Problema

Realice las regresiones espaciales vistas en clase para la variable CEA a 150 cm

Importar data frame

library(readxl)
## Warning: package 'readxl' was built under R version 4.0.5
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.5
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(spdep)
## Warning: package 'spdep' was built under R version 4.0.5
## Loading required package: sp
## Warning: package 'sp' was built under R version 4.0.5
## Loading required package: spData
## Warning: package 'spData' was built under R version 4.0.5
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Loading required package: sf
## Warning: package 'sf' was built under R version 4.0.5
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
library(ape)
## Warning: package 'ape' was built under R version 4.0.5
## Registered S3 method overwritten by 'ape':
##   method   from 
##   plot.mst spdep
library(sp)
library(MVA)
## Warning: package 'MVA' was built under R version 4.0.5
## Loading required package: HSAUR2
## Warning: package 'HSAUR2' was built under R version 4.0.5
## Loading required package: tools
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.5
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.0.5
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:ape':
## 
##     zoom
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(normtest)
library(nortest)
library(dplyr)
library(spatialreg)
## Warning: package 'spatialreg' was built under R version 4.0.5
## Loading required package: Matrix
## Registered S3 methods overwritten by 'spatialreg':
##   method                   from 
##   residuals.stsls          spdep
##   deviance.stsls           spdep
##   coef.stsls               spdep
##   print.stsls              spdep
##   summary.stsls            spdep
##   print.summary.stsls      spdep
##   residuals.gmsar          spdep
##   deviance.gmsar           spdep
##   coef.gmsar               spdep
##   fitted.gmsar             spdep
##   print.gmsar              spdep
##   summary.gmsar            spdep
##   print.summary.gmsar      spdep
##   print.lagmess            spdep
##   summary.lagmess          spdep
##   print.summary.lagmess    spdep
##   residuals.lagmess        spdep
##   deviance.lagmess         spdep
##   coef.lagmess             spdep
##   fitted.lagmess           spdep
##   logLik.lagmess           spdep
##   fitted.SFResult          spdep
##   print.SFResult           spdep
##   fitted.ME_res            spdep
##   print.ME_res             spdep
##   print.lagImpact          spdep
##   plot.lagImpact           spdep
##   summary.lagImpact        spdep
##   HPDinterval.lagImpact    spdep
##   print.summary.lagImpact  spdep
##   print.sarlm              spdep
##   summary.sarlm            spdep
##   residuals.sarlm          spdep
##   deviance.sarlm           spdep
##   coef.sarlm               spdep
##   vcov.sarlm               spdep
##   fitted.sarlm             spdep
##   logLik.sarlm             spdep
##   anova.sarlm              spdep
##   predict.sarlm            spdep
##   print.summary.sarlm      spdep
##   print.sarlm.pred         spdep
##   as.data.frame.sarlm.pred spdep
##   residuals.spautolm       spdep
##   deviance.spautolm        spdep
##   coef.spautolm            spdep
##   fitted.spautolm          spdep
##   print.spautolm           spdep
##   summary.spautolm         spdep
##   logLik.spautolm          spdep
##   print.summary.spautolm   spdep
##   print.WXImpact           spdep
##   summary.WXImpact         spdep
##   print.summary.WXImpact   spdep
##   predict.SLX              spdep
## 
## Attaching package: 'spatialreg'
## The following objects are masked from 'package:spdep':
## 
##     anova.sarlm, as.spam.listw, as_dgRMatrix_listw, as_dsCMatrix_I,
##     as_dsCMatrix_IrW, as_dsTMatrix_listw, bptest.sarlm, can.be.simmed,
##     cheb_setup, coef.gmsar, coef.sarlm, coef.spautolm, coef.stsls,
##     create_WX, deviance.gmsar, deviance.sarlm, deviance.spautolm,
##     deviance.stsls, do_ldet, eigen_pre_setup, eigen_setup, eigenw,
##     errorsarlm, fitted.gmsar, fitted.ME_res, fitted.sarlm,
##     fitted.SFResult, fitted.spautolm, get.ClusterOption,
##     get.coresOption, get.mcOption, get.VerboseOption,
##     get.ZeroPolicyOption, GMargminImage, GMerrorsar, griffith_sone,
##     gstsls, Hausman.test, HPDinterval.lagImpact, impacts, intImpacts,
##     Jacobian_W, jacobianSetup, l_max, lagmess, lagsarlm, lextrB,
##     lextrS, lextrW, lmSLX, logLik.sarlm, logLik.spautolm, LR.sarlm,
##     LR1.sarlm, LR1.spautolm, LU_prepermutate_setup, LU_setup,
##     Matrix_J_setup, Matrix_setup, mcdet_setup, MCMCsamp, ME, mom_calc,
##     mom_calc_int2, moments_setup, powerWeights, predict.sarlm,
##     predict.SLX, print.gmsar, print.ME_res, print.sarlm,
##     print.sarlm.pred, print.SFResult, print.spautolm, print.stsls,
##     print.summary.gmsar, print.summary.sarlm, print.summary.spautolm,
##     print.summary.stsls, residuals.gmsar, residuals.sarlm,
##     residuals.spautolm, residuals.stsls, sacsarlm, SE_classic_setup,
##     SE_interp_setup, SE_whichMin_setup, set.ClusterOption,
##     set.coresOption, set.mcOption, set.VerboseOption,
##     set.ZeroPolicyOption, similar.listw, spam_setup, spam_update_setup,
##     SpatialFiltering, spautolm, spBreg_err, spBreg_lag, spBreg_sac,
##     stsls, subgraph_eigenw, summary.gmsar, summary.sarlm,
##     summary.spautolm, summary.stsls, trW, vcov.sarlm, Wald1.sarlm
df= read_excel("BD_MODELADO.xlsx")

df_xy=df[,c(1,2)] # Coords
X= df[,-c(1,2)]  # Explicativas

Matriz de pesos estandarizada

library(ape)
# Matriz de distancias 
df.dists <- as.matrix(dist(cbind(df$Avg_X_MCB, df$Avg_Y_MCE)))
# Inversa de las matriz 
df.dists.inv <- 1/df.dists
# Asignar ceros a la diagonal 
diag(df.dists.inv) <- 0
df.dists.inv <- round(df.dists.inv,3)
We<-df.dists.inv/rowSums(df.dists.inv)
contnb=dnearneigh(coordinates(df_xy),0,380000,longlat = F)
contnb
## Neighbour list object:
## Number of regions: 313 
## Number of nonzero links: 97656 
## Percentage nonzero weights: 99.68051 
## Average number of links: 312
class(contnb)
## [1] "nb"
df_xy=as.matrix(df_xy)
dlist <- nbdists(contnb, df_xy)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W")

Modelo SAR

map= spautolm(Avg_CEa_07~1, data= X, listw= Wve, family="SAR")
summary(map)
## 
## Call: spautolm(formula = Avg_CEa_07 ~ 1, data = X, listw = Wve, family = "SAR")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -3.258254 -0.650679 -0.071829  0.824652  3.063002 
## 
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   5.6941     5.5177   1.032   0.3021
## 
## Lambda: 0.98811 LR test value: 162.5 p-value: < 2.22e-16 
## Numerical Hessian standard error of lambda: 0.011866 
## 
## Log likelihood: -494.8231 
## ML residual variance (sigma squared): 1.347, (sigma: 1.1606)
## Number of observations: 313 
## Number of parameters estimated: 3 
## AIC: 995.65
residuales_map =map$fit$residuals
shapiro.test(residuales_map)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map
## W = 0.99351, p-value = 0.1971
Moran.I(residuales_map,We)
## $observed
## [1] 0.1658609
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004653146
## 
## $p.value
## [1] 0

Como el p-valor es cero, todavia hay dependencia espacial por lo que el modelo no es buno para estos datos

Modelo SARAR

map2= sacsarlm(Avg_CEa_15~1, data= X, listw= Wve)
## Warning in sacsarlm(Avg_CEa_15 ~ 1, data = X, listw = Wve): inversion of asymptotic covariance matrix failed for tol.solve = 2.22044604925031e-16 
##   número de condición recíproco = 1.77227e-18 - using numerical Hessian.
summary(map2)
## 
## Call:sacsarlm(formula = Avg_CEa_15 ~ 1, data = X, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.364908 -0.357504 -0.063033  0.289858  2.878760 
## 
## Type: sac 
## Coefficients: (numerical Hessian approximate standard errors) 
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)   1.1253     1.1713  0.9607   0.3367
## 
## Rho: 0.95895
## Approximate (numerical Hessian) standard error: 0.040792
##     z-value: 23.508, p-value: < 2.22e-16
## Lambda: 0.95895
## Approximate (numerical Hessian) standard error: 0.040755
##     z-value: 23.53, p-value: < 2.22e-16
## 
## LR test value: 133.68, p-value: < 2.22e-16
## 
## Log likelihood: -281.3411 for sac model
## ML residual variance (sigma squared): 0.34087, (sigma: 0.58384)
## Number of observations: 313 
## Number of parameters estimated: 4 
## AIC: 570.68, (AIC for lm: 700.36)
residuales_map2 =map2$residuals
shapiro.test(residuales_map2)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map2
## W = 0.94498, p-value = 2.076e-09
Moran.I(residuales_map2,We)
## $observed
## [1] 0.0563745
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004629181
## 
## $p.value
## [1] 0

Como el p-valor del indice de moran es cero, todavia hay dependencia espacial, ademas no hay un comportamiento normal en los residuales. Por lo que el modelo no es buno para estos datos

Modelo GNS

map3= sacsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(map3)
## 
## Call:sacsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE + 
##     Avg_z, data = X, listw = Wve, type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.259920 -0.257064 -0.024628  0.256195  1.934415 
## 
## Type: sacmixed 
## Coefficients: (asymptotic standard errors) 
##                  Estimate Std. Error z value  Pr(>|z|)
## (Intercept)     26.084548  36.251116  0.7196   0.47180
## Avg_CEa_07       0.362195   0.034530 10.4893 < 2.2e-16
## NDVI            -0.433013   1.115198 -0.3883   0.69781
## DEM              0.025591   0.016294  1.5706   0.11628
## SLOPE            0.010971   0.013341  0.8224   0.41087
## Avg_z           -0.112125   0.022705 -4.9384 7.875e-07
## lag.Avg_CEa_07  -0.486187   0.219517 -2.2148   0.02677
## lag.NDVI       -29.360420  11.602286 -2.5306   0.01139
## lag.DEM         -0.125137   0.091592 -1.3663   0.17186
## lag.SLOPE        0.883938   0.212106  4.1674 3.080e-05
## lag.Avg_z        0.205119   0.155215  1.3215   0.18633
## 
## Rho: 0.9037
## Asymptotic standard error: 0.58886
##     z-value: 1.5347, p-value: 0.12487
## Lambda: 0.94686
## Asymptotic standard error: 0.32846
##     z-value: 2.8827, p-value: 0.0039429
## 
## LR test value: 149.65, p-value: < 2.22e-16
## 
## Log likelihood: -189.5009 for sacmixed model
## ML residual variance (sigma squared): 0.19093, (sigma: 0.43695)
## Number of observations: 313 
## Number of parameters estimated: 14 
## AIC: 407, (AIC for lm: 542.65)

Se puede observar como el AIC disminuye notablemente con respecto a los modelos autoregresivos SAR y SARAR

residuales_map3 =map3$residuals
shapiro.test(residuales_map3)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map3
## W = 0.97364, p-value = 1.68e-05
Moran.I(residuales_map3,We)
## $observed
## [1] 0.04788866
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004639083
## 
## $p.value
## [1] 0

Como el p-valor es cero, todavia hay dependencia espacial por lo que el modelo no es buno para estos datos

Se vuelve a realizar el modelo quitando la variable NDVI ya que es la variable que menos se relaciona con la conductividad

map3b= sacsarlm(formula=Avg_CEa_15~Avg_CEa_07+DEM+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(map3b)
## 
## Call:sacsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + DEM + SLOPE + Avg_z, 
##     data = X, listw = Wve, type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.270871 -0.268895 -0.043227  0.251359  2.068286 
## 
## Type: sacmixed 
## Coefficients: (asymptotic standard errors) 
##                 Estimate Std. Error z value  Pr(>|z|)
## (Intercept)    14.256309  35.671498  0.3997  0.689410
## Avg_CEa_07      0.376570   0.034707 10.8500 < 2.2e-16
## DEM             0.025822   0.016516  1.5635  0.117944
## SLOPE           0.012529   0.013519  0.9268  0.354028
## Avg_z          -0.107267   0.022501 -4.7673 1.868e-06
## lag.Avg_CEa_07 -0.611325   0.220653 -2.7705  0.005597
## lag.DEM        -0.123820   0.093118 -1.3297  0.183615
## lag.SLOPE       0.604869   0.189089  3.1989  0.001380
## lag.Avg_z       0.144362   0.158025  0.9135  0.360957
## 
## Rho: 0.91887
## Asymptotic standard error: 0.59159
##     z-value: 1.5532, p-value: 0.12037
## Lambda: 0.95352
## Asymptotic standard error: 0.34156
##     z-value: 2.7917, p-value: 0.0052437
## 
## LR test value: 140.96, p-value: < 2.22e-16
## 
## Log likelihood: -194.644 for sacmixed model
## ML residual variance (sigma squared): 0.19691, (sigma: 0.44375)
## Number of observations: 313 
## Number of parameters estimated: 12 
## AIC: 413.29, (AIC for lm: 542.24)

Se observa que el AIC aumenta por lo que el modelo empeora.

residuales_map3b =map3b$residuals
shapiro.test(residuales_map3b)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map3b
## W = 0.96429, p-value = 5.831e-07
Moran.I(residuales_map3b,We)
## $observed
## [1] 0.05521322
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004634968
## 
## $p.value
## [1] 0

Como el p-valor del indice de moran es cero, todavia hay dependencia espacial, ademas no hay un comportamiento normal en los residuales. Por lo que el modelo no es buno para estos datos

Modelo SEM

map4=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve)
summary(map4)
## 
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE + 
##     Avg_z, data = X, listw = Wve)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.4682926 -0.3245699  0.0049751  0.3215294  1.9926400 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 22.7597381  2.0758704 10.9639 < 2.2e-16
## Avg_CEa_07   0.2479677  0.0247839 10.0052 < 2.2e-16
## NDVI        -1.2527443  1.0391615 -1.2055    0.2280
## DEM         -0.0035254  0.0106002 -0.3326    0.7394
## SLOPE        0.0603502  0.0137383  4.3928 1.119e-05
## Avg_z       -0.1133123  0.0145926 -7.7650 8.216e-15
## 
## Rho: 0.96209, LR test value: 51.297, p-value: 7.9403e-13
## Asymptotic standard error: 0.02667
##     z-value: 36.074, p-value: < 2.22e-16
## Wald statistic: 1301.3, p-value: < 2.22e-16
## 
## Log likelihood: -238.6759 for lag model
## ML residual variance (sigma squared): 0.26412, (sigma: 0.51393)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 493.35, (AIC for lm: 542.65)
## LM test for residual autocorrelation
## test value: 197.83, p-value: < 2.22e-16

El AIC aumento con respecto al modelo GNS, lo que implica que el modelo SEM es peor.

residuales_map4 =map4$residuals
shapiro.test(residuales_map4)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map4
## W = 0.98401, p-value = 0.001482
Moran.I(residuales_map4,We)
## $observed
## [1] 0.06272672
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004645596
## 
## $p.value
## [1] 0

Como el p-valor del indice de moran es cero, todavia hay dependencia espacial, ademas no hay un comportamiento normal en los residuales. Por lo que el modelo no es buno para estos datos

Quitando la variable DEM que es la que parece tener menor relacion, se refina el modelo.

map4b=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+SLOPE+Avg_z, data= X, listw= Wve)
summary(map4b)
## 
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + SLOPE + Avg_z, 
##     data = X, listw = Wve)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.463873 -0.328326  0.012762  0.317752  1.996379 
## 
## Type: lag 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) 22.687995   2.064129  10.9916 < 2.2e-16
## Avg_CEa_07   0.247494   0.024746  10.0015 < 2.2e-16
## NDVI        -1.220936   1.034918  -1.1797    0.2381
## SLOPE        0.060880   0.013646   4.4614 8.141e-06
## Avg_z       -0.116676   0.010501 -11.1105 < 2.2e-16
## 
## Rho: 0.9624, LR test value: 51.982, p-value: 5.6e-13
## Asymptotic standard error: 0.026456
##     z-value: 36.377, p-value: < 2.22e-16
## Wald statistic: 1323.3, p-value: < 2.22e-16
## 
## Log likelihood: -238.7312 for lag model
## ML residual variance (sigma squared): 0.2642, (sigma: 0.514)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 491.46, (AIC for lm: 541.44)
## LM test for residual autocorrelation
## test value: 198.54, p-value: < 2.22e-16

Se observa que al refinar el modelo, el AIC mejora un poco, pero sigue estando por detras del modelo GNS

residuales_map4b =map4b$residuals
shapiro.test(residuales_map4b)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map4b
## W = 0.98375, p-value = 0.001306
Moran.I(residuales_map4b,We)
## $observed
## [1] 0.06286341
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.00464547
## 
## $p.value
## [1] 0

Como el p-valor del indice de moran es cero, todavia hay dependencia espacial, ademas no hay un comportamiento normal en los residuales. Por lo que el modelo no es buno para estos datos

Modelo SLM

map5=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve)
summary(map5)
## 
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE + 
##     Avg_z, data = X, listw = Wve)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.46790 -0.32241 -0.02153  0.36060  1.99578 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##               Estimate Std. Error z value  Pr(>|z|)
## (Intercept) 45.5088603  2.7607166 16.4844 < 2.2e-16
## Avg_CEa_07   0.2959247  0.0286368 10.3337 < 2.2e-16
## NDVI        -1.1627276  1.1220178 -1.0363 0.3000703
## DEM         -0.0093728  0.0123588 -0.7584 0.4482181
## SLOPE        0.0518339  0.0144655  3.5833 0.0003393
## Avg_z       -0.1327355  0.0171932 -7.7202 1.155e-14
## 
## Lambda: 0.96877, LR test value: 49.814, p-value: 1.69e-12
## Asymptotic standard error: 0.022011
##     z-value: 44.013, p-value: < 2.22e-16
## Wald statistic: 1937.2, p-value: < 2.22e-16
## 
## Log likelihood: -239.4171 for error model
## ML residual variance (sigma squared): 0.26504, (sigma: 0.51482)
## Number of observations: 313 
## Number of parameters estimated: 8 
## AIC: 494.83, (AIC for lm: 542.65)

El modelo GNS sigue siendo el mejor, ya que el modelo SML tiene un AIC mayor

residuales_map5 =map5$residuals
shapiro.test(residuales_map5)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map5
## W = 0.98846, p-value = 0.01377
Moran.I(residuales_map5,We)
## $observed
## [1] 0.07550844
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004647281
## 
## $p.value
## [1] 0

Como el p-valor es cero, todavia hay dependencia espacial por lo que el modelo no es buno para estos datos

Quitando la variable DEM

map5b=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+SLOPE+Avg_z, data= X, listw= Wve)
summary(map5b)
## 
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + SLOPE + 
##     Avg_z, data = X, listw = Wve)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.4600071 -0.3276113 -0.0094465  0.3499612  2.0024552 
## 
## Type: error 
## Coefficients: (asymptotic standard errors) 
##              Estimate Std. Error  z value  Pr(>|z|)
## (Intercept) 45.155600   2.726282  16.5631 < 2.2e-16
## Avg_CEa_07   0.294005   0.028549  10.2982 < 2.2e-16
## NDVI        -1.087459   1.118645  -0.9721 0.3309900
## SLOPE        0.052858   0.014414   3.6670 0.0002454
## Avg_z       -0.140762   0.013554 -10.3854 < 2.2e-16
## 
## Lambda: 0.9691, LR test value: 50.036, p-value: 1.5097e-12
## Asymptotic standard error: 0.021782
##     z-value: 44.49, p-value: < 2.22e-16
## Wald statistic: 1979.4, p-value: < 2.22e-16
## 
## Log likelihood: -239.7044 for error model
## ML residual variance (sigma squared): 0.26551, (sigma: 0.51528)
## Number of observations: 313 
## Number of parameters estimated: 7 
## AIC: 493.41, (AIC for lm: 541.44)

El AIC mejora muy poco

residuales_map5b =map5b$residuals
shapiro.test(residuales_map5b)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map5b
## W = 0.98839, p-value = 0.01325
Moran.I(residuales_map5b,We)
## $observed
## [1] 0.07616883
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004647095
## 
## $p.value
## [1] 0

Como el p-valor es cero, todavia hay dependencia espacial por lo que el modelo no es buno para estos datos

Modelo SDE

map6=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(map6)
## 
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE + 
##     Avg_z, data = X, listw = Wve, type = "mixed")
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -1.356577 -0.269279 -0.016311  0.269347  1.954889 
## 
## Type: mixed 
## Coefficients: (asymptotic standard errors) 
##                  Estimate Std. Error z value  Pr(>|z|)
## (Intercept)     28.265444  13.304190  2.1246  0.033624
## Avg_CEa_07       0.318816   0.033502  9.5163 < 2.2e-16
## NDVI            -0.463244   1.170570 -0.3957  0.692295
## DEM              0.026816   0.016575  1.6179  0.105686
## SLOPE            0.010237   0.014082  0.7269  0.467260
## Avg_z           -0.127758   0.021328 -5.9901 2.098e-09
## lag.Avg_CEa_07  -0.148588   0.197032 -0.7541  0.450771
## lag.NDVI       -33.518708  10.304158 -3.2529  0.001142
## lag.DEM         -0.135244   0.080945 -1.6708  0.094759
## lag.SLOPE        1.004251   0.157352  6.3822 1.746e-10
## lag.Avg_z        0.216661   0.099651  2.1742  0.029690
## 
## Rho: 0.91953, LR test value: 20.527, p-value: 5.8806e-06
## Asymptotic standard error: 0.056295
##     z-value: 16.334, p-value: < 2.22e-16
## Wald statistic: 266.81, p-value: < 2.22e-16
## 
## Log likelihood: -202.5621 for mixed model
## ML residual variance (sigma squared): 0.21072, (sigma: 0.45905)
## Number of observations: 313 
## Number of parameters estimated: 13 
## AIC: 431.12, (AIC for lm: 449.65)
## LM test for residual autocorrelation
## test value: 128.64, p-value: < 2.22e-16

Este modelo es el que presenta un valor de AIC menor, lo que indica que es el mejor modelo

residuales_map6 =map6$residuals
shapiro.test(residuales_map6)
## 
##  Shapiro-Wilk normality test
## 
## data:  residuales_map6
## W = 0.97531, p-value = 3.25e-05
Moran.I(residuales_map6,We)
## $observed
## [1] 0.04750286
## 
## $expected
## [1] -0.003205128
## 
## $sd
## [1] 0.004640154
## 
## $p.value
## [1] 0

Como el p-valor del indice de moran es cero, todavia hay dependencia espacial, ademas no hay un comportamiento normal en los residuales. Por lo que el modelo no es buno para estos datos