Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” by Hamermesh and Parker found that instructors who are viewed to be better looking receive higher instructional ratings.
Here, you will analyze the data from this study in order to learn what goes into a positive professor evaluation.
In this lab, you will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro resources, openintro.
Let’s load the packages.
library(tidyverse)
library(openintro)
library(GGally)
This is the first time we’re using the GGally
package. You will be using the ggpairs
function from this package later in the lab.
The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. The result is a data frame where each row contains a different course and columns represent variables about the courses and professors. It’s called evals
.
glimpse(evals)
## Rows: 463
## Columns: 23
## $ course_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1~
## $ prof_id <int> 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,~
## $ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4~
## $ rank <fct> tenure track, tenure track, tenure track, tenure track, ~
## $ ethnicity <fct> minority, minority, minority, minority, not minority, no~
## $ gender <fct> female, female, female, female, male, male, male, male, ~
## $ language <fct> english, english, english, english, english, english, en~
## $ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, ~
## $ cls_perc_eval <dbl> 55.81395, 68.80000, 60.80000, 62.60163, 85.00000, 87.500~
## $ cls_did_eval <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14,~
## $ cls_students <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, ~
## $ cls_level <fct> upper, upper, upper, upper, upper, upper, upper, upper, ~
## $ cls_profs <fct> single, single, single, single, multiple, multiple, mult~
## $ cls_credits <fct> multi credit, multi credit, multi credit, multi credit, ~
## $ bty_f1lower <int> 5, 5, 5, 5, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7,~
## $ bty_f1upper <int> 7, 7, 7, 7, 4, 4, 4, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9,~
## $ bty_f2upper <int> 6, 6, 6, 6, 2, 2, 2, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9,~
## $ bty_m1lower <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 7, 7,~
## $ bty_m1upper <int> 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6,~
## $ bty_m2upper <int> 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6,~
## $ bty_avg <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, ~
## $ pic_outfit <fct> not formal, not formal, not formal, not formal, not form~
## $ pic_color <fct> color, color, color, color, color, color, color, color, ~
We have observations on 21 different variables, some categorical and some numerical. The meaning of each variable can be found by bringing up the help file:
?evals
Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.
This information is observational since we are comparing beauty of teachers to their performance reviews. We can rephrase this question by asking if there is a correlation between beauty, and performance reviews?
Describe the distribution of score
. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?
By plotting score data, we can see that it is normally distributed with a left skew. This is not what I expected to see, since I anticipated to see centrally normal distributed data.
hist(evals$score)
Excluding score
, select two other variables and describe their relationship with each other using an appropriate visualization.
Plotting beauty and age, we can see there is a strong correlation between higher ages and lower beauty scores, as well as the converse–younger age, higher beauty score.
plot(evals$bty_avg, evals$age)
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_point()
Before you draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
Replot the scatterplot, but this time use geom_jitter
as your layer. What was misleading about the initial scatterplot?
The initial scatterplot had overplotting (overlap) in it’s grpahing. By adding geom_jitter, we avoid this issue of overplotting by adding a small amount of random variation to each point.
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter()
Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty
to predict average professor score by average beauty rating. Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor? Add the line of the best fit model to your plot using the following:
m_bty, which is modeled by Y = 3.88034 + 0.0664 * m_bty, we can see that as the average beauty score increases, the predicted average score of the professor is expected to increase by 0.06664, while everything else is constant. Becuase the p-value is less than 0.05, 5.083e-05 to be exact, we can confidently say the average beauty score is a statistically significant predictor.
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm")
m_bty <- lm(evals$score ~ evals$bty_avg)
m_bty
##
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
##
## Coefficients:
## (Intercept) evals$bty_avg
## 3.88034 0.06664
summary(m_bty)
##
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## evals$bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
The blue line is the model. The shaded gray area around the line tells you about the variability you might expect in your predictions. To turn that off, use se = FALSE
.
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm", se = FALSE)
Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).
Looking at the residuals plot, we see the points around the line at Y = 0 do not satisfy the linearity condition since the residuals don’t seem to be constant. Looking at the histogram, we see the data is normally distributed left-skewed. Finally, the points within the QQ-Plot form a slight curve, which indidates skewness.
plot(m_bty$residuals ~ evals$score)
abline(h=0, lty=3)
hist(m_bty$residuals)
qqnorm(m_bty$residuals)
qqline(m_bty$residuals)
The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
ggplot(data = evals, aes(x = bty_f1lower, y = bty_avg)) +
geom_point()
evals %>%
summarise(cor(bty_avg, bty_f1lower))
## # A tibble: 1 x 1
## `cor(bty_avg, bty_f1lower)`
## <dbl>
## 1 0.844
As expected, the relationship is quite strong—after all, the average score is calculated using the individual scores. You can actually look at the relationships between all beauty variables (columns 13 through 19) using the following command:
evals %>%
select(contains("bty")) %>%
ggpairs()
These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after you’ve accounted for the professor’s gender, you can add the gender term into the model.
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.
Looking at all three plots (residuals, histogram, gg-plot), we can see the conditions of least squares are better met than the residuals plot. For instance, the points in the residuals scatter plot appear to have moved lower, the historgram is less skewed, and the normal QQ plot has less of a curve as well. Therefore, the conditions for the model are reasonable.
plot(m_bty_gen$residuals ~ evals$score)
abline(h=0, lty=3)
hist(m_bty_gen$residuals)
qqnorm(m_bty_gen$residuals)
qqline(m_bty_gen$residuals)
Is bty_avg
still a significant predictor of score
? Has the addition of gender
to the model changed the parameter estimate for bty_avg
?
bty_avg is still a significant predictor of the score. By changing the parameter estimate by considering gender, the slope coefficient increases from 0.0664 to 0.07416.
summary(lm(evals$score ~ evals$bty_avg))
##
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## evals$bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
Note that the estimate for gender
is now called gendermale
. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender
from having the values of male
and female
to being an indicator variable called gendermale
that takes a value of \(0\) for female professors and a value of \(1\) for male professors. (Such variables are often referred to as “dummy” variables.)
As a result, for female professors, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
The decision to call the indicator variable gendermale
instead of genderfemale
has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel()
function. Use ?relevel
to learn more.)
Create a new model called m_bty_rank
with gender
removed and rank
added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching
, tenure track
, tenured
.
According to the model summary below, we can see we have two indicator variables: tenure track, and tenured. Here, teaching is a reference level to relatively interpret the indicator variables. This is why we don’t see “teaching level” in the regression output.
m_bty_rank = lm(evals$score ~ evals$bty_avg + evals$rank)
summary(m_bty_rank)
##
## Call:
## lm(formula = evals$score ~ evals$bty_avg + evals$rank)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## evals$bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## evals$ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## evals$ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg
reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg
scores that are one point apart.
We will start with a full model that predicts professor score based on rank, gender, ethnicity, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.
I would expect cls_profs to produce the highest p-value. This is because the number of teaching sections in a course is irrelevant to how teachers are evaluated. The only relevancy this detail has is that the students within those courses are the ones evaluating the teacher.
Let’s run the model…
m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)
##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
Looking at this model, we clearly see that the p-value of ‘cls_profs’ (0.77806) is indeed the highest variable
This value implies non-minority professors score 0.1234929 points higher than minority professors.
Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?
By dropping the highest p-value, there is a small difference within the coefficients. This also implies the variables carry a heavier significance.
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.
Y = 4.0872523 - 0.1476746ranktenure_track - 0.0973829ranktenured + 0.1274458ethnicitynot_minority + 0.2101231gendermale - 0.2282894languagenon-english - 0.0089992age + 0.0052888cls_perc_eval + 0.0004687cls_students + 0.0606374cls_levelupper + 0.5061196cls_creditsone credit + 0.0398629bty_avg - 0.1083227pic_outfitnot_formal - 0.2190527*pic_colorcolor
r.squared <- c()
# Full model.
full_model <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
r.squared['full'] = summary(full_model)$adj.r.squared
# Removed cls_profs.
bkwards_1 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
r.squared['cls_profs'] = summary(bkwards_1)$adj.r.squared
# Removed cls_level.
bkwards_2 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
r.squared['cls_level'] = summary(bkwards_2)$adj.r.squared
# Removd cls_students.
bkwards_3 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
r.squared['cls_students'] = summary(bkwards_3)$adj.r.squared
# Removed rank.
bkwards_4 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
r.squared['rank'] = summary(bkwards_4)$adj.r.squared
# Removed pic_outfit.
bkwards_5 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_color, data = evals)
r.squared['pic_outfit'] = summary(bkwards_5)$adj.r.squared
r.squared
## full cls_profs cls_level cls_students rank pic_outfit
## 0.1617076 0.1634262 0.1632178 0.1632301 0.1610344 0.1575649
kate_moss <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(kate_moss)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
Verify that the conditions for this model are reasonable using diagnostic plots.
This model, kate moss, does prove the required conditions are better satisfied: the points in the residuals plot shift more toward y = 0, the histogram is not as severly skewed left and the points along the qq plot are closer to the fitted line.
plot(kate_moss$residuals ~ evals$score)
abline(h=0, lty=3)
hist(kate_moss$residuals)
qqnorm(kate_moss$residuals)
qqline(kate_moss$residuals)
The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?
Becuase a professor’s appearance does not usually change from class to class, there was a lot of overfitting in our model.
Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.
According to my model, a professor with a high evaluation score would be someone young, tenured/tenure track, native english speaking, a teacher of upper level classes, and attractive according to his/her students.
Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?
I would not be comfortable applying this conclusion generally because the adjusted R-squared value is very small (16.34%). Therefore, it is insignificant and implies there is not a strong correlation. On another note, it is rude to judge someone from how they appear to look, especially of their professional performance. * * *