\[ \int { 4{ e }^{ -7x }dx } \] Solution:
\[ Let\ u=-7x \\ du=-7dx \\ -\frac{du}{7}=dx \]
4 is constant now we substitute dx with du (reverse chain rule). \[ \frac{-4}{7} \int { { e }^{ u }du } \\ \frac{-4}{7}e^{u}+c\\ \frac{-4}{7}e^{-7x}+c \]
Solution:
We integrate the given rate function get the function for the position / level.
The first term can be re-witten with a negative power and then we can apply the power rule for integration.
\[ \int {(\frac{-3150}{t^{4}}-220)dt}\\ \int {(-3150{t^{-4}}-220)dt}\\ \int-3150t^{-4}dt - \int -220dt\\ -3150\int t^{-4}dt - 220\int dt\\ -3150 \frac{-1}{3} t^{-3} - 220t\\ N(t)= \frac{1050}{t^{3}}-220t+c \]
Applying the given initial conditions.
We have N(1)=6530,hence we want to solve for the constant c:
\[ 6530= \frac{1050}{1^{3}}-220(1)+c\\ 6530=1050-220+c\\ 6530-1050+220=c\\ 5700=c \]
The final function becomes:
\[ N(t)= \frac{1050}{t^{3}}-220t+5700 \]
Solution
There are 4 rectangles within the closed interval [4.5,8.5]
By inspection we calculate the area of each rectangle and then add them up. \(A=l*w\)
\[ A1=(1)(5.5-4.5)=1\\ A2=(1)(6.5-5.5)=3\\ A3=(1)(7.5-5.5)=5\\ A4=(1)(8.5-6.5)=7\\ A=A1+A2+A3+A4=1+3+5+7=16 \]
We can also calculate the area by integrating the given function fro 4.5 to 8.5:
\[ \int _{ 4.5 }^{ 8.5 }{ 2x-9 } dx\\ \]
integrand <- function(x)
{
2*x-9
}
integrate(integrand, lower = 4.5, upper = 8.5)
## 16 with absolute error < 1.8e-13
\[ y=x^{2}-2x-2\\ y=x+2 \]
Lets visualize
fx <- function(x){ (x^2)-2*x-2 }
gx <- function(x){x+2}
plot (fx, -15, 15)
plot (gx, -5, 5, add=TRUE)
Lets find the points of intersection of these functions which will be the bounds of integration:
We set f(x)=g(x) and solve for x.
\[ x^{2}-2x-2=x+2\\ x^{2}-3x-4=0\\ (x-4)(x+1)=0\\ x=4\\ x=-1 \] The formula for finding the area enclosed by two curves is as follows:
\[ \int _{ a }^{ b }{ (topFunction-lowerFunction) } dx \]
\[ \int _{ -1 }^{ 4 }{ (x+2)-(x^{2}-2x-2) } dx\\ \int _{ -1 }^{ 4 } {(x+2-x^{2}+2x+2)dx}\\ \int _{- 1 }^{ 4 } {(-x^{2}+3x+4)dx} \]
Lets integrate and calculate using R:
func <- function(x){ -x^{2}+3*x+4 }
## integrate the function from 0 to infinity
integrate(func, lower = -1, upper = 4)
## 20.83333 with absolute error < 2.3e-13
Solution
Lets derive the cost function.
Let x be the number of flat irons per order. The number of orders = 110/x.
\[
Yearly\ storage\ cost=Storage cost per iron×Average number of irons stored=3.75×x/2=1.875x \\
Yearly\ ordering\ cost=Cost of each order×Number of orders=8.25×110/x=907.5/x \\
Inventory\ cost=Yearly storage cost+Yearly ordering cost=1.875x+907.5/x=C(x)
\] To find the critical points, we derive C(x) and set C’(x)=0. We then determine which critical point minimizes C(x)
\[ C(x)=1.875x + \frac{907.5}{x}\\ C '(x)=1.875-\frac{907.5}{x^{2}} \] Solve for ciritcal points
\[ 0=1.875-\frac{907.5}{x^{2}} \\ \frac{907.5}{x^{2}}=1.875 \\ 907.5=1.875 x^{2} \\ x^2=\frac{907.5}{1.875} \\ x^2=484 \\ x = \sqrt {484} \\ x = \pm22 \] We take the positive value since the number of flat irons cannot be negative.
x=22 minimizes function C(x) Number of orders = 110/22 = 5
\[ \int { ln(9x)x^{6}dx } \]
Solution
We apply integration by parts. dv is the term that can be integrated easily while u is the term that can be derived easily.
\(ln\) term can be derived much easier than integrated and (\(x^6\)) can be derived or integrated with the same ease but in this case we integrate it since we are differentiating the other term.
\[ uv-\int vdu \\ u=ln(9x)\\ du=\frac{1}{x}dx\\ dv=x^{6}\\ v=\frac{1}{7}x^{7} \]
Integration by parts
\[ \frac{x^{7}ln(9x)}{7}-\int \frac{1}{7}x^{7}\frac{1}{x}dx \\ \frac{x^{7}ln(9x)}{7}-\frac{1}{7} \int \frac{x^{7}}{x}dx \\ \frac{x^{7}ln(9x)}{7}-\frac{1}{7}\int x^{6}dx \\ \frac{x^{7}ln(9x)}{7}-\frac{1}{7}(\frac{x^{7}}{7})+C \\ \frac{x^{7}ln(9x)}{7}-\frac{x^{7}}{49}+C \\ \frac{x^{7}}{49}[7ln(9x)-1]+C \]
\[ f(x)=\frac{1}{6x} \]
Solution
Lets evaluate the definite integral
\[ \int _{ 1 }^{ { e }^{ 6 } }{ \frac { 1 }{ 6x } dx } \\ \frac{1}{6} \int _{ 1 }^{ { e }^{ 6 } }{ \frac { 1 }{ x } dx } \\ \frac{1}{6}(ln(e^{6})-ln(1))\\ \frac{1}{6}(6-0)\\ =1 \] Hence, f(x) is a probability density function on the closed interval [1,\(e^6\)]