Realice las regresiones espaciales vistas en clase para la variable CEA a 150 cm y publiquelo en Rpubs
library(readxl)
df <- read_excel("~/university/Computacion/Clase (22 April)/BD_MODELADO.xlsx")
View(df)
library(ape)
df.dists <- as.matrix(dist(cbind(df$Avg_X_MCB, df$Avg_Y_MCE))) # me calcula las distancias
df.dists.inv <- 1/df.dists
diag(df.dists.inv) <- 0 # Asignar ceros a la diagonal donde sale inf
df.dists.inv <- round(df.dists.inv,3) # redondeo
df.dists.inv[1:5, 1:5] # visualizar
## 1 2 3 4 5
## 1 0.000 0.193 0.022 0.054 0.046
## 2 0.193 0.000 0.025 0.047 0.057
## 3 0.022 0.025 0.000 0.017 0.030
## 4 0.054 0.047 0.017 0.000 0.034
## 5 0.046 0.057 0.030 0.034 0.000
We<-df.dists.inv/rowSums(df.dists.inv) # Matriz de pesos estandarizada
df_xy=df[,c(1,2)] # Coords
X= df[,-c(1,2)] # Explicativas
plot(df$Avg_CEa_15,df$NDVI,pch=16,cex=0.6)
plot(df$Avg_CEa_15,df$DEM,pch=16,cex=0.6)
plot(df$Avg_CEa_15,df$SLOPE,pch=16,cex=0.6)
De manera exploratoria no se aprecia relacion entre la CEa a 150 con el NDVI ni con altura ni pendiente
mod1.1=lm(df$Avg_CEa_15~df$NDVI)
summary(mod1.1)
##
## Call:
## lm(formula = df$Avg_CEa_15 ~ df$NDVI)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.71991 -0.45614 -0.02841 0.38067 2.87345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.227 1.179 18.85 < 2e-16 ***
## df$NDVI -4.461 1.412 -3.16 0.00173 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7268 on 311 degrees of freedom
## Multiple R-squared: 0.0311, Adjusted R-squared: 0.02799
## F-statistic: 9.984 on 1 and 311 DF, p-value: 0.001735
hist(mod1.1$residuals)
mod1.2=lm(df$Avg_CEa_15~df$DEM)
summary(mod1.2)
##
## Call:
## lm(formula = df$Avg_CEa_15 ~ df$DEM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.58433 -0.44587 -0.05758 0.35063 2.84724
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 31.270887 1.740187 17.970 < 2e-16 ***
## df$DEM -0.062246 0.008482 -7.339 1.89e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6817 on 311 degrees of freedom
## Multiple R-squared: 0.1476, Adjusted R-squared: 0.1449
## F-statistic: 53.86 on 1 and 311 DF, p-value: 1.894e-12
hist(mod1.2$residuals)
mod1.3=lm(df$Avg_CEa_15~df$SLOPE)
summary(mod1.3)
##
## Call:
## lm(formula = df$Avg_CEa_15 ~ df$SLOPE)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.58422 -0.46796 -0.03566 0.42734 2.91769
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.24028 0.08838 206.375 < 2e-16 ***
## df$SLOPE 0.06375 0.01897 3.361 0.000874 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7253 on 311 degrees of freedom
## Multiple R-squared: 0.03504, Adjusted R-squared: 0.03194
## F-statistic: 11.29 on 1 and 311 DF, p-value: 0.0008744
hist(mod1.3$residuals)
Se aprecia que para estos modelos no espaciales, el coeficiente de determinación es muy bajo, posiblemente explicado por la dependencia espacial que puede tener el CEa
Moran.I(df$Avg_CEa_15,df.dists.inv)
## $observed
## [1] 0.159866
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004644691
##
## $p.value
## [1] 0
La CEa a 150, parece tener dependencia espacial, por lo cual es necesario utilizar modelos que me expliquen dicha dependencia
Debo estandarizar los valores de la matriz de pesos para que lamda este entre 0 y 1
#preparando librerias
library(spdep)
library(ape)
library(sp)
library(MVA)
library(Hmisc)
library(normtest)
library(nortest)
library(dplyr)
library(spatialreg)
library(corrplot)
contnb=dnearneigh(coordinates(df_xy),0,380000,longlat = F)
contnb
## Neighbour list object:
## Number of regions: 313
## Number of nonzero links: 97656
## Percentage nonzero weights: 99.68051
## Average number of links: 312
class(contnb)
## [1] "nb"
df_xy=as.matrix(df_xy)
dlist <- nbdists(contnb, df_xy)
dlist <- lapply(dlist, function(x) 1/x)
Wve=nb2listw(contnb,glist=dlist,style = "W") # matriz de peso estandarizada
map= spautolm(Avg_CEa_15~1, data= X, listw= Wve, family="SAR")
summary(map)
##
## Call: spautolm(formula = Avg_CEa_15 ~ 1, data = X, listw = Wve, family = "SAR")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.453255 -0.397645 -0.042934 0.322283 2.953512
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 19.3151 1.5515 12.45 < 2.2e-16
##
## Lambda: 0.97691 LR test value: 86.774 p-value: < 2.22e-16
## Numerical Hessian standard error of lambda: 0.023
##
## Log likelihood: -304.7918
## ML residual variance (sigma squared): 0.40168, (sigma: 0.63378)
## Number of observations: 313
## Number of parameters estimated: 3
## AIC: 615.58
residuales_map =map$fit$residuals
shapiro.test(residuales_map)
##
## Shapiro-Wilk normality test
##
## data: residuales_map
## W = 0.95729, p-value = 6.37e-08
Moran.I(residuales_map,We)
## $observed
## [1] 0.09349941
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004635041
##
## $p.value
## [1] 0
Este modelo, sin otras variables no explica la dependencia espacial
shapiro.test(df$Avg_CEa_15)
##
## Shapiro-Wilk normality test
##
## data: df$Avg_CEa_15
## W = 0.97785, p-value = 9.283e-05
msarar= sacsarlm(Avg_CEa_15~1, data= X, listw= Wve)
## Warning in sacsarlm(Avg_CEa_15 ~ 1, data = X, listw = Wve): inversion of asymptotic covariance matrix failed for tol.solve = 2.22044604925031e-16
## reciprocal condition number = 1.77227e-18 - using numerical Hessian.
summary(msarar)
##
## Call:sacsarlm(formula = Avg_CEa_15 ~ 1, data = X, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.364908 -0.357504 -0.063033 0.289858 2.878760
##
## Type: sac
## Coefficients: (numerical Hessian approximate standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.1253 1.1713 0.9607 0.3367
##
## Rho: 0.95895
## Approximate (numerical Hessian) standard error: 0.040792
## z-value: 23.508, p-value: < 2.22e-16
## Lambda: 0.95895
## Approximate (numerical Hessian) standard error: 0.040755
## z-value: 23.53, p-value: < 2.22e-16
##
## LR test value: 133.68, p-value: < 2.22e-16
##
## Log likelihood: -281.3411 for sac model
## ML residual variance (sigma squared): 0.34087, (sigma: 0.58384)
## Number of observations: 313
## Number of parameters estimated: 4
## AIC: 570.68, (AIC for lm: 700.36)
El modelo SARAR es un mejor modelo que el SAR pues su ACI es menor
residuos_msarar <- msarar$residuals
shapiro.test(residuos_msarar)
##
## Shapiro-Wilk normality test
##
## data: residuos_msarar
## W = 0.94498, p-value = 2.076e-09
Moran.I(residuos_msarar, We)
## $observed
## [1] 0.0563745
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004629181
##
## $p.value
## [1] 0
El modelo SARAR no explica la dependenca espacial de los datos
mslm=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve)
summary(mslm)
##
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = X, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.46790 -0.32241 -0.02153 0.36060 1.99578
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 45.5088603 2.7607166 16.4844 < 2.2e-16
## Avg_CEa_07 0.2959247 0.0286368 10.3337 < 2.2e-16
## NDVI -1.1627276 1.1220178 -1.0363 0.3000703
## DEM -0.0093728 0.0123588 -0.7584 0.4482181
## SLOPE 0.0518339 0.0144655 3.5833 0.0003393
## Avg_z -0.1327355 0.0171932 -7.7202 1.155e-14
##
## Lambda: 0.96877, LR test value: 49.814, p-value: 1.69e-12
## Asymptotic standard error: 0.022011
## z-value: 44.013, p-value: < 2.22e-16
## Wald statistic: 1937.2, p-value: < 2.22e-16
##
## Log likelihood: -239.4171 for error model
## ML residual variance (sigma squared): 0.26504, (sigma: 0.51482)
## Number of observations: 313
## Number of parameters estimated: 8
## AIC: 494.83, (AIC for lm: 542.65)
El modelo SLM que tienen variables, es mejor que los modelos de autoregresión
residuos_mslm <- mslm$residuals
shapiro.test(residuos_mslm)
##
## Shapiro-Wilk normality test
##
## data: residuos_mslm
## W = 0.98846, p-value = 0.01377
Moran.I(residuos_mslm, We)
## $observed
## [1] 0.07550844
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004647281
##
## $p.value
## [1] 0
El modelo SLM con todas las variables no explica la dependencia espacial
mslm.b=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+DEM+SLOPE+Avg_z, data= X, listw= Wve)
summary(mslm.b)
##
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + DEM + SLOPE +
## Avg_z, data = X, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.477728 -0.316994 -0.014091 0.367283 2.009859
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 45.035550 2.729375 16.5003 < 2.2e-16
## Avg_CEa_07 0.299387 0.028492 10.5079 < 2.2e-16
## DEM -0.008240 0.012332 -0.6682 0.5040078
## SLOPE 0.051310 0.014481 3.5432 0.0003953
## Avg_z -0.136386 0.016857 -8.0910 6.661e-16
##
## Lambda: 0.96901, LR test value: 50.337, p-value: 1.2949e-12
## Asymptotic standard error: 0.021843
## z-value: 44.363, p-value: < 2.22e-16
## Wald statistic: 1968.1, p-value: < 2.22e-16
##
## Log likelihood: -239.9531 for error model
## ML residual variance (sigma squared): 0.26594, (sigma: 0.51569)
## Number of observations: 313
## Number of parameters estimated: 7
## AIC: 493.91, (AIC for lm: 542.24)
residuales_mslm.b <- mslm.b$residuals
shapiro.test(residuales_mslm.b)
##
## Shapiro-Wilk normality test
##
## data: residuales_mslm.b
## W = 0.98823, p-value = 0.01217
Moran.I(residuales_mslm.b, We)
## $observed
## [1] 0.07620439
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004646962
##
## $p.value
## [1] 0
Sin NDVI el modelo SLM mejoro un poco pero no explica la dependencia espacial
mslm.c=errorsarlm(formula=Avg_CEa_15~Avg_CEa_07+SLOPE+Avg_z, data= X, listw= Wve)
summary(mslm.c)
##
## Call:errorsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + SLOPE + Avg_z,
## data = X, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.470171 -0.318709 -0.014481 0.355224 2.014963
##
## Type: error
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 44.749718 2.699784 16.5753 < 2.2e-16
## Avg_CEa_07 0.297488 0.028368 10.4868 < 2.2e-16
## SLOPE 0.052248 0.014422 3.6227 0.0002915
## Avg_z -0.143289 0.013322 -10.7558 < 2.2e-16
##
## Lambda: 0.96928, LR test value: 50.495, p-value: 1.1945e-12
## Asymptotic standard error: 0.021655
## z-value: 44.761, p-value: < 2.22e-16
## Wald statistic: 2003.5, p-value: < 2.22e-16
##
## Log likelihood: -240.1762 for error model
## ML residual variance (sigma squared): 0.2663, (sigma: 0.51604)
## Number of observations: 313
## Number of parameters estimated: 6
## AIC: 492.35, (AIC for lm: 540.85)
residuos_mslm.c <- mslm.c$residuals
shapiro.test(residuos_mslm.c)
##
## Shapiro-Wilk normality test
##
## data: residuos_mslm.c
## W = 0.98814, p-value = 0.01166
Moran.I(residuos_mslm.c, We)
## $observed
## [1] 0.0767392
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004646816
##
## $p.value
## [1] 0
A pesar de remover el DEM el modelo no explica la dependencia espacial
msem=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve)
summary(msem)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = X, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4682926 -0.3245699 0.0049751 0.3215294 1.9926400
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.7597381 2.0758704 10.9639 < 2.2e-16
## Avg_CEa_07 0.2479677 0.0247839 10.0052 < 2.2e-16
## NDVI -1.2527443 1.0391615 -1.2055 0.2280
## DEM -0.0035254 0.0106002 -0.3326 0.7394
## SLOPE 0.0603502 0.0137383 4.3928 1.119e-05
## Avg_z -0.1133123 0.0145926 -7.7650 8.216e-15
##
## Rho: 0.96209, LR test value: 51.297, p-value: 7.9403e-13
## Asymptotic standard error: 0.02667
## z-value: 36.074, p-value: < 2.22e-16
## Wald statistic: 1301.3, p-value: < 2.22e-16
##
## Log likelihood: -238.6759 for lag model
## ML residual variance (sigma squared): 0.26412, (sigma: 0.51393)
## Number of observations: 313
## Number of parameters estimated: 8
## AIC: 493.35, (AIC for lm: 542.65)
## LM test for residual autocorrelation
## test value: 197.83, p-value: < 2.22e-16
residuos_msem <- msem$residuals
shapiro.test(residuos_msem)
##
## Shapiro-Wilk normality test
##
## data: residuos_msem
## W = 0.98401, p-value = 0.001482
Moran.I(residuos_msem, We)
## $observed
## [1] 0.06272672
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004645596
##
## $p.value
## [1] 0
msem.b=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+DEM+SLOPE+Avg_z, data= X, listw= Wve)
summary(msem.b)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + DEM + SLOPE + Avg_z,
## data = X, listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4816823 -0.3104710 -0.0029262 0.3123820 2.0086327
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.2840690 2.0415406 10.9153 < 2.2e-16
## Avg_CEa_07 0.2511915 0.0246965 10.1712 < 2.2e-16
## DEM -0.0023501 0.0105797 -0.2221 0.8242
## SLOPE 0.0590076 0.0137250 4.2993 1.713e-05
## Avg_z -0.1174587 0.0142130 -8.2642 2.220e-16
##
## Rho: 0.96224, LR test value: 51.442, p-value: 7.3763e-13
## Asymptotic standard error: 0.026571
## z-value: 36.214, p-value: < 2.22e-16
## Wald statistic: 1311.5, p-value: < 2.22e-16
##
## Log likelihood: -239.4008 for lag model
## ML residual variance (sigma squared): 0.26534, (sigma: 0.51511)
## Number of observations: 313
## Number of parameters estimated: 7
## AIC: 492.8, (AIC for lm: 542.24)
## LM test for residual autocorrelation
## test value: 204.24, p-value: < 2.22e-16
residuales_msem.b <- msem.b$residuals
shapiro.test(residuales_msem.b)
##
## Shapiro-Wilk normality test
##
## data: residuales_msem.b
## W = 0.98402, p-value = 0.001489
Moran.I(residuales_msem.b,We)
## $observed
## [1] 0.06381437
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004645202
##
## $p.value
## [1] 0
msem.c=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+SLOPE+Avg_z, data= X, listw= Wve)
summary(msem.c)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + SLOPE + Avg_z, data = X,
## listw = Wve)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4784823 -0.3104058 -0.0036333 0.3134775 2.0108734
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 22.244004 2.033354 10.9396 < 2.2e-16
## Avg_CEa_07 0.250818 0.024640 10.1794 < 2.2e-16
## SLOPE 0.059387 0.013617 4.3611 1.294e-05
## Avg_z -0.119649 0.010216 -11.7118 < 2.2e-16
##
## Rho: 0.96243, LR test value: 51.997, p-value: 5.56e-13
## Asymptotic standard error: 0.026429
## z-value: 36.416, p-value: < 2.22e-16
## Wald statistic: 1326.1, p-value: < 2.22e-16
##
## Log likelihood: -239.4255 for lag model
## ML residual variance (sigma squared): 0.26537, (sigma: 0.51514)
## Number of observations: 313
## Number of parameters estimated: 6
## AIC: 490.85, (AIC for lm: 540.85)
## LM test for residual autocorrelation
## test value: 204.57, p-value: < 2.22e-16
residuos_msem.c <-msem.c$residuals
shapiro.test(residuos_msem.c)
##
## Shapiro-Wilk normality test
##
## data: residuos_msem.c
## W = 0.98381, p-value = 0.001347
Moran.I(residuos_msem.c, We)
## $observed
## [1] 0.06388428
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004645126
##
## $p.value
## [1] 0
El modelo SEM no explica la dependencia espacial, en cambio el modelo SLM sin NDVI y sin DEM tiene menor AIC
msde=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(msde)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = X, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.356577 -0.269279 -0.016311 0.269347 1.954889
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 28.265444 13.304190 2.1246 0.033624
## Avg_CEa_07 0.318816 0.033502 9.5163 < 2.2e-16
## NDVI -0.463244 1.170570 -0.3957 0.692295
## DEM 0.026816 0.016575 1.6179 0.105686
## SLOPE 0.010237 0.014082 0.7269 0.467260
## Avg_z -0.127758 0.021328 -5.9901 2.098e-09
## lag.Avg_CEa_07 -0.148588 0.197032 -0.7541 0.450771
## lag.NDVI -33.518708 10.304158 -3.2529 0.001142
## lag.DEM -0.135244 0.080945 -1.6708 0.094759
## lag.SLOPE 1.004251 0.157352 6.3822 1.746e-10
## lag.Avg_z 0.216661 0.099651 2.1742 0.029690
##
## Rho: 0.91953, LR test value: 20.527, p-value: 5.8806e-06
## Asymptotic standard error: 0.056295
## z-value: 16.334, p-value: < 2.22e-16
## Wald statistic: 266.81, p-value: < 2.22e-16
##
## Log likelihood: -202.5621 for mixed model
## ML residual variance (sigma squared): 0.21072, (sigma: 0.45905)
## Number of observations: 313
## Number of parameters estimated: 13
## AIC: 431.12, (AIC for lm: 449.65)
## LM test for residual autocorrelation
## test value: 128.64, p-value: < 2.22e-16
residuales_msde <- msde$residuals
shapiro.test(residuales_msde)
##
## Shapiro-Wilk normality test
##
## data: residuales_msde
## W = 0.97531, p-value = 3.25e-05
Moran.I(residuales_msde, We)
## $observed
## [1] 0.04750286
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004640154
##
## $p.value
## [1] 0
msde.b=lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+DEM+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(msde.b)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + DEM + SLOPE + Avg_z,
## data = X, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.379820 -0.276005 -0.029616 0.282895 2.145603
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 15.893764 13.013420 1.2213 0.22196
## Avg_CEa_07 0.338295 0.034000 9.9498 < 2.2e-16
## DEM 0.026634 0.016976 1.5689 0.11666
## SLOPE 0.014220 0.014423 0.9859 0.32416
## Avg_z -0.118428 0.021396 -5.5350 3.112e-08
## lag.Avg_CEa_07 -0.331487 0.197441 -1.6789 0.09317
## lag.DEM -0.133819 0.083016 -1.6120 0.10697
## lag.SLOPE 0.627814 0.131129 4.7878 1.686e-06
## lag.Avg_z 0.141067 0.098780 1.4281 0.15327
##
## Rho: 0.93587, LR test value: 26.617, p-value: 2.4806e-07
## Asymptotic standard error: 0.044993
## z-value: 20.801, p-value: < 2.22e-16
## Wald statistic: 432.66, p-value: < 2.22e-16
##
## Log likelihood: -211.0934 for mixed model
## ML residual variance (sigma squared): 0.2222, (sigma: 0.47138)
## Number of observations: 313
## Number of parameters estimated: 11
## AIC: 444.19, (AIC for lm: 468.8)
## LM test for residual autocorrelation
## test value: 204.42, p-value: < 2.22e-16
residuales_msde.b <- msde.b$residuals
shapiro.test(residuales_msde.b)
##
## Shapiro-Wilk normality test
##
## data: residuales_msde.b
## W = 0.96557, p-value = 8.953e-07
Moran.I(residuales_msde.b, We)
## $observed
## [1] 0.06140014
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004635677
##
## $p.value
## [1] 0
El AIC del modelo SED disminuye si se remueve el NDVI
msde.c <- lagsarlm(formula=Avg_CEa_15~Avg_CEa_07+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(msde.c)
##
## Call:lagsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + SLOPE + Avg_z, data = X,
## listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.356185 -0.291875 -0.027334 0.266255 2.154409
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.568151 11.915822 0.6351 0.52534
## Avg_CEa_07 0.349842 0.033080 10.5757 < 2.2e-16
## SLOPE 0.014569 0.014485 1.0058 0.31450
## Avg_z -0.112156 0.020824 -5.3860 7.205e-08
## lag.Avg_CEa_07 -0.405714 0.188414 -2.1533 0.03129
## lag.SLOPE 0.634660 0.128416 4.9422 7.723e-07
## lag.Avg_z 0.070200 0.081047 0.8662 0.38640
##
## Rho: 0.93603, LR test value: 26.717, p-value: 2.3559e-07
## Asymptotic standard error: 0.044869
## z-value: 20.861, p-value: < 2.22e-16
## Wald statistic: 435.19, p-value: < 2.22e-16
##
## Log likelihood: -212.4981 for mixed model
## ML residual variance (sigma squared): 0.2242, (sigma: 0.4735)
## Number of observations: 313
## Number of parameters estimated: 9
## AIC: 443, (AIC for lm: 467.71)
## LM test for residual autocorrelation
## test value: 206.76, p-value: < 2.22e-16
residuales_msde.c <- msde.c$residuals
shapiro.test(residuales_msde.c)
##
## Shapiro-Wilk normality test
##
## data: residuales_msde.c
## W = 0.96734, p-value = 1.649e-06
Moran.I(residuales_msde.c, We)
## $observed
## [1] 0.06194672
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.00463645
##
## $p.value
## [1] 0
El SDE no mejora al remover el DEM
mgns= sacsarlm(formula=Avg_CEa_15~Avg_CEa_07+NDVI+DEM+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(mgns)
##
## Call:sacsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + NDVI + DEM + SLOPE +
## Avg_z, data = X, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.259920 -0.257064 -0.024628 0.256195 1.934415
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 26.084548 36.251116 0.7196 0.47180
## Avg_CEa_07 0.362195 0.034530 10.4893 < 2.2e-16
## NDVI -0.433013 1.115198 -0.3883 0.69781
## DEM 0.025591 0.016294 1.5706 0.11628
## SLOPE 0.010971 0.013341 0.8224 0.41087
## Avg_z -0.112125 0.022705 -4.9384 7.875e-07
## lag.Avg_CEa_07 -0.486187 0.219517 -2.2148 0.02677
## lag.NDVI -29.360420 11.602286 -2.5306 0.01139
## lag.DEM -0.125137 0.091592 -1.3663 0.17186
## lag.SLOPE 0.883938 0.212106 4.1674 3.080e-05
## lag.Avg_z 0.205119 0.155215 1.3215 0.18633
##
## Rho: 0.9037
## Asymptotic standard error: 0.58886
## z-value: 1.5347, p-value: 0.12487
## Lambda: 0.94686
## Asymptotic standard error: 0.32846
## z-value: 2.8827, p-value: 0.0039429
##
## LR test value: 149.65, p-value: < 2.22e-16
##
## Log likelihood: -189.5009 for sacmixed model
## ML residual variance (sigma squared): 0.19093, (sigma: 0.43695)
## Number of observations: 313
## Number of parameters estimated: 14
## AIC: 407, (AIC for lm: 542.65)
residuales_mgns <- mgns$residuals
shapiro.test(residuales_mgns)
##
## Shapiro-Wilk normality test
##
## data: residuales_mgns
## W = 0.97364, p-value = 1.68e-05
Moran.I(residuales_mgns, We)
## $observed
## [1] 0.04788866
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004639083
##
## $p.value
## [1] 0
Este modelo GNS es el que tiene un AIC menor, el mejor de los modelos ensayados
mgns.b= sacsarlm(formula=Avg_CEa_15~Avg_CEa_07+DEM+SLOPE+Avg_z, data= X, listw= Wve,type="mixed")
summary(mgns.b)
##
## Call:sacsarlm(formula = Avg_CEa_15 ~ Avg_CEa_07 + DEM + SLOPE + Avg_z,
## data = X, listw = Wve, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.270871 -0.268895 -0.043227 0.251359 2.068286
##
## Type: sacmixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 14.256309 35.671498 0.3997 0.689410
## Avg_CEa_07 0.376570 0.034707 10.8500 < 2.2e-16
## DEM 0.025822 0.016516 1.5635 0.117944
## SLOPE 0.012529 0.013519 0.9268 0.354028
## Avg_z -0.107267 0.022501 -4.7673 1.868e-06
## lag.Avg_CEa_07 -0.611325 0.220653 -2.7705 0.005597
## lag.DEM -0.123820 0.093118 -1.3297 0.183615
## lag.SLOPE 0.604869 0.189089 3.1989 0.001380
## lag.Avg_z 0.144362 0.158025 0.9135 0.360957
##
## Rho: 0.91887
## Asymptotic standard error: 0.59159
## z-value: 1.5532, p-value: 0.12037
## Lambda: 0.95352
## Asymptotic standard error: 0.34156
## z-value: 2.7917, p-value: 0.0052437
##
## LR test value: 140.96, p-value: < 2.22e-16
##
## Log likelihood: -194.644 for sacmixed model
## ML residual variance (sigma squared): 0.19691, (sigma: 0.44375)
## Number of observations: 313
## Number of parameters estimated: 12
## AIC: 413.29, (AIC for lm: 542.24)
residuales_mgns.b <- mgns.b$residuals
shapiro.test(residuales_mgns.b)
##
## Shapiro-Wilk normality test
##
## data: residuales_mgns.b
## W = 0.96429, p-value = 5.831e-07
Moran.I(residuales_mgns.b, We)
## $observed
## [1] 0.05521322
##
## $expected
## [1] -0.003205128
##
## $sd
## [1] 0.004634968
##
## $p.value
## [1] 0
El modelo no mejora cuando el NDVI es removido
Ninguno de los modelos utilizados explica la dependencia espacial de CEa a 150 posiblemente debido a que las variables medidas en campo no son las adecuadas con relacion a la CE