library(tidyverse)
library(corrr)
library(psych)
library(haven)
sel <- read_csv("35sel2.csv")
Parsed with column specification:
cols(
  .default = col_double(),
  submitted = col_character()
)
See spec(...) for full column specifications.

Explore your data with glimpse

describe(sel)
str(sel)
tibble [382 x 37] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ Student ID: num [1:382] 2781 2852 4324 2251 2054 ...
 $ submitted : chr [1:382] "2020-09-16 13:36:02 UTC" "2020-09-10 17:53:24 UTC" "2020-09-10 15:01:18 UTC" "2020-09-10 17:47:51 UTC" ...
 $ Grade     : num [1:382] 3 3 3 3 3 3 3 3 3 3 ...
 $ Race      : num [1:382] 7 7 7 2 3 3 3 3 3 3 ...
 $ Sex       : num [1:382] 1 1 1 1 1 1 1 1 1 1 ...
 $ Q1        : num [1:382] 3 2 2 3 3 3 3 3 3 3 ...
 $ Q2        : num [1:382] 2 2 3 3 3 1 2 3 1 3 ...
 $ Q3        : num [1:382] 2 2 2 2 2 2 3 2 2 3 ...
 $ Q4        : num [1:382] 2 2 2 3 2 3 3 2 2 3 ...
 $ Q5        : num [1:382] 3 3 3 2 2 2 1 3 2 3 ...
 $ Q6        : num [1:382] 2 1 2 3 1 2 3 1 1 2 ...
 $ Q7        : num [1:382] 3 2 NA 1 2 3 3 2 3 3 ...
 $ Q8        : num [1:382] 2 2 2 1 2 2 1 2 2 3 ...
 $ Q9        : num [1:382] 2 2 1 3 3 2 2 3 1 2 ...
 $ Q10       : num [1:382] 3 2 2 2 2 2 3 2 2 2 ...
 $ Q11       : num [1:382] 1 3 1 1 1 1 1 1 1 1 ...
 $ Q12       : num [1:382] 3 2 3 3 2 2 2 2 2 3 ...
 $ Q13       : num [1:382] 3 3 3 2 3 1 1 3 1 1 ...
 $ Q14       : num [1:382] 3 2 2 3 2 2 2 2 2 2 ...
 $ Q15       : num [1:382] 3 2 2 3 2 2 2 2 2 3 ...
 $ Q16       : num [1:382] 1 1 1 1 1 1 1 1 1 1 ...
 $ Q17       : num [1:382] 2 2 2 2 2 3 1 2 2 2 ...
 $ Q18       : num [1:382] 3 2 2 2 3 2 2 1 2 3 ...
 $ Q19       : num [1:382] 3 3 3 3 3 3 3 1 1 1 ...
 $ Q20       : num [1:382] 2 2 3 2 2 2 3 2 2 2 ...
 $ Q21       : num [1:382] 3 2 3 1 3 3 1 2 2 3 ...
 $ Q22       : num [1:382] 1 2 1 1 1 1 1 1 1 1 ...
 $ Q23       : num [1:382] 3 2 2 2 2 2 2 2 2 2 ...
 $ Q24       : num [1:382] 2 2 2 3 2 3 3 2 2 2 ...
 $ Q25       : num [1:382] 3 2 1 1 1 1 2 1 1 2 ...
 $ Q26       : num [1:382] 2 3 3 3 3 3 3 3 3 1 ...
 $ Q27       : num [1:382] 2 2 3 3 2 2 3 2 2 2 ...
 $ Q28       : num [1:382] 3 2 3 3 2 2 2 2 2 2 ...
 $ Q29       : num [1:382] 2 2 2 2 2 2 3 2 2 2 ...
 $ Q30       : num [1:382] 2 3 1 2 2 2 2 2 2 3 ...
 $ Q31       : num [1:382] 2 2 2 2 3 3 1 2 2 2 ...
 $ Q32       : num [1:382] 2 2 2 2 2 2 2 2 2 2 ...
 - attr(*, "spec")=
  .. cols(
  ..   `Student ID` = col_double(),
  ..   submitted = col_character(),
  ..   Grade = col_double(),
  ..   Race = col_double(),
  ..   Sex = col_double(),
  ..   Q1 = col_double(),
  ..   Q2 = col_double(),
  ..   Q3 = col_double(),
  ..   Q4 = col_double(),
  ..   Q5 = col_double(),
  ..   Q6 = col_double(),
  ..   Q7 = col_double(),
  ..   Q8 = col_double(),
  ..   Q9 = col_double(),
  ..   Q10 = col_double(),
  ..   Q11 = col_double(),
  ..   Q12 = col_double(),
  ..   Q13 = col_double(),
  ..   Q14 = col_double(),
  ..   Q15 = col_double(),
  ..   Q16 = col_double(),
  ..   Q17 = col_double(),
  ..   Q18 = col_double(),
  ..   Q19 = col_double(),
  ..   Q20 = col_double(),
  ..   Q21 = col_double(),
  ..   Q22 = col_double(),
  ..   Q23 = col_double(),
  ..   Q24 = col_double(),
  ..   Q25 = col_double(),
  ..   Q26 = col_double(),
  ..   Q27 = col_double(),
  ..   Q28 = col_double(),
  ..   Q29 = col_double(),
  ..   Q30 = col_double(),
  ..   Q31 = col_double(),
  ..   Q32 = col_double()
  .. )
glimpse(sel)
Rows: 382
Columns: 37
$ `Student ID` <dbl> 2781, 2852, 4324, 2251, 2054, 2312, 2385, 2416, 2443, 2451, 2597, 3409, 4522, 2331, 2639, 2654, 2671, 2768, 2823, 3710, 2289, 2437, 2447, 2575, 3832, 1...
$ submitted    <chr> "2020-09-16 13:36:02 UTC", "2020-09-10 17:53:24 UTC", "2020-09-10 15:01:18 UTC", "2020-09-10 17:47:51 UTC", "2020-09-09 18:44:55 UTC", "2020-09-10 16:4...
$ Grade        <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3...
$ Race         <dbl> 7, 7, 7, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5...
$ Sex          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ Q1           <dbl> 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 1, 2, 1, 1, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2...
$ Q2           <dbl> 2, 2, 3, 3, 3, 1, 2, 3, 1, 3, 3, 3, 1, 1, 2, 3, 3, 2, 3, 1, 3, 2, 3, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 1, 3, 2, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 2, 3, 1, 3, 3...
$ Q3           <dbl> 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2...
$ Q4           <dbl> 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 3, 3, 2, 3, 1, 3, 2, 3, 2, 3, 3, 3, 1, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2...
$ Q5           <dbl> 3, 3, 3, 2, 2, 2, 1, 3, 2, 3, 2, 3, 1, 1, 3, 2, 3, 3, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2...
$ Q6           <dbl> 2, 1, 2, 3, 1, 2, 3, 1, 1, 2, 2, 1, 1, 3, 3, 1, 2, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 1, 3, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 2, 1, 1, 2, 3, NA, 1, 3, ...
$ Q7           <dbl> 3, 2, NA, 1, 2, 3, 3, 2, 3, 3, 3, 3, 3, NA, 3, 3, 3, 3, 3, 2, 1, 1, 3, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 1, 2, 3, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 3,...
$ Q8           <dbl> 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 1, 1, 1, 2, 1, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3...
$ Q9           <dbl> 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 2, 1, 2, 3, 3, 1, 2, 3, 3, 1, 2, 3, 1, 3, 1, 3, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 3, 3, 3, 2, 1, 3, 2...
$ Q10          <dbl> 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, NA, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, ...
$ Q11          <dbl> 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 2, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1...
$ Q12          <dbl> 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, NA, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, ...
$ Q13          <dbl> 3, 3, 3, 2, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 2, 3, 3, 1, 3, 2, 1, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3, 1, 2, 2...
$ Q14          <dbl> 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, NA, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, NA, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 3, 2, 2, NA, 3, ...
$ Q15          <dbl> 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, NA, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 1, 2, NA, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 2, 2,...
$ Q16          <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, NA, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1,...
$ Q17          <dbl> 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, NA, 2, 1, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, NA, 3, NA, 2, 2, NA, 2, 1, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 1, NA, 2,...
$ Q18          <dbl> 3, 2, 2, 2, 3, 2, 2, 1, 2, 3, NA, 2, 2, 2, 1, 2, 1, 3, 3, 2, 2, 3, 3, 1, NA, 3, NA, 1, NA, 3, 3, 2, 3, 1, 3, 2, 2, 2, 2, 3, 3, 3, 3, NA, 3, 2, 1, 2, 1,...
$ Q19          <dbl> 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, NA, 1, 2, 1, 3, 1, 3, 3, 3, 1, 2, 2, 3, 3, NA, 1, NA, 1, NA, 1, 3, 3, 3, 2, 3, 1, 1, 1, 3, 3, 2, 1, 3, 1, 1, 1, 2, 3, 1, ...
$ Q20          <dbl> 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 1, 2, NA, 3, NA, 2, NA, NA, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 3, 2, 2,...
$ Q21          <dbl> 3, 2, 3, 1, 3, 3, 1, 2, 2, 3, NA, 3, 2, 2, NA, 3, 2, 3, 3, 2, 3, 2, 3, 2, NA, 3, NA, 2, NA, 2, 2, 3, 3, 2, 3, 3, 2, 1, 3, 3, 3, 3, 1, 2, 1, 2, 3, 3, 2,...
$ Q22          <dbl> 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, NA, 1, 3, 1, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, NA, 1, NA, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, ...
$ Q23          <dbl> 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 3, NA, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
$ Q24          <dbl> 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, NA, 2, 2, 3, NA, 2, 2, 3, 2, 2, 2, 2, 2, 2, NA, 3, NA, 3, 3, NA, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2,...
$ Q25          <dbl> 3, 2, 1, 1, 1, 1, 2, 1, 1, 2, NA, 3, 2, 2, NA, 1, 2, 3, 1, 1, 2, 1, 1, 2, NA, 1, NA, 1, 1, 1, 3, 3, 2, 2, 3, 1, 3, 2, 3, 3, 1, 1, 2, 3, 3, 3, 3, NA, 1,...
$ Q26          <dbl> 2, 3, 3, 3, 3, 3, 3, 3, 3, 1, NA, 1, 1, 3, NA, 3, 1, 1, 3, 1, 2, 2, 3, 3, NA, 3, NA, 1, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 1, 3, 1, 3, 3, 2, NA, 1,...
$ Q27          <dbl> 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, NA, 2, 3, 2, NA, 2, 2, 2, 2, 2, 2, 3, 3, 2, NA, 1, NA, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, ...
$ Q28          <dbl> 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, NA, 2, 2, 3, NA, 2, 3, 2, 2, 2, 2, 2, 1, 2, NA, 3, NA, 3, 3, NA, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2,...
$ Q29          <dbl> 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, NA, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 3, 2, NA, 3, NA, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, ...
$ Q30          <dbl> 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, NA, 2, 1, 3, NA, 2, NA, 3, 1, 2, 2, 2, 3, 2, NA, 3, NA, 3, 3, 1, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 1, 3, 2,...
$ Q31          <dbl> 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, NA, 1, 2, 2, NA, 2, 3, 2, 2, 2, 2, 3, 3, 2, NA, 1, NA, 3, 3, 2, 2, 3, 1, 1, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, ...
$ Q32          <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 3, 2, NA, 3, NA, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, ...
summary(sel)
   Student ID    submitted             Grade            Race            Sex              Q1             Q2              Q3              Q4              Q5       
 Min.   :1076   Length:382         Min.   :3.000   Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
 1st Qu.:2056   Class :character   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:1.000   1st Qu.:2.00   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
 Median :2341   Mode  :character   Median :4.000   Median :5.000   Median :1.000   Median :3.00   Median :3.000   Median :2.000   Median :3.000   Median :2.000  
 Mean   :2520                      Mean   :4.183   Mean   :4.513   Mean   :1.026   Mean   :2.61   Mean   :2.241   Mean   :2.086   Mean   :2.508   Mean   :2.393  
 3rd Qu.:2789                      3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:1.000   3rd Qu.:3.00   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.000  
 Max.   :4530                      Max.   :5.000   Max.   :8.000   Max.   :3.000   Max.   :3.00   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000  
 NA's   :1                                                                                        NA's   :1                       NA's   :2       NA's   :3      
       Q6              Q7              Q8              Q9             Q10             Q11            Q12             Q13             Q14             Q15             Q16       
 Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
 1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:1.00   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000  
 Median :2.000   Median :3.000   Median :2.000   Median :2.000   Median :2.000   Median :1.00   Median :2.000   Median :2.000   Median :2.000   Median :2.000   Median :1.000  
 Mean   :1.932   Mean   :2.435   Mean   :2.393   Mean   :1.984   Mean   :2.168   Mean   :1.45   Mean   :2.286   Mean   :2.171   Mean   :2.173   Mean   :2.263   Mean   :1.185  
 3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:2.00   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:1.000  
 Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.00   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000  
 NA's   :1       NA's   :3                       NA's   :2       NA's   :1       NA's   :2      NA's   :5       NA's   :2       NA's   :6       NA's   :2       NA's   :3      
      Q17             Q18             Q19             Q20             Q21             Q22             Q23             Q24             Q25             Q26             Q27       
 Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :2.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
 1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.000   1st Qu.:2.000   1st Qu.:2.000  
 Median :2.000   Median :2.000   Median :2.000   Median :2.000   Median :3.000   Median :1.000   Median :2.000   Median :2.000   Median :2.000   Median :3.000   Median :2.000  
 Mean   :2.358   Mean   :2.256   Mean   :1.981   Mean   :2.109   Mean   :2.413   Mean   :1.069   Mean   :2.091   Mean   :2.419   Mean   :2.064   Mean   :2.397   Mean   :2.198  
 3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:1.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000  
 Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000  
 NA's   :10      NA's   :11      NA's   :6       NA's   :7       NA's   :7       NA's   :6       NA's   :7       NA's   :10      NA's   :8       NA's   :9       NA's   :9      
      Q28             Q29             Q30             Q31             Q32       
 Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
 1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
 Median :2.000   Median :2.000   Median :2.000   Median :2.000   Median :2.000  
 Mean   :2.181   Mean   :2.225   Mean   :2.409   Mean   :2.278   Mean   :2.045  
 3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.000  
 Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000   Max.   :3.000  
 NA's   :11      NA's   :8       NA's   :8       NA's   :8       NA's   :7      
corr_matrix <- correlate(sel[,6:35])

Correlation method: 'pearson'
Missing treated using: 'pairwise.complete.obs'
corr_matrix
sel.clean <-sel[,4:36] %>%
  mutate(.,
         Q2R = 4 - Q2,
         Q6R = 4 - Q6,
         Q9R = 4 - Q9,
         Q11R = 4 - Q11,
         Q13R = 4 - Q13,
         Q16R = 4 - Q16,
         Q19R = 4 - Q19,
         Q22R = 4 - Q22,
         Q25R = 4 - Q25,
         Q26R = 4 - Q26,) %>%
  select(.,
         -Q2,
         -Q6,
         -Q9,
         -Q11,
         -Q13,
         -Q16,
         -Q19,
         -Q22,
         -Q25,
         -Q26,
          -Q31)

Double check

glimpse(sel.clean)
Rows: 382
Columns: 32
$ Race <dbl> 7, 7, 7, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 8, 3, ...
$ Sex  <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ Q1   <dbl> 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 1, 2, 1, 1, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 2, ...
$ Q3   <dbl> 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, ...
$ Q4   <dbl> 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 3, 3, 2, 3, 1, 3, 2, 3, 2, 3, 3, 3, 1, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, ...
$ Q5   <dbl> 3, 3, 3, 2, 2, 2, 1, 3, 2, 3, 2, 3, 1, 1, 3, 2, 3, 3, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 2, 3, ...
$ Q7   <dbl> 3, 2, NA, 1, 2, 3, 3, 2, 3, 3, 3, 3, 3, NA, 3, 3, 3, 3, 3, 2, 1, 1, 3, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 1, 2, 3, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 3, 2, 3, 2...
$ Q8   <dbl> 2, 2, 2, 1, 2, 2, 1, 2, 2, 3, 1, 1, 1, 2, 1, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 1, 3, ...
$ Q10  <dbl> 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, NA, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2,...
$ Q12  <dbl> 3, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, NA, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2,...
$ Q14  <dbl> 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, NA, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, NA, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 3, 2, 2, NA, 3, 2, 2, 2,...
$ Q15  <dbl> 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, NA, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 1, 2, NA, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 2, 2, 2, 2, 2...
$ Q17  <dbl> 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, NA, 2, 1, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, NA, 3, NA, 2, 2, NA, 2, 1, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 1, NA, 2, 3, 1, 2...
$ Q18  <dbl> 3, 2, 2, 2, 3, 2, 2, 1, 2, 3, NA, 2, 2, 2, 1, 2, 1, 3, 3, 2, 2, 3, 3, 1, NA, 3, NA, 1, NA, 3, 3, 2, 3, 1, 3, 2, 2, 2, 2, 3, 3, 3, 3, NA, 3, 2, 1, 2, 1, 2, 1, 2...
$ Q20  <dbl> 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 1, 2, NA, 3, NA, 2, NA, NA, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2...
$ Q21  <dbl> 3, 2, 3, 1, 3, 3, 1, 2, 2, 3, NA, 3, 2, 2, NA, 3, 2, 3, 3, 2, 3, 2, 3, 2, NA, 3, NA, 2, NA, 2, 2, 3, 3, 2, 3, 3, 2, 1, 3, 3, 3, 3, 1, 2, 1, 2, 3, 3, 2, 2, 2, 1...
$ Q23  <dbl> 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 2, 2, NA, 3, NA, 3, 3, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,...
$ Q24  <dbl> 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, NA, 2, 2, 3, NA, 2, 2, 3, 2, 2, 2, 2, 2, 2, NA, 3, NA, 3, 3, NA, 2, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 1, 2...
$ Q27  <dbl> 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, NA, 2, 3, 2, NA, 2, 2, 2, 2, 2, 2, 3, 3, 2, NA, 1, NA, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2,...
$ Q28  <dbl> 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, NA, 2, 2, 3, NA, 2, 3, 2, 2, 2, 2, 2, 1, 2, NA, 3, NA, 3, 3, NA, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2...
$ Q29  <dbl> 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, NA, 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 3, 2, NA, 3, NA, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2,...
$ Q30  <dbl> 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, NA, 2, 1, 3, NA, 2, NA, 3, 1, 2, 2, 2, 3, 2, NA, 3, NA, 3, 3, 1, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 1, 3, 2, 3, 3, 2...
$ Q2R  <dbl> 2, 2, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 3, 3, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 2, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 3, 3, ...
$ Q6R  <dbl> 2, 3, 2, 1, 3, 2, 1, 3, 3, 2, 2, 3, 3, 1, 1, 3, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 3, 3, 1, 2, 3, 3, 3, 1, 1, 2, 3, 3, 2, 1, NA, 3, 1, 1, 3, 3,...
$ Q9R  <dbl> 2, 2, 3, 1, 1, 2, 2, 1, 3, 2, 2, 3, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 1, 2, 3, 1, 2, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 3, 1, 2, 2, 3, ...
$ Q11R <dbl> 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 1, 3, 3, 3, 3, 1, 3, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 3, 3, ...
$ Q13R <dbl> 1, 1, 1, 2, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 2, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 3, 2, 1, 1, 3, 1, 2, 3, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 3, 2, 2, 2, 3, ...
$ Q16R <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, NA, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, NA, 3, 3, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3...
$ Q19R <dbl> 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, NA, 3, 2, 3, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, NA, 3, NA, 3, NA, 3, 1, 1, 1, 2, 1, 3, 3, 3, 1, 1, 2, 3, 1, 3, 3, 3, 2, 1, 3, 1, 3, 3,...
$ Q22R <dbl> 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, NA, 3, 1, 3, NA, 3, 3, 3, 3, 3, 3, 3, 3, 3, NA, 3, NA, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3,...
$ Q25R <dbl> 1, 2, 3, 3, 3, 3, 2, 3, 3, 2, NA, 1, 2, 2, NA, 3, 2, 1, 3, 3, 2, 3, 3, 2, NA, 3, NA, 3, 3, 3, 1, 1, 2, 2, 1, 3, 1, 2, 1, 1, 3, 3, 2, 1, 1, 1, 1, NA, 3, 2, 2, 2...
$ Q26R <dbl> 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, NA, 3, 3, 1, NA, 1, 3, 3, 1, 3, 2, 2, 1, 1, NA, 1, NA, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 2, NA, 3, 1, 3, 3...
corr_matrix <- correlate(sel.clean)

Correlation method: 'pearson'
Missing treated using: 'pairwise.complete.obs'
corr_matrix

CFA for latent measures

cfa.model0 <- 
'
health =~ Q1 + Q4 + Q19R + Q26R  
social =~ Q3 + Q12 + Q14 + Q15 + Q16R + Q18 + Q22R + Q23 + Q28 + Q30
emotions =~ Q2R + Q5 + Q10 + Q11R + Q13R + Q21 + Q25R + Q29 
personal =~ Q6R + Q7 + Q8 + Q9R + Q17 + Q18 + Q19R + Q20 + Q27
'
cfa_fit <- cfa(cfa.model0, data=sel.clean, estimator = "MLR", missing = "ML", fixed.x = FALSE)
lavaan WARNING: covariance matrix of latent variables
                is not positive definite;
                use lavInspect(fit, "cov.lv") to investigate.
summary(cfa_fit, fit.measures=TRUE, standardized=TRUE)
lavaan 0.6-8 ended normally after 198 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        95
                                                      
  Number of observations                           382
  Number of missing patterns                        28
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                588.070     515.890
  Degrees of freedom                                369         369
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.140
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                              1004.142     859.988
  Degrees of freedom                               406         406
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.168

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.634       0.676
  Tucker-Lewis Index (TLI)                       0.597       0.644
                                                                  
  Robust Comparative Fit Index (CFI)                         0.684
  Robust Tucker-Lewis Index (TLI)                            0.652

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -9215.761   -9215.761
  Scaling correction factor                                  1.334
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -8921.726   -8921.726
  Scaling correction factor                                  1.180
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               18621.522   18621.522
  Bayesian (BIC)                             18996.337   18996.337
  Sample-size adjusted Bayesian (BIC)        18694.918   18694.918

Root Mean Square Error of Approximation:

  RMSEA                                          0.039       0.032
  90 Percent confidence interval - lower         0.033       0.026
  90 Percent confidence interval - upper         0.045       0.038
  P-value RMSEA <= 0.05                          0.999       1.000
                                                                  
  Robust RMSEA                                               0.034
  90 Percent confidence interval - lower                     0.027
  90 Percent confidence interval - upper                     0.041

Standardized Root Mean Square Residual:

  SRMR                                           0.056       0.056

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  health =~                                                             
    Q1                1.000                               0.179    0.339
    Q4                0.711    0.269    2.646    0.008    0.128    0.201
    Q19R             -2.490    0.705   -3.531    0.000   -0.447   -0.464
    Q26R             -3.101    1.109   -2.796    0.005   -0.556   -0.659
  social =~                                                             
    Q3                1.000                               0.093    0.312
    Q12               1.988    0.722    2.754    0.006    0.186    0.362
    Q14               1.580    0.654    2.416    0.016    0.148    0.343
    Q15               2.221    0.753    2.951    0.003    0.207    0.453
    Q16R             -0.734    0.546   -1.343    0.179   -0.069   -0.122
    Q18               1.514    1.237    1.224    0.221    0.141    0.223
    Q22R             -0.362    0.451   -0.804    0.421   -0.034   -0.097
    Q23               0.898    0.289    3.113    0.002    0.084    0.292
    Q28               2.498    0.826    3.024    0.002    0.233    0.500
    Q30               2.392    0.860    2.781    0.005    0.223    0.401
  emotions =~                                                           
    Q2R               1.000                               0.158    0.184
    Q5               -0.564    0.495   -1.139    0.255   -0.089   -0.144
    Q10              -0.954    0.480   -1.986    0.047   -0.151   -0.359
    Q11R              1.250    0.661    1.892    0.059    0.198    0.250
    Q13R              0.419    0.373    1.123    0.262    0.066    0.086
    Q21              -0.014    0.441   -0.033    0.974   -0.002   -0.003
    Q25R              0.533    0.448    1.190    0.234    0.084    0.095
    Q29              -1.349    0.651   -2.072    0.038   -0.213   -0.453
  personal =~                                                           
    Q6R               1.000                               0.289    0.334
    Q7               -0.348    0.242   -1.436    0.151   -0.100   -0.151
    Q8               -0.210    0.179   -1.176    0.239   -0.061   -0.092
    Q9R               0.628    0.197    3.185    0.001    0.181    0.217
    Q17              -0.815    0.309   -2.635    0.008   -0.235   -0.419
    Q18               0.104    0.395    0.263    0.792    0.030    0.047
    Q19R              0.030    0.287    0.103    0.918    0.009    0.009
    Q20              -0.445    0.167   -2.660    0.008   -0.128   -0.343
    Q27              -0.608    0.258   -2.355    0.019   -0.175   -0.380

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  health ~~                                                             
    social            0.001    0.002    0.605    0.545    0.065    0.065
    emotions         -0.004    0.007   -0.649    0.516   -0.152   -0.152
    personal         -0.011    0.011   -0.998    0.318   -0.216   -0.216
  social ~~                                                             
    emotions         -0.009    0.004   -2.069    0.039   -0.607   -0.607
    personal         -0.022    0.010   -2.165    0.030   -0.798   -0.798
  emotions ~~                                                           
    personal          0.046    0.022    2.146    0.032    1.017    1.017

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Q1                2.610    0.027   96.437    0.000    2.610    4.934
   .Q4                2.508    0.033   77.057    0.000    2.508    3.952
   .Q19R              2.017    0.050   40.624    0.000    2.017    2.094
   .Q26R              1.601    0.044   36.778    0.000    1.601    1.898
   .Q3                2.086    0.015  136.385    0.000    2.086    6.978
   .Q12               2.286    0.026   86.593    0.000    2.286    4.459
   .Q14               2.173    0.022   98.017    0.000    2.173    5.046
   .Q15               2.263    0.023   96.387    0.000    2.263    4.942
   .Q16R              2.815    0.029   97.763    0.000    2.815    5.023
   .Q18               2.256    0.033   68.733    0.000    2.256    3.563
   .Q22R              2.931    0.018  162.232    0.000    2.931    8.361
   .Q23               2.090    0.015  141.411    0.000    2.090    7.282
   .Q28               2.179    0.024   90.373    0.000    2.179    4.673
   .Q30               2.409    0.029   83.631    0.000    2.409    4.320
   .Q2R               1.759    0.044   39.903    0.000    1.759    2.045
   .Q5                2.393    0.032   75.280    0.000    2.393    3.877
   .Q10               2.168    0.022  100.756    0.000    2.168    5.160
   .Q11R              2.550    0.041   62.798    0.000    2.550    3.222
   .Q13R              1.829    0.039   46.446    0.000    1.829    2.383
   .Q21               2.413    0.037   65.818    0.000    2.413    3.400
   .Q25R              1.936    0.046   42.340    0.000    1.936    2.189
   .Q29               2.224    0.024   91.518    0.000    2.224    4.720
   .Q6R               2.068    0.044   46.739    0.000    2.068    2.395
   .Q7                2.435    0.034   71.403    0.000    2.435    3.667
   .Q8                2.393    0.034   70.706    0.000    2.393    3.618
   .Q9R               2.015    0.043   46.950    0.000    2.015    2.408
   .Q17               2.357    0.029   81.100    0.000    2.357    4.199
   .Q20               2.109    0.019  109.309    0.000    2.109    5.638
   .Q27               2.198    0.024   92.370    0.000    2.198    4.769
    health            0.000                               0.000    0.000
    social            0.000                               0.000    0.000
    emotions          0.000                               0.000    0.000
    personal          0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Q1                0.248    0.023   10.708    0.000    0.248    0.885
   .Q4                0.386    0.032   11.974    0.000    0.386    0.960
   .Q19R              0.727    0.076    9.616    0.000    0.727    0.783
   .Q26R              0.403    0.131    3.076    0.002    0.403    0.566
   .Q3                0.081    0.011    7.120    0.000    0.081    0.902
   .Q12               0.228    0.019   11.997    0.000    0.228    0.869
   .Q14               0.164    0.018    9.336    0.000    0.164    0.883
   .Q15               0.167    0.017    9.869    0.000    0.167    0.795
   .Q16R              0.309    0.044    7.002    0.000    0.309    0.985
   .Q18               0.387    0.027   14.353    0.000    0.387    0.965
   .Q22R              0.122    0.032    3.787    0.000    0.122    0.991
   .Q23               0.075    0.011    6.872    0.000    0.075    0.915
   .Q28               0.163    0.017    9.349    0.000    0.163    0.750
   .Q30               0.261    0.028    9.200    0.000    0.261    0.839
   .Q2R               0.715    0.031   22.859    0.000    0.715    0.966
   .Q5                0.373    0.031   12.226    0.000    0.373    0.979
   .Q10               0.154    0.017    9.306    0.000    0.154    0.871
   .Q11R              0.587    0.047   12.462    0.000    0.587    0.938
   .Q13R              0.585    0.026   22.097    0.000    0.585    0.993
   .Q21               0.504    0.030   16.684    0.000    0.504    1.000
   .Q25R              0.775    0.025   30.395    0.000    0.775    0.991
   .Q29               0.177    0.022    8.148    0.000    0.177    0.795
   .Q6R               0.663    0.051   13.050    0.000    0.663    0.888
   .Q7                0.431    0.032   13.374    0.000    0.431    0.977
   .Q8                0.434    0.027   16.216    0.000    0.434    0.992
   .Q9R               0.667    0.032   21.092    0.000    0.667    0.953
   .Q17               0.260    0.027    9.576    0.000    0.260    0.824
   .Q20               0.124    0.016    7.888    0.000    0.124    0.882
   .Q27               0.182    0.021    8.813    0.000    0.182    0.855
    health            0.032    0.014    2.324    0.020    1.000    1.000
    social            0.009    0.005    1.689    0.091    1.000    1.000
    emotions          0.025    0.022    1.132    0.258    1.000    1.000
    personal          0.083    0.048    1.740    0.082    1.000    1.000
cfa.model <- ' health =~ Q1 + Q19R + Q26R  
social =~ Q3 + Q12 + Q14 + Q15 + Q28 + Q30
emotions =~ Q10 + Q29 
personal =~ Q6R + Q17 + Q20 + Q27
goals =~ Q24'

cfa_fit <- cfa(cfa.model, data=sel.clean, estimator = "MLR", missing = "ML", fixed.x = FALSE)
summary(cfa_fit, fit.measures=TRUE, standardized=TRUE)
lavaan 0.6-8 ended normally after 151 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        57
                                                      
  Number of observations                           382
  Number of missing patterns                        20
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                154.331     119.766
  Degrees of freedom                                 95          95
  P-value (Chi-square)                            0.000       0.044
  Scaling correction factor                                   1.289
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                               539.569     412.438
  Degrees of freedom                               120         120
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.308

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.859       0.915
  Tucker-Lewis Index (TLI)                       0.821       0.893
                                                                  
  Robust Comparative Fit Index (CFI)                         0.917
  Robust Tucker-Lewis Index (TLI)                            0.895

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -4431.451   -4431.451
  Scaling correction factor                                  1.189
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -4354.285   -4354.285
  Scaling correction factor                                  1.251
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                8976.901    8976.901
  Bayesian (BIC)                              9201.790    9201.790
  Sample-size adjusted Bayesian (BIC)         9020.939    9020.939

Root Mean Square Error of Approximation:

  RMSEA                                          0.040       0.026
  90 Percent confidence interval - lower         0.028       0.009
  90 Percent confidence interval - upper         0.052       0.038
  P-value RMSEA <= 0.05                          0.915       1.000
                                                                  
  Robust RMSEA                                               0.030
  90 Percent confidence interval - lower                     0.005
  90 Percent confidence interval - upper                     0.045

Standardized Root Mean Square Residual:

  SRMR                                           0.044       0.044

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  health =~                                                             
    Q1                1.000                               0.168    0.319
    Q19R             -2.428    0.629   -3.862    0.000   -0.409   -0.425
    Q26R             -3.685    1.475   -2.498    0.012   -0.621   -0.736
  social =~                                                             
    Q3                1.000                               0.078    0.262
    Q12               2.233    0.918    2.432    0.015    0.175    0.341
    Q14               2.026    0.872    2.324    0.020    0.159    0.369
    Q15               2.637    1.003    2.630    0.009    0.207    0.451
    Q28               2.987    1.187    2.517    0.012    0.234    0.502
    Q30               3.161    1.214    2.604    0.009    0.248    0.444
  emotions =~                                                           
    Q10               1.000                               0.138    0.329
    Q29               1.737    0.463    3.750    0.000    0.240    0.509
  personal =~                                                           
    Q6R               1.000                               0.250    0.290
    Q17              -0.917    0.304   -3.021    0.003   -0.229   -0.409
    Q20              -0.541    0.190   -2.856    0.004   -0.135   -0.362
    Q27              -0.865    0.311   -2.783    0.005   -0.217   -0.470
  goals =~                                                              
    Q24               1.000                               0.540    1.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  health ~~                                                             
    social            0.001    0.001    0.844    0.399    0.080    0.080
    emotions          0.000    0.003    0.178    0.859    0.020    0.020
    personal         -0.003    0.006   -0.518    0.605   -0.072   -0.072
    goals             0.016    0.009    1.765    0.078    0.178    0.178
  social ~~                                                             
    emotions          0.007    0.004    1.927    0.054    0.641    0.641
    personal         -0.015    0.007   -2.005    0.045   -0.746   -0.746
    goals             0.015    0.005    2.902    0.004    0.347    0.347
  emotions ~~                                                           
    personal         -0.033    0.013   -2.463    0.014   -0.961   -0.961
    goals             0.027    0.010    2.831    0.005    0.367    0.367
  personal ~~                                                           
    goals            -0.056    0.016   -3.549    0.000   -0.415   -0.415

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Q1                2.610    0.027   96.437    0.000    2.610    4.934
   .Q19R              2.018    0.050   40.618    0.000    2.018    2.095
   .Q26R              1.602    0.044   36.756    0.000    1.602    1.899
   .Q3                2.086    0.015  136.385    0.000    2.086    6.978
   .Q12               2.287    0.026   86.561    0.000    2.287    4.458
   .Q14               2.173    0.022   97.963    0.000    2.173    5.045
   .Q15               2.263    0.023   96.396    0.000    2.263    4.942
   .Q28               2.179    0.024   90.311    0.000    2.179    4.669
   .Q30               2.409    0.029   83.560    0.000    2.409    4.319
   .Q10               2.168    0.022  100.773    0.000    2.168    5.160
   .Q29               2.224    0.024   91.441    0.000    2.224    4.719
   .Q6R               2.068    0.044   46.743    0.000    2.068    2.395
   .Q17               2.357    0.029   81.071    0.000    2.357    4.198
   .Q20               2.109    0.019  109.367    0.000    2.109    5.637
   .Q27               2.198    0.024   92.329    0.000    2.198    4.769
   .Q24               2.419    0.028   86.538    0.000    2.419    4.477
    health            0.000                               0.000    0.000
    social            0.000                               0.000    0.000
    emotions          0.000                               0.000    0.000
    personal          0.000                               0.000    0.000
    goals             0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Q1                0.251    0.023   10.951    0.000    0.251    0.899
   .Q19R              0.760    0.066   11.506    0.000    0.760    0.820
   .Q26R              0.326    0.147    2.212    0.027    0.326    0.458
   .Q3                0.083    0.012    7.135    0.000    0.083    0.931
   .Q12               0.233    0.019   12.456    0.000    0.233    0.884
   .Q14               0.160    0.016    9.785    0.000    0.160    0.864
   .Q15               0.167    0.017    9.623    0.000    0.167    0.796
   .Q28               0.163    0.018    9.217    0.000    0.163    0.748
   .Q30               0.250    0.028    8.844    0.000    0.250    0.803
   .Q10               0.157    0.017    9.398    0.000    0.157    0.892
   .Q29               0.165    0.027    6.170    0.000    0.165    0.741
   .Q6R               0.683    0.037   18.440    0.000    0.683    0.916
   .Q17               0.263    0.027    9.555    0.000    0.263    0.833
   .Q20               0.122    0.016    7.774    0.000    0.122    0.869
   .Q27               0.165    0.023    7.304    0.000    0.165    0.779
   .Q24               0.000                               0.000    0.000
    health            0.028    0.014    1.975    0.048    1.000    1.000
    social            0.006    0.004    1.398    0.162    1.000    1.000
    emotions          0.019    0.010    1.845    0.065    1.000    1.000
    personal          0.063    0.032    1.980    0.048    1.000    1.000
    goals             0.292    0.015   19.894    0.000    1.000    1.000

Path diagram

semPlot::semPaths(cfa_fit, whatLabels = "standardized", residuals = FALSE)

SEM Model

social (p-e-s) #Structural Model ## direct effect social ~ cpersonal ## mediator social ~ bemotions emotions ~ apersonal ## indirect effect (ab) ab := ab ## total effect total := c + (ab)

social (e-p-s) #Structural Model ## direct effect social ~ cemotions ## mediator social ~ bpersonal personal ~ aemotions ## indirect effect (ab) ab := ab ## total effect total := c + (ab)

personal (e-s-p) #Structural Model ## direct effect personal ~ cemotions ## mediator personal ~ bsocial social ~ aemotions ## indirect effect (ab) ab := ab ## total effect total := c + (ab)

personal (s-e-p) #Structural Model ## direct effect personal ~ csocial ## mediator personal ~ bemotions emotions ~ asocial ## indirect effect (ab) ab := ab ## total effect total := c + (a*b)

emotions (s-p-e) #Structural Model ## direct effect emotions ~ csocial ## mediator emotions ~ bpersonal personal ~ asocial ## indirect effect (ab) ab := ab ## total effect total := c + (ab)

emotions (p-s-e) #Structural Model ## direct effect emotions ~ cpersonal ## mediator personal ~ bemotions emotions ~ asocial ## indirect effect (ab) ab := ab ## total effect total := c + (ab)

sem.model <- ' 
#Measurement Model
social =~ Q3 + Q12 + Q14 + Q15 + Q28 + Q30
emotions =~ Q10 + Q29 + Q24
personal =~ Q6R + Q17 + Q20 + Q27
health =~ Q1 + Q4 + Q19R + Q26R


#Structural Model
 ## direct effect
personal ~ c*social
## mediator
personal ~ b*emotions
emotions ~ a*social
## indirect effect (a*b)
ab := a*b
## total effect
total := c + (a*b)

'
sem_fit <- sem(sem.model, data=sel.clean, estimator = "MLR", missing = "ML", fixed.x = FALSE)
lavaan WARNING: some estimated lv variances are negative
summary(sem_fit, fit.measures=TRUE, standardized=TRUE)
lavaan 0.6-8 ended normally after 151 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        55
                                                      
  Number of observations                           382
  Number of missing patterns                        21
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                185.793     147.615
  Degrees of freedom                                115         115
  P-value (Chi-square)                            0.000       0.022
  Scaling correction factor                                   1.259
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                               571.352     445.996
  Degrees of freedom                               136         136
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.281

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.837       0.895
  Tucker-Lewis Index (TLI)                       0.808       0.876
                                                                  
  Robust Comparative Fit Index (CFI)                         0.897
  Robust Tucker-Lewis Index (TLI)                            0.878

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -4797.608   -4797.608
  Scaling correction factor                                  1.174
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -4704.712   -4704.712
  Scaling correction factor                                  1.231
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                9705.216    9705.216
  Bayesian (BIC)                              9922.215    9922.215
  Sample-size adjusted Bayesian (BIC)         9747.709    9747.709

Root Mean Square Error of Approximation:

  RMSEA                                          0.040       0.027
  90 Percent confidence interval - lower         0.029       0.013
  90 Percent confidence interval - upper         0.051       0.038
  P-value RMSEA <= 0.05                          0.941       1.000
                                                                  
  Robust RMSEA                                               0.031
  90 Percent confidence interval - lower                     0.012
  90 Percent confidence interval - upper                     0.044

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  social =~                                                             
    Q3                1.000                               0.080    0.269
    Q12               2.150    0.865    2.487    0.013    0.173    0.337
    Q14               1.976    0.835    2.366    0.018    0.159    0.369
    Q15               2.556    0.939    2.721    0.007    0.206    0.449
    Q28               2.881    1.097    2.625    0.009    0.232    0.496
    Q30               3.098    1.152    2.688    0.007    0.249    0.447
  emotions =~                                                           
    Q10               1.000                               0.132    0.313
    Q29               1.659    0.413    4.013    0.000    0.218    0.463
    Q24               1.742    0.486    3.585    0.000    0.229    0.424
  personal =~                                                           
    Q6R               1.000                               0.249    0.289
    Q17              -0.921    0.301   -3.065    0.002   -0.230   -0.409
    Q20              -0.541    0.186   -2.917    0.004   -0.135   -0.361
    Q27              -0.871    0.306   -2.844    0.004   -0.217   -0.471
  health =~                                                             
    Q1                1.000                               0.169    0.319
    Q4                0.679    0.250    2.720    0.007    0.115    0.181
    Q19R             -2.447    0.615   -3.977    0.000   -0.412   -0.428
    Q26R             -3.656    1.211   -3.018    0.003   -0.616   -0.731

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  personal ~                                                            
    social     (c)    0.076    1.362    0.056    0.956    0.024    0.024
    emotions   (b)   -1.965    1.111   -1.768    0.077   -1.036   -1.036
  emotions ~                                                            
    social     (a)    1.222    0.486    2.514    0.012    0.747    0.747

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  social ~~                                                             
    health            0.002    0.001    1.134    0.257    0.115    0.115

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Q3                2.086    0.015  136.385    0.000    2.086    6.978
   .Q12               2.287    0.026   86.553    0.000    2.287    4.458
   .Q14               2.173    0.022   97.965    0.000    2.173    5.045
   .Q15               2.263    0.023   96.395    0.000    2.263    4.942
   .Q28               2.179    0.024   90.296    0.000    2.179    4.669
   .Q30               2.409    0.029   83.556    0.000    2.409    4.319
   .Q10               2.168    0.022  100.784    0.000    2.168    5.160
   .Q29               2.224    0.024   91.477    0.000    2.224    4.719
   .Q24               2.420    0.028   86.488    0.000    2.420    4.478
   .Q6R               2.068    0.044   46.749    0.000    2.068    2.395
   .Q17               2.357    0.029   81.089    0.000    2.357    4.198
   .Q20               2.109    0.019  109.372    0.000    2.109    5.637
   .Q27               2.198    0.024   92.330    0.000    2.198    4.769
   .Q1                2.610    0.027   96.437    0.000    2.610    4.934
   .Q4                2.508    0.033   77.059    0.000    2.508    3.952
   .Q19R              2.017    0.050   40.614    0.000    2.017    2.094
   .Q26R              1.601    0.044   36.760    0.000    1.601    1.898
    social            0.000                               0.000    0.000
   .emotions          0.000                               0.000    0.000
   .personal          0.000                               0.000    0.000
    health            0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Q3                0.083    0.012    7.129    0.000    0.083    0.928
   .Q12               0.233    0.019   12.400    0.000    0.233    0.886
   .Q14               0.160    0.016    9.725    0.000    0.160    0.864
   .Q15               0.167    0.017    9.735    0.000    0.167    0.799
   .Q28               0.164    0.018    9.298    0.000    0.164    0.754
   .Q30               0.249    0.028    8.787    0.000    0.249    0.801
   .Q10               0.159    0.016    9.959    0.000    0.159    0.902
   .Q29               0.174    0.019    9.047    0.000    0.174    0.786
   .Q24               0.239    0.023   10.454    0.000    0.239    0.820
   .Q6R               0.684    0.037   18.702    0.000    0.684    0.917
   .Q17               0.262    0.027    9.636    0.000    0.262    0.833
   .Q20               0.122    0.015    7.872    0.000    0.122    0.870
   .Q27               0.165    0.022    7.352    0.000    0.165    0.778
   .Q1                0.251    0.022   11.181    0.000    0.251    0.898
   .Q4                0.389    0.031   12.664    0.000    0.389    0.967
   .Q19R              0.758    0.056   13.438    0.000    0.758    0.817
   .Q26R              0.332    0.118    2.813    0.005    0.332    0.466
    social            0.006    0.004    1.456    0.145    1.000    1.000
   .emotions          0.008    0.005    1.409    0.159    0.443    0.443
   .personal         -0.002    0.020   -0.113    0.910   -0.037   -0.037
    health            0.028    0.013    2.209    0.027    1.000    1.000

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    ab               -2.400    1.698   -1.414    0.157   -0.774   -0.774
    total            -2.324    0.943   -2.466    0.014   -0.749   -0.749

Visualize it with a path diagram

semPlot::semPaths(sem_fit, whatLabels = "standardized", residuals = FALSE)

LS0tDQp0aXRsZTogIkFuIEFuYWx5c2lzIG9mIFVwcGVyIEVsZW1lbnRhcnkgKEdyYWRlcyAzLTUpIFN0dWRlbnRzIFNvY2lhbC1FbW90aW9uYWwgU2tpbGxzIGR1cmluZyB0aGUgQ09WSUQtMTkgUGFuZGVtaWMiDQphdXRob3I6ICJKYWtlIFJleW5vbGRzIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShjb3JycikNCmxpYnJhcnkocHN5Y2gpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KGhhdmVuKQ0Kc2VsIDwtIHJlYWRfY3N2KCIzNXNlbDIuY3N2IikNCmBgYA0KDQojIyBFeHBsb3JlIHlvdXIgZGF0YSB3aXRoIGdsaW1wc2UNCmBgYHtyfQ0KZGVzY3JpYmUoc2VsKQ0Kc3RyKHNlbCkNCmdsaW1wc2Uoc2VsKQ0KYGBgDQpgYGB7cn0NCnN1bW1hcnkoc2VsKQ0KYGBgDQpgYGB7cn0NCmNvcnJfbWF0cml4IDwtIGNvcnJlbGF0ZShzZWxbLDY6MzVdKQ0KY29ycl9tYXRyaXgNCmBgYA0KDQpgYGB7cn0NCnNlbC5jbGVhbiA8LXNlbFssNDozNl0gJT4lDQogIG11dGF0ZSguLA0KICAgICAgICAgUTJSID0gNCAtIFEyLA0KICAgICAgICAgUTZSID0gNCAtIFE2LA0KICAgICAgICAgUTlSID0gNCAtIFE5LA0KICAgICAgICAgUTExUiA9IDQgLSBRMTEsDQogICAgICAgICBRMTNSID0gNCAtIFExMywNCiAgICAgICAgIFExNlIgPSA0IC0gUTE2LA0KICAgICAgICAgUTE5UiA9IDQgLSBRMTksDQogICAgICAgICBRMjJSID0gNCAtIFEyMiwNCiAgICAgICAgIFEyNVIgPSA0IC0gUTI1LA0KICAgICAgICAgUTI2UiA9IDQgLSBRMjYsKSAlPiUNCiAgc2VsZWN0KC4sDQogICAgICAgICAtUTIsDQogICAgICAgICAtUTYsDQogICAgICAgICAtUTksDQogICAgICAgICAtUTExLA0KICAgICAgICAgLVExMywNCiAgICAgICAgIC1RMTYsDQogICAgICAgICAtUTE5LA0KICAgICAgICAgLVEyMiwNCiAgICAgICAgIC1RMjUsDQogICAgICAgICAtUTI2LA0KICAgICAgICAgIC1RMzEpDQpgYGANCiMjIERvdWJsZSBjaGVjayANCmBgYHtyfQ0KZ2xpbXBzZShzZWwuY2xlYW4pDQpgYGANCg0KYGBge3J9DQpjb3JyX21hdHJpeCA8LSBjb3JyZWxhdGUoc2VsLmNsZWFuKQ0KY29ycl9tYXRyaXgNCmBgYA0KDQojIyBDRkEgZm9yIGxhdGVudCBtZWFzdXJlcw0KYGBge3J9DQpjZmEubW9kZWwwIDwtIA0KJw0KaGVhbHRoID1+IFExICsgUTQgKyBRMTlSICsgUTI2UiAgDQpzb2NpYWwgPX4gUTMgKyBRMTIgKyBRMTQgKyBRMTUgKyBRMTZSICsgUTE4ICsgUTIyUiArIFEyMyArIFEyOCArIFEzMA0KZW1vdGlvbnMgPX4gUTJSICsgUTUgKyBRMTAgKyBRMTFSICsgUTEzUiArIFEyMSArIFEyNVIgKyBRMjkgDQpwZXJzb25hbCA9fiBRNlIgKyBRNyArIFE4ICsgUTlSICsgUTE3ICsgUTE4ICsgUTE5UiArIFEyMCArIFEyNw0KJw0KY2ZhX2ZpdCA8LSBjZmEoY2ZhLm1vZGVsMCwgZGF0YT1zZWwuY2xlYW4sIGVzdGltYXRvciA9ICJNTFIiLCBtaXNzaW5nID0gIk1MIiwgZml4ZWQueCA9IEZBTFNFKQ0Kc3VtbWFyeShjZmFfZml0LCBmaXQubWVhc3VyZXM9VFJVRSwgc3RhbmRhcmRpemVkPVRSVUUpDQpgYGANCg0KYGBge3J9DQpjZmEubW9kZWwgPC0gJyBoZWFsdGggPX4gUTEgKyBRMTlSICsgUTI2UiAgDQpzb2NpYWwgPX4gUTMgKyBRMTIgKyBRMTQgKyBRMTUgKyBRMjggKyBRMzANCmVtb3Rpb25zID1+IFExMCArIFEyOSANCnBlcnNvbmFsID1+IFE2UiArIFExNyArIFEyMCArIFEyNw0KZ29hbHMgPX4gUTI0Jw0KDQpjZmFfZml0IDwtIGNmYShjZmEubW9kZWwsIGRhdGE9c2VsLmNsZWFuLCBlc3RpbWF0b3IgPSAiTUxSIiwgbWlzc2luZyA9ICJNTCIsIGZpeGVkLnggPSBGQUxTRSkNCnN1bW1hcnkoY2ZhX2ZpdCwgZml0Lm1lYXN1cmVzPVRSVUUsIHN0YW5kYXJkaXplZD1UUlVFKQ0KYGBgDQoNCiMjIFBhdGggZGlhZ3JhbQ0KDQpgYGB7cn0NCnNlbVBsb3Q6OnNlbVBhdGhzKGNmYV9maXQsIHdoYXRMYWJlbHMgPSAic3RhbmRhcmRpemVkIiwgcmVzaWR1YWxzID0gRkFMU0UpDQpgYGANCiMjIFNFTSBNb2RlbA0KDQpzb2NpYWwgKHAtZS1zKQ0KI1N0cnVjdHVyYWwgTW9kZWwNCiAjIyBkaXJlY3QgZWZmZWN0DQpzb2NpYWwgfiBjKnBlcnNvbmFsDQojIyBtZWRpYXRvcg0Kc29jaWFsIH4gYiplbW90aW9ucw0KZW1vdGlvbnMgfiBhKnBlcnNvbmFsDQojIyBpbmRpcmVjdCBlZmZlY3QgKGEqYikNCmFiIDo9IGEqYg0KIyMgdG90YWwgZWZmZWN0DQp0b3RhbCA6PSBjICsgKGEqYikNCg0KDQpzb2NpYWwgKGUtcC1zKQ0KI1N0cnVjdHVyYWwgTW9kZWwNCiAjIyBkaXJlY3QgZWZmZWN0DQpzb2NpYWwgfiBjKmVtb3Rpb25zDQojIyBtZWRpYXRvcg0Kc29jaWFsIH4gYipwZXJzb25hbA0KcGVyc29uYWwgfiBhKmVtb3Rpb25zDQojIyBpbmRpcmVjdCBlZmZlY3QgKGEqYikNCmFiIDo9IGEqYg0KIyMgdG90YWwgZWZmZWN0DQp0b3RhbCA6PSBjICsgKGEqYikNCg0KDQoNCnBlcnNvbmFsIChlLXMtcCkNCiNTdHJ1Y3R1cmFsIE1vZGVsDQogIyMgZGlyZWN0IGVmZmVjdA0KcGVyc29uYWwgfiBjKmVtb3Rpb25zDQojIyBtZWRpYXRvcg0KcGVyc29uYWwgfiBiKnNvY2lhbA0Kc29jaWFsIH4gYSplbW90aW9ucw0KIyMgaW5kaXJlY3QgZWZmZWN0IChhKmIpDQphYiA6PSBhKmINCiMjIHRvdGFsIGVmZmVjdA0KdG90YWwgOj0gYyArIChhKmIpDQoNCipwZXJzb25hbCAocy1lLXApDQojU3RydWN0dXJhbCBNb2RlbA0KICMjIGRpcmVjdCBlZmZlY3QNCnBlcnNvbmFsIH4gYypzb2NpYWwNCiMjIG1lZGlhdG9yDQpwZXJzb25hbCB+IGIqZW1vdGlvbnMNCmVtb3Rpb25zIH4gYSpzb2NpYWwNCiMjIGluZGlyZWN0IGVmZmVjdCAoYSpiKQ0KYWIgOj0gYSpiDQojIyB0b3RhbCBlZmZlY3QNCnRvdGFsIDo9IGMgKyAoYSpiKQ0KDQoNCmVtb3Rpb25zIChzLXAtZSkNCiNTdHJ1Y3R1cmFsIE1vZGVsDQogIyMgZGlyZWN0IGVmZmVjdA0KZW1vdGlvbnMgfiBjKnNvY2lhbA0KIyMgbWVkaWF0b3INCmVtb3Rpb25zIH4gYipwZXJzb25hbA0KcGVyc29uYWwgfiBhKnNvY2lhbA0KIyMgaW5kaXJlY3QgZWZmZWN0IChhKmIpDQphYiA6PSBhKmINCiMjIHRvdGFsIGVmZmVjdA0KdG90YWwgOj0gYyArIChhKmIpDQoNCmVtb3Rpb25zIChwLXMtZSkNCiNTdHJ1Y3R1cmFsIE1vZGVsDQogIyMgZGlyZWN0IGVmZmVjdA0KZW1vdGlvbnMgfiBjKnBlcnNvbmFsDQojIyBtZWRpYXRvcg0KcGVyc29uYWwgfiBiKmVtb3Rpb25zDQplbW90aW9ucyB+IGEqc29jaWFsDQojIyBpbmRpcmVjdCBlZmZlY3QgKGEqYikNCmFiIDo9IGEqYg0KIyMgdG90YWwgZWZmZWN0DQp0b3RhbCA6PSBjICsgKGEqYikNCg0KDQpgYGB7cn0NCnNlbS5tb2RlbCA8LSAnIA0KI01lYXN1cmVtZW50IE1vZGVsDQpzb2NpYWwgPX4gUTMgKyBRMTIgKyBRMTQgKyBRMTUgKyBRMjggKyBRMzANCmVtb3Rpb25zID1+IFExMCArIFEyOSArIFEyNA0KcGVyc29uYWwgPX4gUTZSICsgUTE3ICsgUTIwICsgUTI3DQpoZWFsdGggPX4gUTEgKyBRNCArIFExOVIgKyBRMjZSDQoNCg0KI1N0cnVjdHVyYWwgTW9kZWwNCiAjIyBkaXJlY3QgZWZmZWN0DQpwZXJzb25hbCB+IGMqc29jaWFsDQojIyBtZWRpYXRvcg0KcGVyc29uYWwgfiBiKmVtb3Rpb25zDQplbW90aW9ucyB+IGEqc29jaWFsDQojIyBpbmRpcmVjdCBlZmZlY3QgKGEqYikNCmFiIDo9IGEqYg0KIyMgdG90YWwgZWZmZWN0DQp0b3RhbCA6PSBjICsgKGEqYikNCg0KJw0Kc2VtX2ZpdCA8LSBzZW0oc2VtLm1vZGVsLCBkYXRhPXNlbC5jbGVhbiwgZXN0aW1hdG9yID0gIk1MUiIsIG1pc3NpbmcgPSAiTUwiLCBmaXhlZC54ID0gRkFMU0UpDQpzdW1tYXJ5KHNlbV9maXQsIGZpdC5tZWFzdXJlcz1UUlVFLCBzdGFuZGFyZGl6ZWQ9VFJVRSkNCmBgYA0KDQojIyBWaXN1YWxpemUgaXQgd2l0aCBhIHBhdGggZGlhZ3JhbQ0KYGBge3J9DQpzZW1QbG90OjpzZW1QYXRocyhzZW1fZml0LCB3aGF0TGFiZWxzID0gInN0YW5kYXJkaXplZCIsIHJlc2lkdWFscyA9IEZBTFNFKQ0KYGBgDQoNCg==