| % Grano | Penalizacion |
|---|---|
| [0, 10) | 0% |
| [10, 20) | 12% |
| [20, 50) | 60% |
| [50, 100) | D evolución |
# Generar y graficar datos siguiendo la distribucion beta
set.seed(1032480369)
coffe_bean = rbeta(n = 2000, shape1 = 10, shape2 = 0.2)
hist(coffe_bean,main ='Proporcion de grano rojo en 2000 sacos de cafe', xlab = ('Grano Rojo'), ylab=('Sacos'), breaks = 50)
# Calculo de los cuartiles, percentiles media y mediana
Q1 = quantile(coffe_bean,0.25)
Q3 = quantile(coffe_bean,0.75)
P20 = quantile(coffe_bean,0.20)
P80 = quantile(coffe_bean,0.80)
med_bean = mean(coffe_bean)
med_trim_beam = mean(coffe_bean,trim = 0.1)
median_bean = median(coffe_bean)
#Graficar lineas correspondientes a los datos obtentidos
abline(v = Q1, col='red', lwd = 2)
abline(v = Q3, col='blue', lwd = 2)
abline(v = P20, col='darkgreen', lwd = 2)
abline(v = P80, col='orange', lwd = 2)
abline(v = med_bean, col='brown', lwd = 2)
abline(v = med_trim_beam, col='cyan', lwd = 2)
abline(v = median_bean, col='green', lwd = 2)
#Agrgar texto en el histograma para cada linea
text(Q1,750,expression(Q[1]))
text(Q3+0.01,725,expression(Q[3]))
text(P20,700,expression(P[20]))
text(P80+0.01,675,expression(P[80]))
text(med_bean,650,expression(bar(x)))
text(med_trim_beam,625,expression(tilde(x)))
text(median_bean,600,expression(hat(x)))
legend(x = "center", # Posición
legend = c('Q1','Q3','P20','P80','Media','Media_trunc','Mediana'), # Textos de la leyenda
col = c('red', 'blue', 'darkgreen','orange','brown','cyan','green'), # Colores de las líneas
lwd = 2) # Ancho de las líneas
100*sum(coffe_bean>Q3 & Q3 <P80)/2000
## [1] 25
100*sum(coffe_bean>P80)/2000
## [1] 20
El Q3 es la medida mas representativa, ya que representa la mayor cantidad de datos
prob_devolucion = 100*sum(coffe_bean<0.5)/2000
prob_devolucion
## [1] 0
median_bean
## [1] 0.9976839
Como la mediana es mayor a 0.9 no hay penalization.
Q1
## 25%
## 0.9813108
Como el Q1 es mayor a 0.9 no hay penalizacion del 12%.
Q3
## 75%
## 0.999924
Como el Q3 es mayor a 0.8 no hay penalizacion del 60%.
green_bean_18 = 100*sum(coffe_bean >= 0.82)/2000
green_bean_18
## [1] 98.2
green_bean_5= 100*sum(coffe_bean <= 0.95)/2000
green_bean_5
## [1] 13.25
boxplot(coffe_bean,horizontal = T,ylim=c(0, 1))
abline(v = 0.5,col = 'red', lwd = 2)
abline(v = 0.8,col = 'red', lwd = 2)
abline(v = 0.9,col = 'red', lwd = 2)
arrows(0.5,1.3, 0,1.3)
arrows(0,1.3, 0.5,1.3)
arrows(0.8,1.3, 0.5,1.3)
arrows(0.5,1.3, 0.8,1.3)
arrows(0.8,1.3, 0.9,1.3)
arrows(0.9,1.3, 0.8,1.3)
arrows(0.9,1.3, 1,1.3)
arrows(1,1.3, 0.9,1.3)
text(0.25,1.4,'DEVOLUCION',col = 'black')
text(0.65,1.4,'60%',col = 'black')
text(0.85,1.4,'12%',col = 'black')
text(0.95,1.4,'0%',col = 'black')
precio = 100000
precio_sin_penal = sum(coffe_bean>0.9)*precio
precio_penal_12 = sum(coffe_bean > 0.8 & coffe_bean <= 0.9)*precio*0.88
precio_penal_60 = sum(coffe_bean > 0.5 & coffe_bean <= 0.8)*precio*0.4
#devolucion = sum(coffe_bean <= 50) *precio * 0
valor_total = precio_sin_penal + precio_penal_12 + precio_penal_60
valor_total
## [1] 197456000
precio_sacos = 2000*precio
precio_sacos
## [1] 2e+08
diferencia = precio_sacos - valor_total
diferencia
## [1] 2544000