1 List of Mergers

files = paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/Ultimate Panel Data/",as.character(2000:2016),".fst")

panel = lapply(files, read_fst, as.data.table = TRUE,columns=c("respondentid","agencycode","reportername","asofdate","parentname","parentidentifier","reporterhomecity","reporterhomestate","rssd"))
panel <- do.call(rbind , panel)

panel[,asofdate:=as.integer(asofdate)]
panel <- panel[!duplicated(panel[,c("respondentid","agencycode","asofdate")])]
panel[,parentidentifier:=stri_trim(parentidentifier)]

panel[,rssd:=as.numeric(rssd)]

panel[,hmda_id:=paste0(agencycode,"-",respondentid)]

files <- NULL
files  <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_NP/",full.names = TRUE)
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_RF/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_NP/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_RF/",full.names = TRUE))

hmda = lapply(files, read_fst, as.data.table = TRUE,
              columns=c("asofdate","respondentid","agencycode","state","countycode","msa"))
hmda <- do.call(rbind , hmda)
hmda[,lender:=paste0(agencycode,"-",respondentid)]
hmda[,countycode:=paste0(state,countycode)]


cbsa_fips <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/cbsa_countyfips.csv")
cbsa_fips[,fips:=ifelse(nchar(fips)==4,paste0("0",fips),paste0(fips))]

hmda <- merge(hmda,cbsa_fips,by.x="countycode",by.y="fips",all.x=T)
hmda[,c("agencycode","respondentid"):=list(NULL)]

gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells    2087562   111.5    3868294   206.6    2931850   156.6
## Vcells 2223678740 16965.4 6908864485 52710.5 7104836055 54205.6
mergers <- list()

temp <- list(1,"BANK ONE - JPMORGAN CHASE 2004",
             c("1-0000000008","1-0000007621","1-0000003106","1-0000011230","1-0000013655","1-0000013759","1-0000013914","1-0000014320","1-0000015184","1-0000018785","1-0000021969","1-0000023237","2-0000331647","3-0000002487"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2000,"JPMORGAN CHASE BANK, NA",2004)
mergers[[1]] <- temp

temp <- list(2,"COUNTRYWIDE - BANK OF AMERIC 2009" ,c("1-0000024141","2-0001644643","2-0003267484","7-20-2241771","1-0000024141","4-0000018039"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2009)
mergers[[2]] <- temp

temp <- list(3,"FLEET NA - BANK OF AMERICA 2005",c("1-0000000200"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[3]] <- temp

temp <- list(4,"WACHOVIA BK NA - WELLS FARGO 2010", c("1-0000000001","1-0000022559","1-56-0811711"), panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2009)
mergers[[4]] <- temp

temp <- list(5,"LASALLE BK - BANK OF AMERICA 2008",panel[substr(reportername,1,7)=="LASALLE" & asofdate<=2005]$hmda_id,c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[5]] <- temp


temp <- list(6,"ABN AMRO MTG GROUP - CITI BANK 2007",c("1-36-3744610"),unique(panel[parentidentifier=="0001951350"]$hmda_id),
             2004,"CITIMORTGAGE, INC.",2007)
mergers[[6]] <- temp

temp <- list(7,"UNION PLANTERS BANK - REGIONS FINANCIAL CORP 2004",
             c("1-0000013349"),
             c("9-0000233031","2-0000233031"),
             2002,c("REGIONS BANK"),2004)
mergers[[7]] <- temp

temp <- list(8,"AmSouth Bancorporation - REGIONS FINANCIAL CORP 2006",
             c("2-0000245333"),
             c("9-0000233031","2-0000233031"),
             2004,c("REGIONS BANK"),2006)
mergers[[8]] <- temp


temp <- list(9,"Washington Mutual - JPMORGAN CHASE 2008",
             c("4-0000008551","4-0000011905"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2005,"JPMORGAN CHASE BANK, NA",
             2008)
mergers[[9]] <- temp



## target operated in 5 msas; small share.
temp <- list(10,"Greater Bay Bank - Wells Fargo 2007",
             c("1-0000024489"),
             panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,c("WELLS FARGO BANK, N.A."),2007)
mergers[[10]] <- temp


temp <- list(11,"MBNA NA - BANK OF AMERICA 2005",c("1-0000024095"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[11]] <- temp

temp <- list(12,"Merrill Lynch - BANK OF AMERICA 2008",c("2-0000421203","7-13-3403204","3-13-3098068","3-13-3399559","3-0000027374","3-0000091363","3-13-3399559","4-0000014460","3-68-0518519","4-0000014460", "4-0133098068"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[12]] <- temp


temp <- list(13,"FIRST INTERSTATE BK CA  - Wells Fargo 1996",c("2-0000669667"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,1994,"WELLS FARGO BANK, N.A.",1996)
mergers[[13]] <- temp

temp <- list(14,"PACIFIC NORTHWEST  - Wells Fargo 2004",c("3-0000030887","3-0000027346"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2002,"WELLS FARGO BANK, N.A.",2004)
mergers[[14]] <- temp


temp <- list(15,"MERIDIAN MOME MORTGAGE, LP  - Wells Fargo 2010",c("1-74-3082948"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2010)
mergers[[15]] <- temp


temp <- list(16,"The Leader Mtg Co - US Bank 2004",
             c("7-3814209995"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2002,c("U.S. BANK N.A."),2004)
mergers[[16]] <- temp

temp <- list(17,"PFF BANK & TRUST  - US Bank 2008",
             c("4-0000001405"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[17]] <- temp


temp <- list(18,"DOWNEY SAVINGS AND LOAN ASSOCIATION, F.A.   - US Bank 2008",
             c("4-0000006189"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[18]] <- temp


cbsas <- unique(hmda$cbsa)
yrs <- 2000:2016
acqbanks <- NULL
for(i in 1:length(mergers)) {
  acqbanks <- c(acqbanks,mergers[[i]][6][[1]])
}
acqbanks <- c(unique(acqbanks),"other")

cbsas1 <- merge(cbsas,yrs)
cbsas2 <- merge(cbsas,acqbanks)

cbsas <- merge(cbsas1,cbsas2,by="x")
names(cbsas) <- c("cbsa","acyr","bank")
cbsas <- data.table(cbsas)

cbsas[,bank:=as.character(bank)]
cbsas[,acqbank:=0]
cbsas[,pred_share:=0]
cbsas[,suc_share:=0]


cbsa_bnk <- NULL
lender_bank <- NULL
sumtable <- NULL

for(i in 1:length(mergers)) {
  # print(i)
  mid=mergers[[i]][1][[1]]
  mname=mergers[[i]][2][[1]]
  pred_hmda_id=mergers[[i]][3][[1]]
  suc_hmda_id=mergers[[i]][4][[1]]
  yr=mergers[[i]][5][[1]]
  acname = mergers[[i]][6][[1]]
  acyr = mergers[[i]][7][[1]]

  temp <- hmda[asofdate == yr ]
  temp[,pred:=ifelse(lender %in% pred_hmda_id,1,0)]
  cw <- temp[,.(pred_share=mean(pred)),by=.(cbsa)]
  
  temp1 <- hmda[asofdate == (acyr-1) ]
  temp1[,suc:=ifelse(lender %in% suc_hmda_id,1,0)]
  cw1 <- temp1[,.(suc_share=mean(suc)),by=.(cbsa)]
  
  cw <- merge(cw,cw1,by="cbsa",all.x=T)
  cw <- cw[!is.na(cbsa)]
  cw[is.na(cw)] <- 0
  
  cw[,joint_share:=pred_share+suc_share]
  cw[,bank:=acname]
  cw[,acyr:=acyr]

  cw[,c("joint_share"):=list(NULL)]
  cbsa_bnk <- rbind(cbsa_bnk,cw)
}


cbsa_bnk[,acqbank:=1]


cbsa_bnk <- rbind(cbsa_bnk,cbsas)
setorder(cbsa_bnk,-pred_share)
cbsa_bnk <- cbsa_bnk[!duplicated(cbsa_bnk[,c("cbsa","acyr","bank")])]
cbsa_bnk <- cbsa_bnk[!is.na(cbsa)]

cbsa_bnk <- cbsa_bnk[,.(pred_share=sum(pred_share,na.rm = T)),by=.(cbsa,acyr)]
cbsa_bnk[,bank:=NA]
cbsa_bnk_1 <- cbsa_bnk[,c("cbsa","pred_share","bank","acyr")]

names(cbsa_bnk_1) <- c("cbsa","pred_share_1","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_2","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_3","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_4","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_5","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_6","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_7","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_8","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_9","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

cbsa_bnk[,pred_share_1:=ifelse(is.na(pred_share_1),0,pred_share_1)]
cbsa_bnk[,pred_share_2:=ifelse(is.na(pred_share_2),0,pred_share_2)]
cbsa_bnk[,pred_share_3:=ifelse(is.na(pred_share_3),0,pred_share_3)]
cbsa_bnk[,pred_share_4:=ifelse(is.na(pred_share_4),0,pred_share_4)]
cbsa_bnk[,pred_share_5:=ifelse(is.na(pred_share_5),0,pred_share_5)]
cbsa_bnk[,pred_share_6:=ifelse(is.na(pred_share_6),0,pred_share_6)]
cbsa_bnk[,pred_share_7:=ifelse(is.na(pred_share_7),0,pred_share_7)]
cbsa_bnk[,pred_share_8:=ifelse(is.na(pred_share_8),0,pred_share_8)]
cbsa_bnk[,pred_share_9:=ifelse(is.na(pred_share_9),0,pred_share_9)]

cbsa_bnk[,msinc13:=pred_share_1+pred_share_2+pred_share_3+0.00001]
cbsa_bnk[,msinc46:=pred_share_4+pred_share_5+pred_share_6+0.00001]
cbsa_bnk[,msinc79:=pred_share_7+pred_share_8+pred_share_9+0.00001]
 

cbsa_bnk[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

cbsa_bnk[,msinc46G:=ifelse(msinc46<=0.0001,"0. 0",
                           ifelse(msinc46<0.01,"1. Less than 1pct",
                           ifelse(msinc46<0.05,"2. 1 - 5pct",
                                  ifelse(msinc46<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]


cbsa_bnk[,msinc79G:=ifelse(msinc79<=0.0001,"0. 0",
                           ifelse(msinc79<0.01,"1. Less than 1pct",
                           ifelse(msinc79<0.05,"2. 1 - 5pct",
                                  ifelse(msinc79<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]


cbsa_bnk[,c("bank"):=list(NULL)]

2 MSAcq Distribution

print(ggplot(cbsa_bnk,aes(x=msinc13*100))+geom_histogram(fill="royalblue",alpha=0.3,color="royalblue")+theme_minimal()+labs(x=bquote(MSAcq^{1-3}~"(%)"),y="Frequency")+scale_y_continuous(labels = function(x) format(x, big.mark = ",",scientific = FALSE)))

freddie <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Freddie/Acq",full.names = TRUE)
freddie = lapply(freddie, read_fst,as.data.table=T, columns = c("fico","dt_first_pi","cd_msa","ltv","dti","orig_upb","int_rt","prop_type","zipcode","id_loan","orig_loan_term","seller_name","loan_purpose","cltv"))
freddie <- do.call(rbind , freddie)

freddie <- freddie[orig_loan_term==360 & prop_type=="SF"]
freddie[,loanyr:=year(dt_first_pi)]
freddie[,msa:=cd_msa]
freddie[,c("orig_loan_term","dt_first_pi","prop_type","cd_msa"):=list(NULL)]
freddie[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A."),"JPMORGAN CHASE BANK, NA",seller_name)]
freddie[,seller_name:= ifelse(seller_name %in%  c("CITIMORTGAGE, INC.","ABN AMRO, NKA CITIMORTGAGE INC.","CITIMORTGAGE, INC."),"CITIMORTGAGE, INC.",seller_name)]
freddie[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A."),"WELLS FARGO BANK, N.A.",seller_name)]

freddie[,bank:=seller_name]
# freddie[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
freddie[,freddie:=1]
freddie[,newpurchase:=ifelse(loan_purpose=="P",1,0)]
freddie[,ltvorg:=ltv]
freddie[,ltv:=cltv]
fannie <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Fannie/Acq",full.names = TRUE)
fannie = lapply(fannie, read_fst,as.data.table=T, columns = c("loan_identifier","seller_name","original_interest_rate","original_upb","original_loan_term","origination_date","original_ltv","original_dti","credit_score","property_type","property_state","zip_code","msa","loan_purpose","original_cltv"))
fannie <- do.call(rbind , fannie)

fannie <- fannie[original_loan_term==360 & property_type=="SF"]
fannie[,loanyr:=year(origination_date)]
fannie[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A."),"JPMORGAN CHASE BANK, NA",seller_name)]
fannie[,seller_name:= ifelse(seller_name %in%  c("CITIMORTGAGE, INC.","ABN AMRO, NKA CITIMORTGAGE INC.","CITIMORTGAGE, INC."),"CITIMORTGAGE, INC.",seller_name)]
fannie[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A."),"WELLS FARGO BANK, N.A.",seller_name)]

fannie[,bank:=seller_name]
# fannie[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
fannie[,freddie:=0]
fannie[,ltvorg:=original_ltv]
setnames(fannie,"zip_code","zipcode")
setnames(fannie,"original_ltv","ltv")
setnames(fannie,"original_upb","orig_upb")
setnames(fannie,"original_interest_rate","int_rt")
setnames(fannie,"loan_identifier","id_loan")
setnames(fannie,"credit_score","fico")
setnames(fannie,"original_dti","dti")
setnames(fannie,"original_cltv","cltv")

fannie[,c("property_type","property_state","original_loan_term","origination_date"):=list(NULL)]
fannie[,loan_purpose:=ifelse(loan_purpose=="R","N",loan_purpose)]

fannie <- fannie[loan_purpose != "U"]
fannie[,id_loan:=as.character(id_loan)]

fannie[,newpurchase:=ifelse(loan_purpose=="P",1,0)]
fannie[,ltv:=cltv]

2.1 Moodys

moodys <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Moodys/0001/LoanChars.fst",as.data.table = TRUE, columns=c("loanid","loanoriginationdate","zipcode","originalloanbalance","originalcltv","state","originator","armflag","originalfico","originalterm","originalltv","documentationtype","originalinterestrate","purposetype","assettype")) 

cbsa <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/ZIP_CBSA.csv")
cbsa[,ZIP:=ifelse(nchar(ZIP)==3,paste0("00",ZIP),ifelse(nchar(ZIP)==4,paste0("0",ZIP),paste0(ZIP)))]
setorder(cbsa,ZIP,-RES_RATIO)
cbsa <- cbsa[!duplicated(cbsa[,c("ZIP")])]
cbsa[,c("RES_RATIO","BUS_RATIO","OTH_RATIO","TOT_RATIO"):=list(NULL)]
names(cbsa) <- c("zipcode","msa")
moodys <- merge(moodys,cbsa,by=c("zipcode"))

# moodys <- moodys[originalterm==360 & armflag=="F"]
moodys[,loanyr:=as.numeric(substr(loanoriginationdate,1,4))]
moodys[,seller_name:= originator]
moodys[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A.","JP MORGAN CHASE BANK NA","CHASE MANHATTAN MORTGAGE CORP"),"JPMORGAN CHASE BANK, NA",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in%  c("B OF A"),"BANK OF AMERICA, N.A.",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A.","WELLS FARGO BANK N.A"," WELLS FARGO HOME MTG, INC"),"WELLS FARGO BANK, N.A.",seller_name)]

moodys[,int_rt:=originalinterestrate]
moodys[,dti:=0]
moodys[,ltv:=originalcltv]
moodys[,ltvorg:=originalltv]
moodys[,fico:=originalfico]
moodys[,orig_upb:= originalloanbalance]

# moodys[,c("originalinterestrate","originalltv","originalfico","originalloanbalance","msacode","csacode","divcode","loanoriginationdate","armflag","originalterm"):=list(NULL)]

moodys[,fulldocumentation:=ifelse(documentationtype=="FU",1,0)]
gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells   38841180  2074.4   57239540  3057.0   39532041  2111.3
## Vcells 3592825416 27411.1 6908864485 52710.5 7104836055 54205.6
moodys[,bank:=seller_name]
# moodys[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
moodys[,newpurchase:=ifelse(purposetype=="PUR",1,0)]

moodys <- moodys[assettype != "UN"]

3 GSE Sample

3.1 Dep. Var: Rate, All loans

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("msa","loanyr"),by.y=c("cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]

regsample[,bank_year:=paste(seller_name,loanyr)]


r <- list()
r[[1]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank+msa+loanyr|0|msa,data=regsample)
  
r[[2]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)

r[[3]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample)


.printtable(r,column.labels = c("GSE","GSE","GSE"),lines = list(c("Fixed Effects",c("MSA,Bank,Yr","MSA*Bank,Yr","Bank*Yr, MSA"))))
## 
## ==================================================
##                       Dependent variable:         
##               ------------------------------------
##                   GSE         GSE         GSE     
##                   (1)         (2)         (3)     
## --------------------------------------------------
## msinc13        0.490***    0.381***     0.441***  
##                 (0.068)     (0.065)     (0.069)   
## msinc46        0.412***    0.304***     0.404***  
##                 (0.069)     (0.062)     (0.066)   
## fico          -0.0001***  -0.0001***   -0.0001*** 
##                (0.00001)   (0.00001)   (0.00001)  
## ltv            0.004***    0.004***     0.004***  
##                (0.0001)    (0.0001)     (0.0001)  
## dti            0.0001***   0.0001***   0.0001***  
##                (0.00001)   (0.00001)   (0.00001)  
## log(orig_upb)  -0.228***   -0.228***   -0.227***  
##                 (0.006)     (0.006)     (0.006)   
## freddie        0.049***    0.048***     0.055***  
##                 (0.002)     (0.002)     (0.002)   
## newpurchase    0.022***    0.025***     0.020***  
##                 (0.004)     (0.004)     (0.004)   
## --------------------------------------------------
## Fixed Effects MSA,Bank,Yr MSA*Bank,Yr Bank*Yr, MSA
## Observations  23,793,279  23,793,279   23,793,279 
## Adjusted R2      0.894       0.896       0.897    
## ==================================================
## Note:                  *p<0.1; **p<0.05; ***p<0.01
## 

3.2 Dep. Var: Rate, Excl. acq. banks

r <- list()
r[[1]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank+msa+loanyr|0|msa,data=regsample[!bank %in% acqbanks])
  
r[[2]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[!bank %in% acqbanks])

r[[3]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_year+msa|0|msa,data=regsample[!bank %in% acqbanks])


.printtable(r,column.labels = c("GSE","GSE","GSE"),lines = list(c("Fixed Effects",c("MSA,Bank,Yr","MSA*Bank,Yr","Bank*Yr, MSA"))))
## 
## ==================================================
##                       Dependent variable:         
##               ------------------------------------
##                   GSE         GSE         GSE     
##                   (1)         (2)         (3)     
## --------------------------------------------------
## msinc13        0.545***    0.439***     0.552***  
##                 (0.089)     (0.094)     (0.091)   
## msinc46        0.404***    0.325***     0.404***  
##                 (0.081)     (0.076)     (0.073)   
## fico          -0.0001***  -0.0001***   -0.0001*** 
##                (0.00001)   (0.00001)   (0.00001)  
## ltv            0.004***    0.004***     0.004***  
##                (0.0001)    (0.0001)     (0.0001)  
## dti            0.0001***   0.0001***   0.0001***  
##                (0.00001)   (0.00001)   (0.00001)  
## log(orig_upb)  -0.216***   -0.215***   -0.214***  
##                 (0.005)     (0.005)     (0.005)   
## freddie        0.053***    0.044***     0.037***  
##                 (0.004)     (0.002)     (0.004)   
## newpurchase    0.026***    0.030***     0.023***  
##                 (0.004)     (0.004)     (0.004)   
## --------------------------------------------------
## Fixed Effects MSA,Bank,Yr MSA*Bank,Yr Bank*Yr, MSA
## Observations  13,641,546  13,641,546   13,641,546 
## Adjusted R2      0.906       0.907       0.908    
## ==================================================
## Note:                  *p<0.1; **p<0.05; ***p<0.01
## 

3.3 Dep. Var: log(Amount), Excl. acq. banks

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+msinc46+fico+ltv+dti+freddie+newpurchase|bank+msa+loanyr|0|msa,data=regsample[!bank %in% acqbanks])
  
r[[2]] <- felm(log(orig_upb)~msinc13+msinc46+fico+ltv+dti+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[!bank %in% acqbanks])

r[[3]] <- felm(log(orig_upb)~msinc13+msinc46+fico+ltv+dti+freddie+newpurchase|bank_year+msa|0|msa,data=regsample[!bank %in% acqbanks])


.printtable(r,column.labels = c("GSE","GSE","GSE"),lines = list(c("Fixed Effects",c("MSA,Bank,Yr","MSA*Bank,Yr","Bank*Yr, MSA"))))
## 
## ==================================================
##                       Dependent variable:         
##               ------------------------------------
##                   GSE         GSE         GSE     
##                   (1)         (2)         (3)     
## --------------------------------------------------
## msinc13         -0.290      -0.333       -0.315   
##                 (0.223)     (0.203)     (0.216)   
## msinc46          0.017      -0.001       0.005    
##                 (0.123)     (0.103)     (0.120)   
## fico          0.00004***  0.00003***   0.00003*** 
##                (0.00000)   (0.00000)   (0.00000)  
## ltv            0.008***    0.008***     0.008***  
##                (0.0001)    (0.0001)     (0.0001)  
## dti            0.0001***   0.0001***   0.0001***  
##                (0.00000)   (0.00000)   (0.00000)  
## freddie          0.003     0.012***      0.004    
##                 (0.004)     (0.002)     (0.005)   
## newpurchase    -0.073***   -0.073***   -0.073***  
##                 (0.004)     (0.004)     (0.004)   
## --------------------------------------------------
## Fixed Effects MSA,Bank,Yr MSA*Bank,Yr Bank*Yr, MSA
## Observations  13,641,548  13,641,548   13,641,548 
## Adjusted R2      0.364       0.374       0.366    
## ==================================================
## Note:                  *p<0.1; **p<0.05; ***p<0.01
## 

4 Moody’s Sample

4.1 Dep. Var: Rate, All loans

regsample <- merge(moodys,cbsa_bnk,by.x=c("msa","loanyr"),by.y=c("cbsa","acyr"))
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,bank_year:=paste(seller_name,loanyr)]


r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank+msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])
r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
 
    .printtable(r,column.labels = c("Moody's","Moody's","Moody's","Moody's"),lines = list(c("Fixed Effects",c("MSA,Bank,Yr","MSA*Bank,Yr","Bank*Yr, MSA"))))
## 
## ==============================================================
##                                   Dependent variable:         
##                           ------------------------------------
##                             Moody's     Moody's     Moody's   
##                               (1)         (2)         (3)     
## --------------------------------------------------------------
## msinc13                    -1.410***    -1.057*    -1.161***  
##                             (0.534)     (0.544)     (0.396)   
## fico                       -0.003***   -0.003***   -0.003***  
##                            (0.0001)    (0.0001)     (0.0001)  
## ltv                        0.018***    0.017***     0.017***  
##                             (0.001)     (0.001)     (0.001)   
## fulldocumentation          -0.224***   -0.223***   -0.214***  
##                             (0.009)     (0.010)     (0.009)   
## log(orig_upb)              -1.103***   -1.090***   -1.078***  
##                             (0.018)     (0.019)     (0.018)   
## newpurchase                0.116***    0.122***     0.144***  
##                             (0.021)     (0.020)     (0.018)   
## factor(assettype)Alt-A     0.112***    0.111***     0.122***  
##                             (0.007)     (0.007)     (0.006)   
## factor(assettype)Subprime  0.404***    0.409***     0.397***  
##                             (0.013)     (0.014)     (0.014)   
## --------------------------------------------------------------
## Fixed Effects             MSA,Bank,Yr MSA*Bank,Yr Bank*Yr, MSA
## Observations               3,028,828   3,028,828   3,028,828  
## Adjusted R2                  0.465       0.483       0.488    
## ==============================================================
## Note:                              *p<0.1; **p<0.05; ***p<0.01
## 

4.2 Dep. Var: Rate, Excl. acq. banks

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank+msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & !bank %in% acqbanks])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & !bank %in% acqbanks])
r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F" & !bank %in% acqbanks])
 
    .printtable(r,column.labels = c("Moody's","Moody's","Moody's","Moody's"),lines = list(c("Fixed Effects",c("MSA,Bank,Yr","MSA*Bank,Yr","Bank*Yr, MSA"))))
## 
## ==============================================================
##                                   Dependent variable:         
##                           ------------------------------------
##                             Moody's     Moody's     Moody's   
##                               (1)         (2)         (3)     
## --------------------------------------------------------------
## msinc13                    -1.612***   -1.289**    -1.262***  
##                             (0.574)     (0.586)     (0.436)   
## fico                       -0.003***   -0.003***   -0.003***  
##                            (0.0001)    (0.0001)     (0.0001)  
## ltv                        0.018***    0.018***     0.018***  
##                             (0.001)     (0.001)     (0.001)   
## fulldocumentation          -0.249***   -0.248***   -0.237***  
##                             (0.010)     (0.010)     (0.009)   
## log(orig_upb)              -1.139***   -1.125***   -1.108***  
##                             (0.020)     (0.020)     (0.019)   
## newpurchase                0.122***    0.128***     0.154***  
##                             (0.022)     (0.022)     (0.019)   
## factor(assettype)Alt-A     0.100***    0.101***     0.111***  
##                             (0.007)     (0.007)     (0.006)   
## factor(assettype)Subprime  0.375***    0.384***     0.366***  
##                             (0.012)     (0.014)     (0.012)   
## --------------------------------------------------------------
## Fixed Effects             MSA,Bank,Yr MSA*Bank,Yr Bank*Yr, MSA
## Observations               2,724,749   2,724,749   2,724,749  
## Adjusted R2                  0.464       0.481       0.486    
## ==============================================================
## Note:                              *p<0.1; **p<0.05; ***p<0.01
## 

4.3 Dep. Var: log(Amount), Excl. acq. banks

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+ltv+fulldocumentation+newpurchase+factor(assettype)|bank+msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+ltv+fulldocumentation+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])
r[[3]] <- felm(log(orig_upb)~msinc13+fico+ltv+fulldocumentation+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
 
    .printtable(r,column.labels = c("Moody's","Moody's","Moody's","Moody's"),lines = list(c("Fixed Effects",c("MSA,Bank,Yr","MSA*Bank,Yr","Bank*Yr, MSA"))))
## 
## ==============================================================
##                                   Dependent variable:         
##                           ------------------------------------
##                             Moody's     Moody's     Moody's   
##                               (1)         (2)         (3)     
## --------------------------------------------------------------
## msinc13                    -1.588***   -1.658***   -1.694***  
##                             (0.374)     (0.376)     (0.368)   
## fico                       0.002***    0.002***     0.002***  
##                            (0.0001)    (0.0001)     (0.0001)  
## ltv                        -0.003***   -0.002***   -0.002***  
##                             (0.001)     (0.001)     (0.001)   
## fulldocumentation          0.027***    0.023***     0.027***  
##                             (0.006)     (0.006)     (0.006)   
## newpurchase                -0.154***   -0.151***   -0.155***  
##                             (0.009)     (0.010)     (0.009)   
## factor(assettype)Alt-A     -0.156***   -0.154***   -0.155***  
##                             (0.005)     (0.005)     (0.006)   
## factor(assettype)Subprime  -0.123***   -0.126***   -0.129***  
##                             (0.008)     (0.008)     (0.008)   
## --------------------------------------------------------------
## Fixed Effects             MSA,Bank,Yr MSA*Bank,Yr Bank*Yr, MSA
## Observations               3,030,038   3,030,038   3,030,038  
## Adjusted R2                  0.416       0.430       0.436    
## ==============================================================
## Note:                              *p<0.1; **p<0.05; ***p<0.01
## 

4.4 Dep. Var: Rate, All loans, Dummies

r <- list()
r[[1]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank+msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
r[[2]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])
r[[3]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_year+msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
 
    .printtable(r,column.labels = c("Moody's","Moody's","Moody's","Moody's"),lines = list(c("Fixed Effects",c("MSA,Bank,Yr","MSA*Bank,Yr","Bank*Yr, MSA"))))
## 
## =======================================================================
##                                            Dependent variable:         
##                                    ------------------------------------
##                                      Moody's     Moody's     Moody's   
##                                        (1)         (2)         (3)     
## -----------------------------------------------------------------------
## factor(msinc13G)1. Less than 1pct   0.319***    0.292***     0.246***  
##                                      (0.020)     (0.023)     (0.026)   
## factor(msinc13G)2. 1 - 5pct         0.280***    0.255***     0.219***  
##                                      (0.019)     (0.020)     (0.029)   
## factor(msinc13G)3. 5pct - 10pct     0.236***    0.227***     0.193***  
##                                      (0.036)     (0.039)     (0.032)   
## factor(msinc13G)4. More than 10pct  0.247***    0.211***     0.180***  
##                                      (0.042)     (0.047)     (0.050)   
## fico                                -0.003***   -0.003***   -0.003***  
##                                     (0.0001)    (0.0001)     (0.0001)  
## ltv                                 0.018***    0.017***     0.017***  
##                                      (0.001)     (0.001)     (0.001)   
## fulldocumentation                   -0.224***   -0.223***   -0.214***  
##                                      (0.009)     (0.010)     (0.009)   
## log(orig_upb)                       -1.103***   -1.090***   -1.077***  
##                                      (0.018)     (0.019)     (0.017)   
## newpurchase                         0.116***    0.122***     0.144***  
##                                      (0.021)     (0.020)     (0.018)   
## factor(assettype)Alt-A              0.112***    0.111***     0.122***  
##                                      (0.007)     (0.007)     (0.006)   
## factor(assettype)Subprime           0.404***    0.409***     0.396***  
##                                      (0.013)     (0.014)     (0.014)   
## -----------------------------------------------------------------------
## Fixed Effects                      MSA,Bank,Yr MSA*Bank,Yr Bank*Yr, MSA
## Observations                        3,028,828   3,028,828   3,028,828  
## Adjusted R2                           0.465       0.483       0.488    
## =======================================================================
## Note:                                       *p<0.1; **p<0.05; ***p<0.01
##