\(∫4e^{−7x}dx\)
Answer
Let u = -7x
\(\frac{du}{dx} = \frac{d(-7x)}{dx} = -7\)
\(du = -7dx\)
\(dx = -\frac{1}{7}du\)
Replacing dx and u in \(∫4e^{−7x}dx\) gives us,
\(-\frac{1}{7}∫4e^{u}du = -\frac{4}{7}e^{-7x} + C\)
Answer
Given, \(\frac{dN}{dt} =-\frac{3150}{t^4} - 220\)
\(dN = -\frac{3150}{t^4}dt -220dt\)
\(dN = ∫-\frac{3150}{t^4}dt - ∫220dt = ∫-3150t^{-4}dt - ∫220dt\)
\(= -3150∫t^{-4}dt - 220∫dt\)
\(N(t)=-3150\frac{-1}{3}t^{-3}-220t = \frac{1050}{t^3} - 220t + C\)
Given \(N(1) = 6530\), so for level after 1 day,
\(6530 = \frac{1050}{1^3} - 200(1) + C = 6530 = 1050 - 220 + C\)
\(C= 6530 - 1050 + 220 = 5700\)
Hence, \(N(t) = \frac{1050}{t^3} - 220t + 5700\)
problem3.
Answer
\(x = 4.5 to 8.5\)
#Find area in-build function
f3 = function(x) {2*x -9}
#Find the difference between areas under the curve
area3 <- integrate(f3, 4.5, 8.5)$value
area3 <- round(as.numeric(area3))
print(area3)
## [1] 16
Answer
#Find area in-build function
f1 = function(x) {x + 2}
f2 = function(x) {x^2 -2*x -2}
#Find the difference between areas under the curve
area1 <- integrate(f1, -1, 4)
area2 <- integrate(f2, -1, 4)
area <- round((area1$value - area2$value),4)
print(area)
## [1] 20.8333
Answer
\(f′(x) = 1.875 − \frac{907.5}{x^2}\)
\(f′(x) = 0\)
\(1.875 − \frac{907.5}{x^2} = 0\)
\(1.875 = \frac{907.5}{x^2}\)
\(1.875x^2 = 907.5\)
\(x^2 = \frac{907.5}{1.875} = \sqrt\frac{907.5}{1.875} = \sqrt{484} = 22\)
The number of orders per year to minimize inventory costs is \(\frac{110}{n} = \frac{110}{22} = 5\)
\(∫ln(9x)x^6dx\)
Answer
Let \(u=ln(9x), du= \frac{1}{x}, v=\frac{1}{7}x^7, dv=x^6\)
\(∫udv = uv - ∫vdu\)
\(ln(9x)\frac{1}{7}x^7 - ∫\frac{1}{x}\frac{1}{7}x^7dx =\frac{1}{7}ln(9x)x^7 - \frac{1}{7}∫\frac{x^7}{x}dx\)
\(=\frac{1}{7}ln(9x)x^7 - \frac{1}{7}∫\frac{x^6}dx = \frac{1}{7}ln(9x)x^7 - \frac{1}{7}{1}{7}x^7 + C\) \(=\frac{1}{7}ln(9x)x^7 - \frac{1}{49}x^7 + C\)
Answer
\(∫_1^{e^6} \frac{1}{6x}dx = \frac{1}{6}ln(x)∫_1^{e^6}\) \(=\frac{1}{6}ln(e^6) - \frac{1}{6}ln(1) = \frac{1}{6}*6 - \frac{1}{6}*0 = 1\)
The total area under the interval \([1, e^6]\) is equal 1 hence f(x) is a probability density function.