Creación de datos
BD_MODELADO <- read_excel("C:/Users/user/Downloads/BD_MODELADO.xlsx")
df=BD_MODELADO
df_xy=df[,c(1,2)] #Coordenadas
x=df[,-c(1,2)] #Explicativas
Diseño matriz de pesos
# Matriz de distancias
df.dists <- as.matrix(dist(cbind(df$Avg_X_MCB, df$Avg_Y_MCE)))
# Inversa de las matriz
df.dists.inv <- 1/df.dists
# Asignar ceros a la diagonal
diag(df.dists.inv) <- 0
df.dists.inv <- round(df.dists.inv,3)
we = df.dists.inv/rowSums(df.dists.inv)
contnb=dnearneigh(coordinates(df_xy),0,380000,longlat = F)
contnb
## Neighbour list object:
## Number of regions: 313
## Number of nonzero links: 97656
## Percentage nonzero weights: 99.68051
## Average number of links: 312
class(contnb)
## [1] "nb"
df_xy=as.matrix(df_xy)
dlist <- nbdists(contnb, df_xy)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W")
mod15=lm(df$Avg_CEa_15~df$NDVI)
summary(mod15)
##
## Call:
## lm(formula = df$Avg_CEa_15 ~ df$NDVI)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.71991 -0.45614 -0.02841 0.38067 2.87345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.227 1.179 18.85 < 2e-16 ***
## df$NDVI -4.461 1.412 -3.16 0.00173 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7268 on 311 degrees of freedom
## Multiple R-squared: 0.0311, Adjusted R-squared: 0.02799
## F-statistic: 9.984 on 1 and 311 DF, p-value: 0.001735
hist(mod15$residuals)
residuales=mod15$residuals
df %>% ggplot(aes(x = Avg_X_MCB, y=Avg_Y_MCE, colour=residuales))+
geom_point(size = 5,shape=15)+
scale_color_continuous(type = 'viridis')
Moran.I(residuales, df.dists.inv)
## $observed
## [1] 0.1531025
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004646164
##
## $p.value
## [1] 0
Según el p.valor del índice de Moran (= 0), es posible afirmar que el modelo lineal no se ajusta, pues existe dependencia espacial de los residuales.
\[Y=\lambda W Y + \alpha 1_n +\epsilon\]
map15= spautolm(Avg_CEa_15~1, data= x, listw= Wve, family="SAR")
summary(map15)
##
## Call: spautolm(formula = Avg_CEa_15 ~ 1, data = x, listw = Wve, family = "SAR")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.453255 -0.397645 -0.042934 0.322283 2.953512
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 19.3151 1.5515 12.45 < 2.2e-16
##
## Lambda: 0.97691 LR test value: 86.774 p-value: < 2.22e-16
## Numerical Hessian standard error of lambda: 0.023
##
## Log likelihood: -304.7918
## ML residual variance (sigma squared): 0.40168, (sigma: 0.63378)
## Number of observations: 313
## Number of parameters estimated: 3
## AIC: 615.58
residuales_map15 =map15$fit$residuals
shapiro.test(residuales_map15)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15
## W = 0.95729, p-value = 6.37e-08
Moran.I(residuales_map15,we)
## $observed
## [1] 0.09349941
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004635041
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.97691), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
\[Y=\lambda W Y + \alpha 1_n +u \\u=\rho Wu +\epsilon\]
map15_2= sacsarlm(Avg_CEa_15~1, data= x, listw= Wve)
summary(map15_2)
##
## Call:sacsarlm(formula = Avg_CEa_15 ~ 1, data = x, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.364908 -0.357504 -0.063033 0.289858 2.878760
##
## Type: sac
## Coefficients: (numerical Hessian approximate standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.1253 1.1713 0.9607 0.3367
##
## Rho: 0.95895
## Approximate (numerical Hessian) standard error: 0.040792
## z-value: 23.508, p-value: < 2.22e-16
## Lambda: 0.95895
## Approximate (numerical Hessian) standard error: 0.040755
## z-value: 23.53, p-value: < 2.22e-16
##
## LR test value: 133.68, p-value: < 2.22e-16
##
## Log likelihood: -281.3411 for sac model
## ML residual variance (sigma squared): 0.34087, (sigma: 0.58384)
## Number of observations: 313
## Number of parameters estimated: 4
## AIC: 570.68, (AIC for lm: 700.36)
residuales_map15_2 =map15_2$residuals
shapiro.test(residuales_map15_2)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_2
## W = 0.94498, p-value = 2.076e-09
Moran.I(residuales_map15_2,we)
## $observed
## [1] 0.0563745
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004629181
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.95895) y rho también (0.95895), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
\[Y= \lambda WY +\alpha 1_n + X\beta_{(1)}+ WX\beta_{(2)}+ u \\ |\lambda|<1 \\ u=\rho Wu + \epsilon \\|\rho|<1\]
map15_3= sacsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= x, listw= Wve,type="mixed")
summary(map15_3)
##
## Call:sacsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = x, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.259920 -0.257064 -0.024628 0.256195 1.934415
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 26.084548 36.251116 0.7196 0.47180
## Avg_CEa_07 0.362195 0.034530 10.4893 < 2.2e-16
## NDVI -0.433013 1.115198 -0.3883 0.69781
## DEM 0.025591 0.016294 1.5706 0.11628
## SLOPE 0.010971 0.013341 0.8224 0.41087
## Avg_z -0.112125 0.022705 -4.9384 7.875e-07
## lag.Avg_CEa_07 -0.486187 0.219517 -2.2148 0.02677
## lag.NDVI -29.360420 11.602286 -2.5306 0.01139
## lag.DEM -0.125137 0.091592 -1.3663 0.17186
## lag.SLOPE 0.883938 0.212106 4.1674 3.080e-05
## lag.Avg_z 0.205119 0.155215 1.3215 0.18633
##
## Rho: 0.9037
## Asymptotic standard error: 0.58886
## z-value: 1.5347, p-value: 0.12487
## Lambda: 0.94686
## Asymptotic standard error: 0.32846
## z-value: 2.8827, p-value: 0.0039429
##
## LR test value: 149.65, p-value: < 2.22e-16
##
## Log likelihood: -189.5009 for sacmixed model
## ML residual variance (sigma squared): 0.19093, (sigma: 0.43695)
## Number of observations: 313
## Number of parameters estimated: 14
## AIC: 407, (AIC for lm: 542.65)
residuales_map15_3=map15_3$residuals
shapiro.test(residuales_map15_3)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_3
## W = 0.97364, p-value = 1.68e-05
Moran.I(residuales_map15_3,we)
## $observed
## [1] 0.04788866
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004639083
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.94686) y rho también (0.9037), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando DEM
map15_3b= sacsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+SLOPE+Avg_z, data= x, listw= Wve,type="mixed")
summary(map15_3b)
##
## Call:sacsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + SLOPE + Avg_z,
## data = x, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.242977 -0.273753 -0.027046 0.262976 1.942185
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 17.956728 33.982429 0.5284 0.597213
## Avg_CEa_07 0.373281 0.034028 10.9697 < 2.2e-16
## NDVI -0.543373 1.116766 -0.4866 0.626571
## SLOPE 0.011352 0.013389 0.8479 0.396517
## Avg_z -0.105276 0.022422 -4.6952 2.664e-06
## lag.Avg_CEa_07 -0.559944 0.212632 -2.6334 0.008454
## lag.NDVI -28.742233 11.599813 -2.4778 0.013219
## lag.SLOPE 0.884282 0.203207 4.3516 1.351e-05
## lag.Avg_z 0.138273 0.128293 1.0778 0.281128
##
## Rho: 0.90567
## Asymptotic standard error: 0.5636
## z-value: 1.6069, p-value: 0.10807
## Lambda: 0.94735
## Asymptotic standard error: 0.31799
## z-value: 2.9792, p-value: 0.0028904
##
## LR test value: 147.85, p-value: < 2.22e-16
##
## Log likelihood: -190.7997 for sacmixed model
## ML residual variance (sigma squared): 0.19248, (sigma: 0.43873)
## Number of observations: 313
## Number of parameters estimated: 12
## AIC: 405.6, (AIC for lm: 541.44)
residuales_map15_3b=map15_3b$residuals
shapiro.test(residuales_map15_3b)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_3b
## W = 0.97534, p-value = 3.293e-05
Moran.I(residuales_map15_3b,we)
## $observed
## [1] 0.04841028
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004640051
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.94735) y rho también (0.90567), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando DEM y NDVI
map15_3c= sacsarlm(formula=Avg_CEa_15~Avg_CEa_07+SLOPE+Avg_z, data= x, listw= Wve,type="mixed")
summary(map15_3c)
##
## Call:sacsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + SLOPE + Avg_z, data = x,
## listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.253068 -0.278077 -0.027132 0.246479 2.075108
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.265194 33.583259 0.1866 0.8520079
## Avg_CEa_07 0.388032 0.034184 11.3514 < 2.2e-16
## SLOPE 0.012949 0.013568 0.9543 0.3399067
## Avg_z -0.100612 0.022265 -4.5189 6.216e-06
## lag.Avg_CEa_07 -0.686182 0.213268 -3.2175 0.0012933
## lag.SLOPE 0.605897 0.179713 3.3715 0.0007477
## lag.Avg_z 0.080770 0.130640 0.6183 0.5363998
##
## Rho: 0.92017
## Asymptotic standard error: 0.57014
## z-value: 1.6139, p-value: 0.10654
## Lambda: 0.95375
## Asymptotic standard error: 0.33291
## z-value: 2.8649, p-value: 0.0041718
##
## LR test value: 139.01, p-value: < 2.22e-16
##
## Log likelihood: -195.9188 for sacmixed model
## ML residual variance (sigma squared): 0.1985, (sigma: 0.44553)
## Number of observations: 313
## Number of parameters estimated: 10
## AIC: 411.84, (AIC for lm: 540.85)
residuales_map15_3c=map15_3c$residuals
shapiro.test(residuales_map15_3c)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_3c
## W = 0.96658, p-value = 1.265e-06
Moran.I(residuales_map15_3c,we)
## $observed
## [1] 0.05566855
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004635825
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.95375) y rho también (0.92017), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
\[Y= \alpha 1_n + X\beta+u \\ u=\rho Wu + \epsilon \]
map15_4=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= x, listw= Wve)
summary(map15_4)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = x, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4682926 -0.3245699 0.0049751 0.3215294 1.9926400
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.7597381 2.0758704 10.9639 < 2.2e-16
## Avg_CEa_07 0.2479677 0.0247839 10.0052 < 2.2e-16
## NDVI -1.2527443 1.0391615 -1.2055 0.2280
## DEM -0.0035254 0.0106002 -0.3326 0.7394
## SLOPE 0.0603502 0.0137383 4.3928 1.119e-05
## Avg_z -0.1133123 0.0145926 -7.7650 8.216e-15
##
## Rho: 0.96209, LR test value: 51.297, p-value: 7.9403e-13
## Asymptotic standard error: 0.02667
## z-value: 36.074, p-value: < 2.22e-16
## Wald statistic: 1301.3, p-value: < 2.22e-16
##
## Log likelihood: -238.6759 for lag model
## ML residual variance (sigma squared): 0.26412, (sigma: 0.51393)
## Number of observations: 313
## Number of parameters estimated: 8
## AIC: 493.35, (AIC for lm: 542.65)
## LM test for residual autocorrelation
## test value: 197.83, p-value: < 2.22e-16
residuales_map15_4 =map15_4$residuals
shapiro.test(residuales_map15_4)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_4
## W = 0.98401, p-value = 0.001482
Moran.I(residuales_map15_4,we)
## $observed
## [1] 0.06272672
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004645596
##
## $p.value
## [1] 0
A pesar de que Rho es cercano a uno (0.96209), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando NDVI
map15_4b=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+DEM+SLOPE+Avg_z, data= x, listw= Wve)
summary(map15_4b)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + DEM + SLOPE + Avg_z,
## data = x, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4816823 -0.3104710 -0.0029262 0.3123820 2.0086327
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.2840690 2.0415406 10.9153 < 2.2e-16
## Avg_CEa_07 0.2511915 0.0246965 10.1712 < 2.2e-16
## DEM -0.0023501 0.0105797 -0.2221 0.8242
## SLOPE 0.0590076 0.0137250 4.2993 1.713e-05
## Avg_z -0.1174587 0.0142130 -8.2642 2.220e-16
##
## Rho: 0.96224, LR test value: 51.442, p-value: 7.3763e-13
## Asymptotic standard error: 0.026571
## z-value: 36.214, p-value: < 2.22e-16
## Wald statistic: 1311.5, p-value: < 2.22e-16
##
## Log likelihood: -239.4008 for lag model
## ML residual variance (sigma squared): 0.26534, (sigma: 0.51511)
## Number of observations: 313
## Number of parameters estimated: 7
## AIC: 492.8, (AIC for lm: 542.24)
## LM test for residual autocorrelation
## test value: 204.24, p-value: < 2.22e-16
residuales_map15_4b =map15_4b$residuals
shapiro.test(residuales_map15_4b)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_4b
## W = 0.98402, p-value = 0.001489
Moran.I(residuales_map15_4b,we)
## $observed
## [1] 0.06381437
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004645202
##
## $p.value
## [1] 0
A pesar de que Rho es cercano a uno (0.96224), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando DEM y NDVI
map15_4c=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+SLOPE+Avg_z, data= x, listw= Wve)
summary(map15_4c)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + SLOPE + Avg_z, data = x,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4784823 -0.3104058 -0.0036333 0.3134775 2.0108734
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.244004 2.033354 10.9396 < 2.2e-16
## Avg_CEa_07 0.250818 0.024640 10.1794 < 2.2e-16
## SLOPE 0.059387 0.013617 4.3611 1.294e-05
## Avg_z -0.119649 0.010216 -11.7118 < 2.2e-16
##
## Rho: 0.96243, LR test value: 51.997, p-value: 5.56e-13
## Asymptotic standard error: 0.026429
## z-value: 36.416, p-value: < 2.22e-16
## Wald statistic: 1326.1, p-value: < 2.22e-16
##
## Log likelihood: -239.4255 for lag model
## ML residual variance (sigma squared): 0.26537, (sigma: 0.51514)
## Number of observations: 313
## Number of parameters estimated: 6
## AIC: 490.85, (AIC for lm: 540.85)
## LM test for residual autocorrelation
## test value: 204.57, p-value: < 2.22e-16
residuales_map15_4c=map15_4c$residuals
shapiro.test(residuales_map15_4c)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_4c
## W = 0.98381, p-value = 0.001347
Moran.I(residuales_map15_4c,we)
## $observed
## [1] 0.06388428
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004645126
##
## $p.value
## [1] 0
A pesar de que Rho es cercano a uno (0.96243), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
\[Y=\lambda W Y + \alpha 1_n + X\beta+\epsilon \]
map15_5=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= x, listw= Wve)
summary(map15_5)
##
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = x, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.46790 -0.32241 -0.02153 0.36060 1.99578
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 45.5088603 2.7607166 16.4844 < 2.2e-16
## Avg_CEa_07 0.2959247 0.0286368 10.3337 < 2.2e-16
## NDVI -1.1627276 1.1220178 -1.0363 0.3000703
## DEM -0.0093728 0.0123588 -0.7584 0.4482181
## SLOPE 0.0518339 0.0144655 3.5833 0.0003393
## Avg_z -0.1327355 0.0171932 -7.7202 1.155e-14
##
## Lambda: 0.96877, LR test value: 49.814, p-value: 1.69e-12
## Asymptotic standard error: 0.022011
## z-value: 44.013, p-value: < 2.22e-16
## Wald statistic: 1937.2, p-value: < 2.22e-16
##
## Log likelihood: -239.4171 for error model
## ML residual variance (sigma squared): 0.26504, (sigma: 0.51482)
## Number of observations: 313
## Number of parameters estimated: 8
## AIC: 494.83, (AIC for lm: 542.65)
residuales_map15_5 =map15_5$residuals
shapiro.test(residuales_map15_5)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_5
## W = 0.98846, p-value = 0.01377
Moran.I(residuales_map15_5,we)
## $observed
## [1] 0.07550844
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004647281
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.96877), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando el NDVI
map15_5b=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+DEM+SLOPE+Avg_z, data= x, listw= Wve)
summary(map15_5b)
##
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + DEM + SLOPE +
## Avg_z, data = x, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.477728 -0.316994 -0.014091 0.367283 2.009859
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 45.035550 2.729375 16.5003 < 2.2e-16
## Avg_CEa_07 0.299387 0.028492 10.5079 < 2.2e-16
## DEM -0.008240 0.012332 -0.6682 0.5040078
## SLOPE 0.051310 0.014481 3.5432 0.0003953
## Avg_z -0.136386 0.016857 -8.0910 6.661e-16
##
## Lambda: 0.96901, LR test value: 50.337, p-value: 1.2949e-12
## Asymptotic standard error: 0.021843
## z-value: 44.363, p-value: < 2.22e-16
## Wald statistic: 1968.1, p-value: < 2.22e-16
##
## Log likelihood: -239.9531 for error model
## ML residual variance (sigma squared): 0.26594, (sigma: 0.51569)
## Number of observations: 313
## Number of parameters estimated: 7
## AIC: 493.91, (AIC for lm: 542.24)
residuales_map15_5b =map15_5b$residuals
shapiro.test(residuales_map15_5b)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_5b
## W = 0.98823, p-value = 0.01217
Moran.I(residuales_map15_5b,we)
## $observed
## [1] 0.07620439
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004646962
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.96901), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando DEM y NDVI
map15_5c=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+SLOPE+Avg_z, data= x, listw= Wve)
summary(map15_5c)
##
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + SLOPE + Avg_z,
## data = x, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.470171 -0.318709 -0.014481 0.355224 2.014963
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 44.749718 2.699784 16.5753 < 2.2e-16
## Avg_CEa_07 0.297488 0.028368 10.4868 < 2.2e-16
## SLOPE 0.052248 0.014422 3.6227 0.0002915
## Avg_z -0.143289 0.013322 -10.7558 < 2.2e-16
##
## Lambda: 0.96928, LR test value: 50.495, p-value: 1.1945e-12
## Asymptotic standard error: 0.021655
## z-value: 44.761, p-value: < 2.22e-16
## Wald statistic: 2003.5, p-value: < 2.22e-16
##
## Log likelihood: -240.1762 for error model
## ML residual variance (sigma squared): 0.2663, (sigma: 0.51604)
## Number of observations: 313
## Number of parameters estimated: 6
## AIC: 492.35, (AIC for lm: 540.85)
residuales_map15_5c =map15_5c$residuals
shapiro.test(residuales_map15_5c)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_5c
## W = 0.98814, p-value = 0.01166
Moran.I(residuales_map15_5c,we)
## $observed
## [1] 0.0767392
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004646816
##
## $p.value
## [1] 0
A pesar de que Lambda es cercano a uno (0.96928), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
\[Y= \alpha 1_n + X\beta+ WX\beta_{(2)}+ u \\ u=\rho Wu + \epsilon \]
map15_6=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= x, listw= Wve,type="mixed")
summary(map15_6)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = x, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.356577 -0.269279 -0.016311 0.269347 1.954889
##
## Type: mixed
## Coefficients: (numerical Hessian approximate standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 28.265444 12.265241 2.3045 0.021194
## Avg_CEa_07 0.318816 0.032741 9.7376 < 2.2e-16
## NDVI -0.463244 1.198688 -0.3865 0.699157
## DEM 0.026816 0.015544 1.7252 0.084488
## SLOPE 0.010237 0.014217 0.7200 0.471503
## Avg_z -0.127758 0.019283 -6.6254 3.462e-11
## lag.Avg_CEa_07 -0.148588 0.184740 -0.8043 0.421220
## lag.NDVI -33.518708 10.042695 -3.3376 0.000845
## lag.DEM -0.135244 0.071200 -1.8995 0.057501
## lag.SLOPE 1.004251 0.157735 6.3667 1.931e-10
## lag.Avg_z 0.216661 0.078053 2.7758 0.005506
##
## Rho: 0.91953, LR test value: 20.527, p-value: 5.8806e-06
## Approximate (numerical Hessian) standard error: 0.078987
## z-value: 11.642, p-value: < 2.22e-16
## Wald statistic: 135.53, p-value: < 2.22e-16
##
## Log likelihood: -202.5621 for mixed model
## ML residual variance (sigma squared): 0.21072, (sigma: 0.45905)
## Number of observations: 313
## Number of parameters estimated: 13
## AIC: 431.12, (AIC for lm: 449.65)
residuales_map15_6=map15_6$residuals
shapiro.test(residuales_map15_6)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_6
## W = 0.97531, p-value = 3.25e-05
Moran.I(residuales_map15_6,we)
## $observed
## [1] 0.04750286
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004640154
##
## $p.value
## [1] 0
A pesar de que Rho es cercano a uno (0.91953), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando el DEM
map15_6b=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+SLOPE+Avg_z, data= x, listw= Wve,type="mixed")
summary(map15_6b)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + SLOPE + Avg_z,
## data = x, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.333622 -0.275363 -0.029168 0.282362 1.964752
##
## Type: mixed
## Coefficients: (numerical Hessian approximate standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 19.647922 11.671165 1.6835 0.092286
## Avg_CEa_07 0.330155 0.032126 10.2768 < 2.2e-16
## NDVI -0.589440 1.162183 -0.5072 0.612026
## SLOPE 0.010556 0.014130 0.7470 0.455040
## Avg_z -0.121066 0.019364 -6.2522 4.048e-10
## lag.Avg_CEa_07 -0.223421 0.181059 -1.2340 0.217216
## lag.NDVI -32.761470 10.059924 -3.2566 0.001127
## lag.SLOPE 1.008515 0.155767 6.4745 9.512e-11
## lag.Avg_z 0.143016 0.075228 1.9011 0.057288
##
## Rho: 0.92005, LR test value: 20.705, p-value: 5.3568e-06
## Approximate (numerical Hessian) standard error: 0.078739
## z-value: 11.685, p-value: < 2.22e-16
## Wald statistic: 136.53, p-value: < 2.22e-16
##
## Log likelihood: -204.0637 for mixed model
## ML residual variance (sigma squared): 0.21275, (sigma: 0.46124)
## Number of observations: 313
## Number of parameters estimated: 11
## AIC: 430.13, (AIC for lm: 448.83)
residuales_map15_6b=map15_6b$residuals
shapiro.test(residuales_map15_6b)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_6b
## W = 0.97702, p-value = 6.545e-05
Moran.I(residuales_map15_6b,we)
## $observed
## [1] 0.04829465
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004641113
##
## $p.value
## [1] 0
A pesar de que Rho es cercano a uno (0.92005), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
Modelo quitando NDVI y DEM
map15_6c=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+SLOPE+Avg_z, data= x, listw= Wve,type="mixed")
summary(map15_6c)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + SLOPE + Avg_z, data = x,
## listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.356185 -0.291875 -0.027334 0.266255 2.154409
##
## Type: mixed
## Coefficients: (numerical Hessian approximate standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.568151 11.577432 0.6537 0.51331
## Avg_CEa_07 0.349842 0.032747 10.6832 < 2.2e-16
## SLOPE 0.014569 0.014404 1.0114 0.31181
## Avg_z -0.112156 0.020166 -5.5617 2.672e-08
## lag.Avg_CEa_07 -0.405714 0.183619 -2.2095 0.02714
## lag.SLOPE 0.634660 0.128471 4.9401 7.808e-07
## lag.Avg_z 0.070200 0.077591 0.9048 0.36560
##
## Rho: 0.93603, LR test value: 26.717, p-value: 2.3559e-07
## Approximate (numerical Hessian) standard error: 0.063387
## z-value: 14.767, p-value: < 2.22e-16
## Wald statistic: 218.06, p-value: < 2.22e-16
##
## Log likelihood: -212.4981 for mixed model
## ML residual variance (sigma squared): 0.2242, (sigma: 0.4735)
## Number of observations: 313
## Number of parameters estimated: 9
## AIC: 443, (AIC for lm: 467.71)
residuales_map15_6c=map15_6c$residuals
shapiro.test(residuales_map15_6c)
##
## Shapiro-Wilk normality test
##
## data: residuales_map15_6c
## W = 0.96734, p-value = 1.649e-06
Moran.I(residuales_map15_6c,we)
## $observed
## [1] 0.06194672
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.00463645
##
## $p.value
## [1] 0
A pesar de que Rho es cercano a uno (0.93603), no se presenta normalidad en los residuos y el p.valor del índice de Moran es cero. Lo anterior nos indica que los residuos tienen dependencia espacial, y por ende, el modelo no explica correctamente los datos de la conductividad eletrica a 150 cm.
En conclusión, ninguno de los modelos explica los datos de conductividad electrica a 150 cm, sin embargo, al observar el AIC, el modelo que obtuvo el valor más bajo fue 4. Modelo GNS, con AIC: 405.6, es decir, fue el que estuvo más cerca.