library(readxl)
library(car)
## Warning: package 'car' was built under R version 4.0.4
## Loading required package: carData
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(plm)
## Warning: package 'plm' was built under R version 4.0.5
datasumbagsel<-read_excel("E:\\NEW.xlsx",col_names =T, sheet="Sheet1")
## New names:
## * `` -> ...8
#View(datasumbagsel)
str(datasumbagsel)
## tibble [245 x 11] (S3: tbl_df/tbl/data.frame)
## $ Kab : chr [1:245] "Ogan Komering Ulu" "Ogan Komering Ulu" "Ogan Komering Ulu" "Ogan Komering Ulu" ...
## $ Tahun : num [1:245] 2015 2016 2017 2018 2019 ...
## $ PDRB : num [1:245] 8230963 8556797 8904371 9349187 9876100 ...
## $ Krt : num [1:245] 3.44e+08 3.57e+08 3.72e+08 3.91e+08 4.13e+08 ...
## $ MPrt : num [1:245] 3.78e+08 3.93e+08 4.09e+08 4.30e+08 4.54e+08 ...
## $ KLrt : num [1:245] 11.9 12.2 13.1 14.2 13 ...
## $ Lrt : num [1:245] 67 68.8 68.2 66.4 68.7 ...
## $ ...8 : logi [1:245] NA NA NA NA NA NA ...
## $ lnPDRB: num [1:245] 15.9 16 16 16.1 16.1 ...
## $ lnKrt : num [1:245] 19.7 19.7 19.7 19.8 19.8 ...
## $ LnMPrt: num [1:245] 19.8 19.8 19.8 19.9 19.9 ...
head(datasumbagsel)
## # A tibble: 6 x 11
## Kab Tahun PDRB Krt MPrt KLrt Lrt ...8 lnPDRB lnKrt LnMPrt
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl> <dbl> <dbl> <dbl>
## 1 Ogan Kome~ 2015 8.23e6 3.44e8 3.78e8 11.9 67.0 NA 15.9 19.7 19.8
## 2 Ogan Kome~ 2016 8.56e6 3.57e8 3.93e8 12.2 68.8 NA 16.0 19.7 19.8
## 3 Ogan Kome~ 2017 8.90e6 3.72e8 4.09e8 13.1 68.2 NA 16.0 19.7 19.8
## 4 Ogan Kome~ 2018 9.35e6 3.91e8 4.30e8 14.2 66.4 NA 16.1 19.8 19.9
## 5 Ogan Kome~ 2019 9.88e6 4.13e8 4.54e8 13.0 68.7 NA 16.1 19.8 19.9
## 6 Ogan Kome~ 2015 1.67e7 7.48e8 3.36e8 4.85 66.3 NA 16.6 20.4 19.6
#model Umum
common<-plm(PDRB ~ Krt + MPrt + KLrt + Lrt, data=datasumbagsel, model="pooling", index = c("Kab","Tahun"))
common
##
## Model Formula: PDRB ~ Krt + MPrt + KLrt + Lrt
##
## Coefficients:
## (Intercept) Krt MPrt KLrt Lrt
## 1.2504e+07 2.9474e-02 -3.7696e-03 -5.8091e+01 -1.7260e+05
#model tetap
fixed<-plm(PDRB ~ Krt + MPrt + KLrt + Lrt, data=datasumbagsel, model="within", index = c("Kab","Tahun"))
summary(fixed)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = PDRB ~ Krt + MPrt + KLrt + Lrt, data = datasumbagsel,
## model = "within", index = c("Kab", "Tahun"))
##
## Balanced Panel: n = 49, T = 5, N = 245
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -4569078 -91166 15755 0 95999 2175489
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## Krt 3.0543e-02 1.0464e-03 29.1876 < 2e-16 ***
## MPrt -2.9603e-03 1.4612e-03 -2.0260 0.04415 *
## KLrt 9.7342e+00 6.0595e+00 1.6064 0.10982
## Lrt -1.6745e+04 1.5293e+04 -1.0949 0.27492
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 6.0063e+14
## Residual Sum of Squares: 5.005e+13
## R-Squared: 0.91667
## Adj. R-Squared: 0.8941
## F-statistic: 528.029 on 4 and 192 DF, p-value: < 2.22e-16
#model acak
random<- plm(PDRB~ Krt + MPrt + KLrt + Lrt, data=datasumbagsel, model="random", index = c("Kab","Tahun"))
summary(random)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = PDRB ~ Krt + MPrt + KLrt + Lrt, data = datasumbagsel,
## model = "random", index = c("Kab", "Tahun"))
##
## Balanced Panel: n = 49, T = 5, N = 245
##
## Effects:
## var std.dev share
## idiosyncratic 2.607e+11 5.106e+05 0.016
## individual 1.598e+13 3.997e+06 0.984
## theta: 0.943
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4064682.9 -104152.6 -3505.1 80653.5 2788449.6
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.1419e+06 1.2202e+06 0.9358 0.34938
## Krt 3.0338e-02 8.7024e-04 34.8611 < 2e-16 ***
## MPrt -3.1832e-03 1.2628e-03 -2.5206 0.01171 *
## KLrt 8.9335e+00 5.8187e+00 1.5353 0.12471
## Lrt -1.7678e+04 1.5271e+04 -1.1576 0.24701
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 7.9256e+14
## Residual Sum of Squares: 6.3294e+13
## R-Squared: 0.92014
## Adj. R-Squared: 0.91881
## Chisq: 2765.26 on 4 DF, p-value: < 2.22e-16
# Menguji chow
pooltest(common,fixed)
##
## F statistic
##
## data: PDRB ~ Krt + MPrt + KLrt + Lrt
## F = 307.82, df1 = 48, df2 = 192, p-value < 2.2e-16
## alternative hypothesis: unstability
Model yang bagus digunakan dari hasil diatas yaitu model tetap/Fixed
# Menguji Hausmaan
phtest(fixed,random)
##
## Hausman Test
##
## data: PDRB ~ Krt + MPrt + KLrt + Lrt
## chisq = 4.7257, df = 4, p-value = 0.3166
## alternative hypothesis: one model is inconsistent
Model yang bagus digunakan dari hasil diatas yaitu model acak/Random
(Ketika nilai p-value kurang dari alpha maka dapat disimpulkan ada efek)
#menguji Breusch Pagan
BP<- plm(PDRB~ Krt + MPrt + KLrt + Lrt, data=datasumbagsel, model="random", index = c("Kab","Tahun"))
#Efek Dua Arah
plmtest(BP, effect="twoways", type="bp")
##
## Lagrange Multiplier Test - two-ways effects (Breusch-Pagan) for
## balanced panels
##
## data: PDRB ~ Krt + MPrt + KLrt + Lrt
## chisq = 457.35, df = 2, p-value < 2.2e-16
## alternative hypothesis: significant effects
#Efek Individu/Cross Section
plmtest(BP, effect="individual", type="bp")
##
## Lagrange Multiplier Test - (Breusch-Pagan) for balanced panels
##
## data: PDRB ~ Krt + MPrt + KLrt + Lrt
## chisq = 455.14, df = 1, p-value < 2.2e-16
## alternative hypothesis: significant effects
#Efek Waktu/Time
plmtest(BP, effect="time", type="bp")
##
## Lagrange Multiplier Test - time effects (Breusch-Pagan) for balanced
## panels
##
## data: PDRB ~ Krt + MPrt + KLrt + Lrt
## chisq = 2.2049, df = 1, p-value = 0.1376
## alternative hypothesis: significant effects
dari model diatas dipilih model acak individual saja.
random1<- plm(PDRB~ Krt + MPrt + KLrt + Lrt, data=datasumbagsel, model="random", effect="individual", index = c("Kab","Tahun"))
summary(random1)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = PDRB ~ Krt + MPrt + KLrt + Lrt, data = datasumbagsel,
## effect = "individual", model = "random", index = c("Kab",
## "Tahun"))
##
## Balanced Panel: n = 49, T = 5, N = 245
##
## Effects:
## var std.dev share
## idiosyncratic 2.607e+11 5.106e+05 0.016
## individual 1.598e+13 3.997e+06 0.984
## theta: 0.943
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4064682.9 -104152.6 -3505.1 80653.5 2788449.6
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.1419e+06 1.2202e+06 0.9358 0.34938
## Krt 3.0338e-02 8.7024e-04 34.8611 < 2e-16 ***
## MPrt -3.1832e-03 1.2628e-03 -2.5206 0.01171 *
## KLrt 8.9335e+00 5.8187e+00 1.5353 0.12471
## Lrt -1.7678e+04 1.5271e+04 -1.1576 0.24701
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 7.9256e+14
## Residual Sum of Squares: 6.3294e+13
## R-Squared: 0.92014
## Adj. R-Squared: 0.91881
## Chisq: 2765.26 on 4 DF, p-value: < 2.22e-16
#Melihat seberapa besar pengaruh masing-masing cross section
ranef(random1)
## Bangka Bangka Barat Bangka Selatan Bangka Tengah
## 3145344.7 3908336.0 1808269.5 1674966.9
## Banyuasin Belitung Belitung Timur Bengkulu Selatan
## 5461593.6 2381118.8 2122414.5 122648.6
## Bengkulu Tengah Bengkulu Utara Empat Lawang Kaur
## -625983.3 2414940.4 -1513359.4 -288758.9
## Kepahiang Kota Bandar Lampung Kota Bengkulu Kota Lubuk Linggau
## -1263493.2 -447563.4 -2810740.5 -685570.5
## Kota Metro Kota Pagar Alam Kota Palembang Kota Pangkalpinang
## -1495898.7 -320300.1 9162467.9 3453692.4
## Kota Prabumulih Lahat Lampung Barat Lampung Selatan
## -1111590.4 -3275106.2 -1341272.4 -605893.7
## Lampung Tengah Lampung Timur Lampung Utara Lebong
## -8604401.8 -12869589.9 -4101378.3 593772.8
## Mesuji Muara Enim Mukomuko Musi Banyuasin
## -1551420.8 -2827290.9 1580999.5 10006526.2
## Musi Rawas Musi Rawas Utara Ogan Ilir Ogan Komering Ilir
## 12334852.8 1195250.1 -1870791.0 -5364241.0
## Ogan Komering Ulu Oku Selatan Oku Timur Pali
## -1026190.6 90444.2 -1785437.1 -137053.2
## Pesawaran Pesisir Barat Pringsewu Rejang Lebong
## -2357408.9 -992148.1 -5461965.1 -534888.1
## Seluma Tanggamus Tulang Bawang Barat Tulangbawang
## -546172.6 1373845.9 1387658.3 1191354.8
## Way Kanan
## 405410.2
# Uji Korelasi Serial
pbgtest(random1)
##
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
##
## data: PDRB ~ Krt + MPrt + KLrt + Lrt
## chisq = 37.441, df = 5, p-value = 4.887e-07
## alternative hypothesis: serial correlation in idiosyncratic errors
bptest(random1)
##
## studentized Breusch-Pagan test
##
## data: random1
## BP = 79.418, df = 4, p-value = 2.314e-16
summary(random1)
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = PDRB ~ Krt + MPrt + KLrt + Lrt, data = datasumbagsel,
## effect = "individual", model = "random", index = c("Kab",
## "Tahun"))
##
## Balanced Panel: n = 49, T = 5, N = 245
##
## Effects:
## var std.dev share
## idiosyncratic 2.607e+11 5.106e+05 0.016
## individual 1.598e+13 3.997e+06 0.984
## theta: 0.943
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -4064682.9 -104152.6 -3505.1 80653.5 2788449.6
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1.1419e+06 1.2202e+06 0.9358 0.34938
## Krt 3.0338e-02 8.7024e-04 34.8611 < 2e-16 ***
## MPrt -3.1832e-03 1.2628e-03 -2.5206 0.01171 *
## KLrt 8.9335e+00 5.8187e+00 1.5353 0.12471
## Lrt -1.7678e+04 1.5271e+04 -1.1576 0.24701
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 7.9256e+14
## Residual Sum of Squares: 6.3294e+13
## R-Squared: 0.92014
## Adj. R-Squared: 0.91881
## Chisq: 2765.26 on 4 DF, p-value: < 2.22e-16
vif(random1)
## Krt MPrt KLrt Lrt
## 2.569635 2.338407 1.295007 1.024896