FALSE FALSE FALSE TRUE TRUE
## [5,] FALSE FALSE FALSE FALSE FALSE TRUE
## [6,] FALSE FALSE FALSE FALSE FALSE FALSE
which.max(B)
## [1] 2
Actividad 7
library(stringr)
gen=c("AGTCACAATGGAATAGGCCAAGCGATTGCAGGGTAGCCAGCCA")
tamaño=str_length(gen)
paste0("El total de bases es: ",tamaño)
## [1] "El total de bases es: 43"
numero_b=nchar(gen)
bases=str_sub(gen,1:tamaño,1:tamaño)
table(bases)
## bases
## A C G T
## 14 10 13 6
(baseG=str_locate_all(gen,"G"))
## [[1]]
## start end
## [1,] 2 2
## [2,] 10 10
## [3,] 11 11
## [4,] 16 16
## [5,] 17 17
## [6,] 22 22
## [7,] 24 24
## [8,] 28 28
## [9,] 31 31
## [10,] 32 32
## [11,] 33 33
## [12,] 36 36
## [13,] 40 40
parGA=str_count(gen,"GA")
paste0("El total de veces que aparece el par GA es : ",parGA)
## [1] "El total de veces que aparece el par GA es : 2"
Actividad 8
decaimiento = function(t){
tiempo = seq(0, t,8)
N = 500 * (1/2)^tiempo
t = log(N/500,1/2)
df <- data.frame(tiempo, N)
require(ggplot2)
grafico <- ggplot(df, aes(x = tiempo, y = N)) + geom_point() + geom_smooth(aes(x=t, y=N),model = "SplineSmooth", colour="red")
return(list(data.frame(tiempo,N),t,grafico))
}
decaimiento(64)
## [[1]]
## tiempo N
## 1 0 5.000000e+02
## 2 8 1.953125e+00
## 3 16 7.629395e-03
## 4 24 2.980232e-05
## 5 32 1.164153e-07
## 6 40 4.547474e-10
## 7 48 1.776357e-12
## 8 56 6.938894e-15
## 9 64 2.710505e-17
##
## [[2]]
## [1] 0 8 16 24 32 40 48 56 64
##
## [[3]]
Actividad 9
pH = c(6.12,5.13,5.84,6.53,6.12,6.30,6.04,5.79,5.94,6.03,6.12)
tiempo = c(0,30,60,90,120,150,180,210,240,270,300)
(datos = data.frame(tiempo,pH))
## tiempo pH
## 1 0 6.12
## 2 30 5.13
## 3 60 5.84
## 4 90 6.53
## 5 120 6.12
## 6 150 6.30
## 7 180 6.04
## 8 210 5.79
## 9 240 5.94
## 10 270 6.03
## 11 300 6.12
datos2 = datos[1:2,]
library(ggplot2)
ggplot(datos, aes(x=tiempo, y=pH )) +
geom_line(colour="violet") +
geom_point( size=2, shape=21, fill="white", colour="violet") +
theme_minimal() + geom_line(aes(x=tiempo, y=pH),data=datos2, colour="red")+
geom_text(aes(x = 20, y=5.9,label = "Pendiente (β): -0.033", angle=-77, fontface=1))
(pendiente=(pH[2]-pH[1])/(tiempo[2]-tiempo[1]))
## [1] -0.033
Actividad 10
temperaturas=function(n){
act10=rnorm(n,25,2)
media=mean(act10)
mediana=median(act10)
mediat=mean(act10,trim=0.05)
q1=quantile(act10,0.25)
q3=quantile(act10,0.75)
q10=quantile(act10,0.1)
q90=quantile(act10,0.9)
p11=100*sum((act10)>0.95)/10
cv=sd(act10) / mean(act10) * 100
return(list(paste0("La media aritmética es: ",media),
paste0("La mediana es: ",mediana),
paste0("La media truncada es: ",mediat),
paste0("El cuartil inferior es: ",q1),
paste0("El cuartil superior es: ",q3),
paste0("El percentil 10 es: ",q10),
paste0("El percentil 90 es: ",q90),
paste0("El % de datos que cae a dos desviaciones estándar de la media es: ",p11),
paste0("El coeficiente de variación es: ",cv)))
}
temperaturas(10)
## [[1]]
## [1] "La media aritmética es: 24.7360421334575"
##
## [[2]]
## [1] "La mediana es: 25.0684795816823"
##
## [[3]]
## [1] "La media truncada es: 24.7360421334575"
##
## [[4]]
## [1] "El cuartil inferior es: 24.7237223566448"
##
## [[5]]
## [1] "El cuartil superior es: 25.5176203206252"
##
## [[6]]
## [1] "El percentil 10 es: 21.6809092625056"
##
## [[7]]
## [1] "El percentil 90 es: 25.9306535952115"
##
## [[8]]
## [1] "El % de datos que cae a dos desviaciones estándar de la media es: 100"
##
## [[9]]
## [1] "El coeficiente de variación es: 9.89900379986591"
Actividad 11
temperaturas2=function(n){
act11=runif(n,18,24)
media=mean(act11)
mediana=median(act11)
mediat=mean(act11,trim=0.05)
q1=quantile(act11,0.25)
q3=quantile(act11,0.75)
q10=quantile(act11,0.1)
q90=quantile(act11,0.9)
p11=100*sum((act11)>0.95)/n
cv=sd(act11) / mean(act11) * 100
return(list(paste0("La media aritmética es: ",media),
paste0("La mediana es: ",mediana),
paste0("La media truncada es: ",mediat),
paste0("El cuartil inferior es: ",q1),
paste0("El cuartil superior es: ",q3),
paste0("El percentil 10 es: ",q10),
paste0("El percentil 90 es: ",q90),
paste0("El % de datos que cae a dos desviaciones estándar de la media es: ",p11),
paste0("El coeficiente de variación es: ",cv)))
}
temperaturas2(100)
## [[1]]
## [1] "La media aritmética es: 21.1159502910823"
##
## [[2]]
## [1] "La mediana es: 21.144079571357"
##
## [[3]]
## [1] "La media truncada es: 21.1260415524865"
##
## [[4]]
## [1] "El cuartil inferior es: 19.6477622932289"
##
## [[5]]
## [1] "El cuartil superior es: 22.7106270315126"
##
## [[6]]
## [1] "El percentil 10 es: 18.5894174506422"
##
## [[7]]
## [1] "El percentil 90 es: 23.3780703419354"
##
## [[8]]
## [1] "El % de datos que cae a dos desviaciones estándar de la media es: 100"
##
## [[9]]
## [1] "El coeficiente de variación es: 8.36820204200039"
Actividad 12
set.seed(123)
pp=rbeta(30,0.8,0.5)*100
paste0("La media de pp es:", mean(pp))
## [1] "La media de pp es:65.6394039023683"
p12=((sum(pp>0.95))/30)*100
paste0("El % de datos que cae a dos desviaciones estándar de la media de pp es: ",p12)
## [1] "El % de datos que cae a dos desviaciones estándar de la media de pp es: 100"
cumsum(pp)
## [1] 43.37938 143.12956 209.83928 280.58248 380.45543 468.05737
## [7] 482.62190 567.92326 637.42005 658.35364 747.21682 841.25602
## [13] 867.09636 911.44124 916.36267 929.23256 1025.42434 1097.73700
## [19] 1196.88493 1283.20758 1321.54001 1418.40564 1514.38467 1608.17674
## [25] 1698.74944 1755.51704 1793.02115 1825.05346 1870.19685 1969.18212
max=which(pp %in% max(pp))
paste0("El día del mes en el que cae el máximo de pp es: ",max)
## [1] "El día del mes en el que cae el máximo de pp es: 5"
min=which(pp %in% min(pp))
paste0("El día del mes en el que cae el mínimo de pp es: ",min)
## [1] "El día del mes en el que cae el mínimo de pp es: 15"
Actividad 13
x = c(1, 2, 5, 9, 11)
y = c(2, 5, 1, 0, 23)
intersect(x,y)
## [1] 1 2 5
setdiff(x,y)
## [1] 9 11
setdiff(y,x)
## [1] 0 23
union(x,y)
## [1] 1 2 5 9 11 0 23
Actividad 14
td=rbeta(30,2,1)*25
td[td>20]
## [1] 21.94627 23.88268 24.16421 20.94031 20.11355 22.55470 24.74520 22.86634
## [9] 22.93571
mean(td[td >= 4])
## [1] 16.84913
td[td == 0 | td == 1]
## numeric(0)
td[td %in% c(0, 0.6)]
## numeric(0)
Actividad 15
Ejercicio 1
Se extrae una carta al azar de una baraja de 52 cartas. Encuentre la probabilidad de que la carta extraída sea (i) un as, y (ii) un palo.
(pi=(4/52)*100)
## [1] 7.692308
La probabilidad de extraer una carta al azar y que sea un as es del 7,69%
(pii=(13/52)*100)
## [1] 25
Teniendo en cuenta que un palo son 13 cartas, la probabilidad de sacar un palo de una baraja de 52 cartas es del 25%
Ejercicio 2
Se lanza una moneda sin sesgo dos veces. Encuentre la probabilidad de (i) exactamente una cara, (ii) a lo sumo una cara, (iii) al menos una cara, y (iv) la misma cara en ambas monedas.
(p_i=(2/4)*100)
## [1] 50
La probabilidad de que al lanzar una moneda dos veces y una sea cara es del 50%
(p_ii=(2/4)*100)
## [1] 50
La probabilidad de que al lanzar una moneda dos veces y a lo sumo una sea cara es del 50%
(p_iii=(3/4)*100)
## [1] 75
La probabilidad de que al lanzar una moneda dos veces y al menos una sea cara es del 75%
(p_i=(1/4)*100)
## [1] 25
La probabilidad de que al lanzar una moneda dos veces y sea la misma cara en ambas es del 25%