Uniforme

set.seed(2022)
Uniforme<-runif(100,-1,1) #Datos 
MU<-mean(Uniforme); MU # Media
## [1] -0.001150162
MinU<-min(Uniforme);MinU # Minimo
## [1] -0.9962759
MaxU<-max(Uniforme);MaxU # Maximo
## [1] 0.9953095
medU<-median(Uniforme);medU # Mediana 
## [1] 0.04859939
varU<-var(Uniforme);varU # Varianza
## [1] 0.2862362
desvU<-sd(Uniforme);desvU # Desviacion estandar
## [1] 0.5350105
cuartiles<-quantile(Uniforme,c(0.25,0.75))
Q1<-cuartiles[1];Q1
##        25% 
## -0.4539225
Q3<-cuartiles[2];Q3
##      75% 
## 0.488441
boxplot(Uniforme,col = "red",main="Distribución uniforme",horizontal = T)
text(MinU,1.2, "Min")
text(Q1,0.7, "Q1")
text(Q3,0.7, "Q3")
text(medU,1.3, "Mediana")
text(MaxU,1.2, "Max")
points(MU,1,col="orange",pch=16)
arrows(x0 =MU ,y0 =1 ,x1 =MU ,y1 =0.58,lty=2,col="orange",lwd=1)
text(MU+0.05,0.55, "Media",col="orange")

hist(Uniforme,breaks = 20)
abline(v=MU,col="red",lwd=2)
abline(v=MU+c(desvU,-desvU),col="green",lwd=2)
abline(v=MU+c(2*desvU,-2*desvU),col="blue",lwd=2)

Beta

set.seed(2022)
Beta<-rbeta(100,2,5) #Datos 
MBe<-mean(Beta); MBe # Media 
## [1] 0.326895
MinBe<-min(Beta);MinBe # Minimo
## [1] 0.008053305
MaxBe<-max(Beta);MaxBe # Maximo
## [1] 0.7729642
medBe<-median(Beta);medBe # Mediana 
## [1] 0.316835
varBe<-var(Beta);varBe # Varianza
## [1] 0.03077504
desvBe<-sd(Beta);desvBe # Desviacion estandar
## [1] 0.1754281
cuartiles<-quantile(Beta,c(0.25,0.75))
Q1<-cuartiles[1];Q1
##       25% 
## 0.1920439
Q3<-cuartiles[2];Q3
##       75% 
## 0.4501092
boxplot(Beta,col = "red",main="Distribución Beta",horizontal = T)
text(MinBe,1.2, "Min")
text(Q1,0.7, "Q1")
text(Q3,0.7, "Q3")
text(medBe,1.3, "Mediana")
text(MaxBe,1.2, "Max")
points(MBe,1,col="orange",pch=16)
arrows(x0 =MBe ,y0 =1 ,x1 =MBe ,y1 =0.58,lty=2,col="orange",lwd=1)
text(MBe+0.05,0.55, "Media",col="orange")

hist(Beta,breaks = 20)
abline(v=MBe,col="red",lwd=2)
abline(v=MBe+c(desvBe,-desvBe),col="green",lwd=2)
abline(v=MBe+c(2*desvBe,-2*desvBe),col="blue",lwd=2)

Log normal

set.seed(2022)
Lnormal<-rlnorm(100,5,0.2) #Datos
MLn<-mean(Lnormal); MLn # Media 
## [1] 155.7501
MinLn<-min(Lnormal);MinLn # Minimo
## [1] 83.08583
MaxLn<-max(Lnormal);MaxLn # Maximo
## [1] 264.4057
medLn<-median(Lnormal);medLn # Mediana 
## [1] 153.604
varLn<-var(Lnormal);varLn # Varianza
## [1] 1020.853
desvLn<-sd(Lnormal);desvLn # Desviacion estandar
## [1] 31.95079
cuartiles<-quantile(Lnormal,c(0.25,0.75))
Q1<-cuartiles[1];Q1
##      25% 
## 135.1096
Q3<-cuartiles[2];Q3
##      75% 
## 176.4831
boxplot(Lnormal,col = "red",main="Distribución Lognormal",horizontal = T)
text(MinLn,1.2, "Min")
text(Q1,0.7, "Q1")
text(Q3,0.7, "Q3")
text(medLn,1.3, "Mediana")
text(MaxLn,1.2, "Max")
points(MLn,1,col="orange",pch=16)
arrows(x0 =MLn ,y0 =1 ,x1 =MLn ,y1 =0.58,lty=2,col="orange",lwd=1)
text(MLn+0.05,0.55, "Media",col="orange")

hist(Lnormal,breaks = 20)
abline(v=MLn,col="red",lwd=2)
abline(v=MLn+c(desvLn,-desvLn),col="green",lwd=2)
abline(v=MLn+c(2*desvLn,-2*desvLn),col="blue",lwd=2)

T-student

set.seed(2022)
t<-rt(100,15) #Datos 
Mt<-mean(t); Mt # Media
## [1] -0.02534641
Mint<-min(t);Mint # Minimo
## [1] -3.753892
Maxt<-max(t);Maxt # Maximo
## [1] 2.563128
medt<-median(t);medt # Mediana 
## [1] 0.1846227
vart<-var(t);vart # Varianza
## [1] 1.155848
desvt<-sd(t);desvt # Desviacion estandar
## [1] 1.075104
cuartiles<-quantile(t,c(0.25,0.75))
Q1<-cuartiles[1];Q1
##       25% 
## -0.702622
Q3<-cuartiles[2];Q3
##      75% 
## 0.802149
boxplot(t,col = "red",main="Distribución T-Student",horizontal = T)
text(Mint,1.2, "Min")
text(Q1,0.7, "Q1")
text(Q3,0.7, "Q3")
text(medt,1.3, "Mediana")
text(Maxt,1.2, "Max")
points(Mt,1,col="orange",pch=16)
arrows(x0 =Mt ,y0 =1 ,x1 =Mt ,y1 =0.58,lty=2,col="orange",lwd=1)
text(Mt+0.05,0.55, "Media",col="orange")

hist(t,breaks = 20)
abline(v=Mt,col="red",lwd=2)
abline(v=Mt+c(desvt,-desvt),col="green",lwd=2)
abline(v=Mt+c(2*desvt,-2*desvt),col="blue",lwd=2)

Binomial

set.seed(2022)
Binomial<-rbinom(100,5,0.5) #Datos
MB<-mean(Binomial); MB # Media 
## [1] 2.49
MinB<-min(Binomial);MinB # Minimo
## [1] 0
MaxB<-max(Binomial);MaxB# Maximo
## [1] 5
medB<-median(Binomial);medB # Mediana 
## [1] 3
varB<-var(Binomial);varB # Varianza
## [1] 1.080707
desvB<-sd(Binomial);desvB # Desviacion estandar
## [1] 1.039571
cuartiles<-quantile(Binomial,c(0.25,0.75))
Q1<-cuartiles[1];Q1
## 25% 
##   2
Q3<-cuartiles[2];Q3
## 75% 
##   3
boxplot(Binomial,col = "red",main="Distribución binomial",horizontal = T)
text(MinB,1.2, "Min")
text(Q1,0.7, "Q1")
text(Q3,0.7, "Q3")
text(medB,1.3, "Mediana")
text(MaxB,1.2, "Max")
points(MB,1,col="orange",pch=16)
arrows(x0 =MB ,y0 =1 ,x1 =MB ,y1 =0.58,lty=2,col="orange",lwd=1)
text(MB+0.05,0.55, "Media",col="orange")

hist(Binomial)
abline(v=MB,col="red",lwd=2)
abline(v=MB+c(desvB,-desvB),col="green",lwd=2)
abline(v=MB+c(2*desvB,-2*desvB),col="blue",lwd=2)

Poisson

set.seed(2022)
Poison<-rpois(100,3) #Datos 
MP<-mean(Poison); MP # Media 
## [1] 2.92
MinP<-min(Poison);MinP # Minimo
## [1] 0
MaxP<-max(Poison);MaxP # Maximo
## [1] 9
medP<-median(Poison);medP # Mediana 
## [1] 3
varP<-var(Poison);varP # Varianza
## [1] 2.458182
desvP<-sd(Poison);desvP # Desviacion estandar
## [1] 1.567859
cuartiles<-quantile(Poison,c(0.25,0.75))
Q1<-cuartiles[1];Q1
## 25% 
##   2
Q3<-cuartiles[2];Q3
## 75% 
##   4
boxplot(Poison,col = "red",main="Distribución Poison",horizontal = T)
text(MinP,1.2, "Min")
text(Q1,0.7, "Q1")
text(Q3,0.7, "Q3")
text(medP,1.3, "Mediana")
text(MaxP,1.2, "Max")
points(MP,1,col="orange",pch=16)
arrows(x0 =MP ,y0 =1 ,x1 =MP,y1 =0.58,lty=2,col="orange",lwd=1)
text(MP+0.05,0.55, "Media",col="orange")

hist(Poison)
abline(v=MP,col="red",lwd=2)
abline(v=MP+c(desvP,-desvP),col="green",lwd=2)
abline(v=MP+c(2*desvP,-2*desvP),col="blue",lwd=2)

Hipergeometrica

set.seed(2022)
Hiper<-rhyper(100,10,20-10,5) #Datos 
MH<-mean(Hiper); MH # Media 
## [1] 2.49
MinH<-min(Hiper);MinH # Minimo
## [1] 0
MaxH<-max(Hiper);MaxH # Maximo
## [1] 5
medH<-median(Hiper);medH # Mediana 
## [1] 3
varH<-var(Hiper);varH # Varianza
## [1] 0.8786869
desvH<-sd(Hiper);desvH # Desviacion estandar
## [1] 0.937383
cuartiles<-quantile(Hiper,c(0.25,0.75))
Q1<-cuartiles[1];Q1
## 25% 
##   2
Q3<-cuartiles[2];Q3
## 75% 
##   3
boxplot(Hiper,col = "red",main="Distribución hipergeometria",horizontal = T)
text(MinH,1.2, "Min")
text(Q1,0.7, "Q1")
text(Q3,0.7, "Q3")
text(medH,1.3, "Mediana")
text(MaxH,1.2, "Max")
points(MH,1,col="orange",pch=16)
arrows(x0 =MH ,y0 =1 ,x1 =MH ,y1 =0.58,lty=2,col="orange",lwd=1)
text(MH+0.05,0.55, "Media",col="orange")

hist(Hiper,breaks = 20)
abline(v=MH,col="red",lwd=2)
abline(v=MH+c(desvH,-desvH),col="green",lwd=2)
abline(v=MH+c(2*desvH,-2*desvH),col="blue",lwd=2)