1 Executive Summary

The report aimed to investigate the inter-relationship between mortality rate with ICU and Ventilation cases. Interactions between these variables were explored graphically and numerically through RStudio using Australia’s Covid-19 data. Differences within patterns of daily confirmed cases were then investigated and extrapolated upon to evaluate their effect mortality rates. Similarly, the second research question was explored graphically and numerically through RStudio using Australia’s Covid-19 data. The main insight derived from question 1 alluded to enhanced healthcare in Australia as daily confirmed case couldn’t project mortality rates. Question 2 highlighted weak linear relations of ventilator and ICU cases from daily confirmed cases. Conversely, a strong relationship predicting ventilator-usage from ICU cases was noted and further explored to understand how the robust relationship was achieved and the impacts of raw data upon analysis. Hence, it signifies the increased availability of medical instruments, further augmenting Australia’s enhanced healthcare.

2 Initial Data Analysis (IDA)

COVID_during_20200125_20210418 <- read.csv("COVID_during_20200125_20210418.csv")

# Quick look at top 6 rows of data1
head(COVID_during_20200125_20210418)
##        date confirmed deaths tests positives recovered hosp icu vent vaccines
## 1 2020/1/25         4      0     0         0         0    0   0    0        0
## 2 2020/1/26         4      0     0         0         0    0   0    0        0
## 3 2020/1/27         5      0     0         0         0    0   0    0        0
## 4 2020/1/28         5      0     0         0         0    0   0    0        0
## 5 2020/1/29         9      0     0         0         0    0   0    0        0
## 6 2020/1/30         9      0     0         0         0    0   0    0        0
## Size of data1
dim(COVID_during_20200125_20210418)
## [1] 450  10
## R's classification of data1
class(COVID_during_20200125_20210418)
## [1] "data.frame"
## R's classification of variables for data1
str(COVID_during_20200125_20210418)
## 'data.frame':    450 obs. of  10 variables:
##  $ date     : chr  "2020/1/25" "2020/1/26" "2020/1/27" "2020/1/28" ...
##  $ confirmed: int  4 4 5 5 9 9 9 10 12 12 ...
##  $ deaths   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ tests    : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ positives: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ recovered: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ hosp     : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ icu      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ vent     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ vaccines : int  0 0 0 0 0 0 0 0 0 0 ...

2.0.1 IDA complexity:

Within the raw dataset there were 16 variables presents, consisting of 10 quantitative discrete variables and 6 qualitative ordinal variables. The data was cleaned to omit qualitative variables within the raw dataset, leaving behind 10 quantitative discrete variables. The remaining quantitative variables were presented on a cumulative basis but was subsequently manipulated into daily data with the exception of date. Further cleaning was required for the categorical variable date, where it was transformed into an ordinal vector. Consequently, it enabled enhanced clarity during coding and formulating numerical and graphical summaries graphs.

2.0.2 IDA classification:

4 variables were used in this project, i.e., confirmed cases, deaths, ICU incidence and ventilator usage. The qualitative variables exist in the raw data was omitted, resulting in only quantitative variables left. Among them confirmed cases and deaths were ordinal classified as cumulative qualitative cases. The logic delineating this change was due to the unidirectional flux of cumulative data for confirmed cases and deaths. Furthermore, date is an ordinal continuous variable, which was then categorized into an ordinal vector. Hence, it was inappropriate as it heavily impacts the results Therefore, summarizing and obtaining reliable results, required manipulation of the respective variables into daily quantitative daily data.

2.0.3 IDA data quality:

The data pertained from the dates 25/1/20 - 18/4/21 and was aggregated from covid19data.com.au, which subsequently has been verified with federal, state and territory health departments. Within the data set there are 16 variables presents, consisting of 10 quantitative discrete variables and 6 qualitative ordinal variables. The data was voluntarily collated by Bolton (2021) with collaborators to provide statistics of COVID-19 in Australia summarized as a whole. We noticed that the data was not directly retrieved from the official platform, thus we have checked the accuracy by sampling survey on several random days and confirmed the collated data is accurate and authentic. However, there are still some limitations within the data. Firstly, the data was collected by summing the statistics from each state and territories from Australia, so there may be an error value in the final data statistic because of the different statistical criteria in each district. Moreover, a strong correlation data between ICU and ventilator was observed, where it will be further explored in within research question 2.

2.1 Domain Knowledge

Coronavirus disease 19 (Covid-19) was first identified during December 2019 in Wuhan China and was formerly declared a global pandemic by the World Health Organisation (WHO) on March 11/2020. Covid-19’s impact has not only effected public health, as its drastic influence has reached many other sectors of the economy, resulting in global turmoil. This is elucidated by its pathology, where it is transmitted through physical contact and airborne mechanisms. Hence, Covid-19 is depicted as highly contagious and hard to detect, augmenting its prevalence in society. Universally, the symptoms of covid-19 included cough, sore throat, fatigue, runny nose, and fever, where most individuals who contracted the virus recovered without severe medical intervention. However, it was estimated that 20% of global cases resulted in severe medical implication, leading to shortness of breath and pneumonia. These cases were most prominent in immunocompromised individuals, requiring the need for hospitalization, ICUs, and ventilators. The increased demand for medical interventions and equipment resulted in a shortage of supplies, adversely influencing its incidence of mortality in many countries. Fortunately, Australia imposed strict health and border policies throughout the earlier stages of Covid-19, effectively mitigating the transmission rate. This resulted in reduced cases, mortality, and hospitalisation for Covid-19, relative to other nations. Hence, exploring the corresponding results induced by the mechanisms underpinning Australia’s success to Covid-19, serves as an exemplar response model for other nations, and should be further investigated.

3 Research Queation 1

 options(max.print=1000000)
 project_1 <- read.csv("project_1.csv")
 project_1[c(1:450),c(2,3,4)]
##     confirmed icu vent
## 1           4   0    0
## 2           0   0    0
## 3           1   0    0
## 4           0   0    0
## 5           4   0    0
## 6           0   0    0
## 7           0   0    0
## 8           1   0    0
## 9           2   0    0
## 10          0   0    0
## 11          1   0    0
## 12          1   0    0
## 13          0   0    0
## 14          0   0    0
## 15          0   0    0
## 16          0   0    0
## 17          0   0    0
## 18          0   0    0
## 19          0   0    0
## 20          0   0    0
## 21          0   0    0
## 22          0   0    0
## 23          0   0    0
## 24          0   0    0
## 25          0   0    0
## 26          0   0    0
## 27          0   0    0
## 28          4   0    0
## 29          1   0    0
## 30          0   0    0
## 31          0   0    0
## 32          0   0    0
## 33          0   0    0
## 34          3   0    0
## 35          2   0    0
## 36          0   0    0
## 37          3   0    0
## 38          4   0    0
## 39          8   0    0
## 40         11   0    0
## 41          8   0    0
## 42          4   0    0
## 43         10   0    0
## 44          7   0    0
## 45         12   0    0
## 46         20   0    0
## 47         15   0    0
## 48         30   0    0
## 49         41   0    0
## 50         51   0    0
## 51         48   0    0
## 52         79   0    0
## 53         78   0    0
## 54        113   0    0
## 55        142   0    0
## 56        138   0    0
## 57        225   0    0
## 58        280   0    0
## 59        328   0    0
## 60        370   0    0
## 61        380   0    0
## 62        379   0    0
## 63        371   0    0
## 64        460   0    0
## 65        344   0    0
## 66        266   0    0
## 67        311   6    0
## 68        303  76   33
## 69        273  81   32
## 70        225  86   32
## 71        190  92   33
## 72        141  96   33
## 73        106  96   35
## 74        119  93   37
## 75        105  87   36
## 76         85  81   36
## 77        106  74   38
## 78         88  80   38
## 79         22  81   35
## 80         41  79   46
## 81         49  80   44
## 82        223  73   42
## 83         30  64   38
## 84         47  60   38
## 85         42  56   34
## 86         44  48   33
## 87         13  49   32
## 88         22  47   33
## 89          7  47   31
## 90          8  46   29
## 91         17  42   28
## 92         18  43   28
## 93         19  43   25
## 94          7  44   27
## 95         12  32   27
## 96         13  38   26
## 97          8  34   22
## 98         13  29   21
## 99         15  28   21
## 100        18  28   20
## 101        24  28   20
## 102        26  27   20
## 103        24  27   18
## 104        22  23   17
## 105        18  21   16
## 106        14  19   15
## 107        12  18   15
## 108         7  16   14
## 109        20  16   15
## 110        11  17   14
## 111        15  18   13
## 112        31  18   13
## 113        17  16   12
## 114         8  16   12
## 115         9  12    7
## 116         8  11    7
## 117        11  11    7
## 118         2   9    7
## 119        14   9    6
## 120        13   5    5
## 121         3   5    5
## 122         4   5    5
## 123        15   5    5
## 124         6   6    3
## 125        18   5    3
## 126        16   4    3
## 127        11   4    3
## 128        10   4    1
## 129         8   3    1
## 130        17   4    2
## 131         8   5    2
## 132        11   4    2
## 133        11   3    2
## 134         2   4    2
## 135         4   3    2
## 136         6   3    2
## 137         2   2    2
## 138         7   3    2
## 139         9   2    2
## 140         4   2    2
## 141        13   2    0
## 142        18   3    0
## 143        15   4    0
## 144        12   3    2
## 145        23   3    3
## 146        21   3    2
## 147        18   2    2
## 148        26   3    0
## 149        25   2    0
## 150        13   2    0
## 151        18   3    0
## 152        29   2    0
## 153        36   2    0
## 154        37   1    0
## 155        46   1    0
## 156        45   1    0
## 157        81   1    0
## 158        67   1    0
## 159        86   3    0
## 160        81   5    0
## 161        65   7    0
## 162       106   4    0
## 163        87   4    0
## 164       137   6    0
## 165       169  10    0
## 166       130   8    0
## 167       173  10    0
## 168       300  13    0
## 169       192  16    0
## 170       244  17    0
## 171       183  18    0
## 172       271  27    0
## 173       244  28    0
## 174       315  30    0
## 175       425  32   22
## 176       204  26   18
## 177       361  29   18
## 178       268  33   17
## 179       358  38   23
## 180       468  42   25
## 181       407  41   25
## 182       289  44    1
## 183       353  46    1
## 184       453  46   22
## 185       532  49   24
## 186       369  47   24
## 187       279  46    1
## 188       717  40    1
## 189       603  44   27
## 190       374  50   28
## 191       641  46   30
## 192       395  43   31
## 193       412  44    5
## 194       714  51   36
## 195       447  52   34
## 196       410  51   33
## 197       425  53   35
## 198       386  51   32
## 199       313  55   37
## 200       317  59   33
## 201       413  51   32
## 202       231  44   31
## 203       384  47   31
## 204       293  48   33
## 205       253  47   34
## 206       271  51   37
## 207       214  52   37
## 208       220  53   34
## 209       243  51   33
## 210       171  47   31
## 211       195  43   27
## 212       210  39   26
## 213       104  38   22
## 214       137  42   23
## 215       152  46   20
## 216       117  35   15
## 217       126  32   21
## 218        99  32   21
## 219       123  31   15
## 220        76  27   17
## 221        73  26   10
## 222       104  23   16
## 223       126  26   18
## 224        87  27   17
## 225        71  27   19
## 226        72  26   20
## 227        43  32   21
## 228        52  29   16
## 229        91  26   20
## 230        48  23   15
## 231        52  18   12
## 232        41  15   10
## 233        44  17    7
## 234        41  18   10
## 235        46  17   10
## 236        42  16    9
## 237        34  16    9
## 238        48  15    9
## 239        24  12    7
## 240        13  10    6
## 241        14   8    4
## 242        30  11    6
## 243         9  11    7
## 244         9  11    7
## 245        17  11    7
## 246        16  12    5
## 247        24  12    5
## 248         4  11    4
## 249        19   8    4
## 250        15   9    3
## 251        18   9    3
## 252        17   6    3
## 253         8   6    3
## 254        15   6    1
## 255        13   6    2
## 256        25   5    2
## 257         8   6    0
## 258        24   3    0
## 259        23   4    0
## 260        15   4    0
## 261        20   2    0
## 262        22   1    0
## 263        30   1    0
## 264        25   1    0
## 265        21   1    0
## 266         9   1    0
## 267        12   1    0
## 268         8   1    0
## 269         8   1    0
## 270        31   1    0
## 271        14   1    0
## 272        22   1    0
## 273        18   0    0
## 274        15   0    0
## 275        21   0    0
## 276         7   0    0
## 277        14   1    0
## 278        14   1    0
## 279        15   1    0
## 280        12   1    0
## 281         8   1    0
## 282         5   1    1
## 283         7   1    1
## 284         8   1    1
## 285        12   1    1
## 286        12   1    1
## 287        11   1    1
## 288         7   1    1
## 289         6   1    1
## 290        10   1    1
## 291         9   1    1
## 292         8   0    0
## 293        13   0    0
## 294         5   0    0
## 295         8   0    0
## 296        17   0    0
## 297        22   0    0
## 298        10   0    0
## 299        17   0    0
## 300         7   0    0
## 301         8   0    0
## 302        14   0    0
## 303        15   0    0
## 304        14   0    0
## 305        13   0    0
## 306         8   0    0
## 307         8   0    0
## 308        10   0    0
## 309        11   0    0
## 310         7   0    0
## 311        11   0    0
## 312         9   0    0
## 313        11   0    0
## 314        17   0    0
## 315         9   0    0
## 316         7   0    0
## 317         9   0    0
## 318         7   0    0
## 319        15   0    0
## 320         6   0    0
## 321         8   0    0
## 322        11   0    0
## 323        13   0    0
## 324         5   0    0
## 325         9   1    0
## 326         8   1    0
## 327        12   1    0
## 328        13   1    0
## 329        21   0    0
## 330        35   0    0
## 331        44   0    0
## 332        26   0    0
## 333        21   0    0
## 334        18   0    0
## 335        25   0    0
## 336        14   0    0
## 337        20   0    0
## 338        16   0    0
## 339        25   0    0
## 340        13   0    0
## 341        31   0    0
## 342        26   0    0
## 343        20   0    0
## 344        43   0    0
## 345        13   0    0
## 346        22   0    0
## 347        18   0    0
## 348        13   0    0
## 349        10   0    0
## 350        25   0    0
## 351        11   0    0
## 352        13   0    0
## 353        19   0    1
## 354        20   0    1
## 355        16   1    1
## 356         8   1    1
## 357        11   1    1
## 358        20   2    0
## 359        19   2    0
## 360        13   2    0
## 361        10   2    0
## 362         9   1    0
## 363         9   1    0
## 364         6   1    0
## 365         6   0    0
## 366         5   0    0
## 367        11   0    0
## 368         3   0    0
## 369         7   0    0
## 370         7   0    0
## 371         6   0    0
## 372         6   0    0
## 373         6   0    0
## 374         6   0    0
## 375         6   0    0
## 376         5   0    0
## 377         9   0    0
## 378         4   0    0
## 379         6   0    0
## 380         2   0    0
## 381         7   0    0
## 382         3   1    0
## 383        11   1    0
## 384         8   1    0
## 385         8   1    0
## 386         5   1    0
## 387         6   0    0
## 388         2   0    0
## 389         5   0    0
## 390         6   0    0
## 391         1   0    0
## 392         6   1    0
## 393         2   1    0
## 394         6   1    0
## 395         4   1    0
## 396         7   0    0
## 397         2   0    0
## 398         8   0    0
## 399        11   0    0
## 400         7   1    0
## 401         5   1    0
## 402         8   1    0
## 403         8   1    0
## 404        10   1    0
## 405        11   1    0
## 406        13   1    0
## 407        10   1    0
## 408         7   1    0
## 409         9   1    0
## 410        15   1    1
## 411        14   1    1
## 412        15   1    0
## 413        12   1    0
## 414        10   0    0
## 415         5   0    0
## 416        13   0    0
## 417         7   0    0
## 418        16   1    0
## 419        13   1    0
## 420        17   1    0
## 421         9   3    0
## 422         4   2    0
## 423        10   1    0
## 424         5   1    0
## 425         9   1    0
## 426         8   1    0
## 427        12   1    0
## 428        13   2    0
## 429         7   2    0
## 430        18   2    0
## 431        18   2    0
## 432         9   1    0
## 433        18   1    0
## 434        12   1    0
## 435         6   2    0
## 436         7   3    0
## 437         9   3    0
## 438         8   2    0
## 439        14   2    0
## 440         6   2    0
## 441         5   2    0
## 442         6   2    0
## 443         9   1    0
## 444        14   1    0
## 445        18   2    0
## 446        13   2    0
## 447        19   2    0
## 448        15   2    0
## 449        21   2    0
## 450        14   3    0
 data2= project_1[c(1:450),c(2,3,4)]
 data2 [] <- lapply(data2, function(x) diff(c(0, x)))
 confirmed=project_1$confirmed
 icu=project_1$icu
 vent=project_1$vent
 class(confirmed)
## [1] "integer"
 class(icu)
## [1] "integer"
 class(vent)
## [1] "integer"
 plot(confirmed, icu, main="Scatterplot")

 cor(confirmed, icu)
## [1] 0.5330952
 mod.1 <- lm(icu ~ confirmed)
plot(mod.1)

 abline(mod.1, col=2, lwd=3)

 par(mfrow=c(2,2))
 summary(mod.1)
## 
## Call:
## lm(formula = icu ~ confirmed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.750  -6.823  -5.913   1.390  80.304 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.098493   0.932355   6.541 1.67e-10 ***
## confirmed   0.090547   0.006789  13.337  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.38 on 448 degrees of freedom
## Multiple R-squared:  0.2842, Adjusted R-squared:  0.2826 
## F-statistic: 177.9 on 1 and 448 DF,  p-value: < 2.2e-16
 confint(mod.1, level=0.99)
##                 0.5 %    99.5 %
## (Intercept) 3.6866315 8.5103541
## confirmed   0.0729838 0.1081098
 anova(mod.1)
## Analysis of Variance Table
## 
## Response: icu
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## confirmed   1  53727   53727  177.86 < 2.2e-16 ***
## Residuals 448 135326     302                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hist(residuals(mod.1))
boxplot(residuals(mod.1))
shapiro.test(residuals(mod.1))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(mod.1)
## W = 0.71024, p-value < 2.2e-16
 plot(confirmed, vent, main="Scatterplot")
 cor(icu, vent)
## [1] 0.9331518
 mod.2 <- lm(vent ~ icu)
 plot(mod.2)

 abline(mod.2, col=2, lwd=3)
 par(mfrow=c(2,2))

 summary(mod.2)
## 
## Call:
## lm(formula = vent ~ icu)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -22.8259  -0.6306  -0.1152   0.3694  10.5968 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.115188   0.222980   0.517    0.606    
## icu         0.515451   0.009382  54.943   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.079 on 448 degrees of freedom
## Multiple R-squared:  0.8708, Adjusted R-squared:  0.8705 
## F-statistic:  3019 on 1 and 448 DF,  p-value: < 2.2e-16
 confint(mod.2, level=0.99)
##                  0.5 %    99.5 %
## (Intercept) -0.4616276 0.6920043
## icu          0.4911821 0.5397192
 anova(mod.2)
## Analysis of Variance Table
## 
## Response: vent
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## icu         1  50229   50229  3018.7 < 2.2e-16 ***
## Residuals 448   7454      17                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 hist(residuals(mod.2))
 boxplot(residuals(mod.2))
 shapiro.test(residuals(mod.2))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(mod.2)
## W = 0.72339, p-value < 2.2e-16
 plot(confirmed, vent, main="Scatterplot")
 cor(confirmed, vent)
## [1] 0.4721358
 mod.3 <- lm(vent ~ confirmed)
 plot(mod.3)

 abline(mod.3, col=2, lwd=3)
 par(mfrow=c(2,2))

 summary(mod.3)
## 
## Call:
## lm(formula = vent ~ confirmed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -34.175  -4.023  -3.636   0.949  40.769 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 3.414384   0.536602   6.363  4.9e-10 ***
## confirmed   0.044297   0.003908  11.336  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 10 on 448 degrees of freedom
## Multiple R-squared:  0.2229, Adjusted R-squared:  0.2212 
## F-statistic: 128.5 on 1 and 448 DF,  p-value: < 2.2e-16
 confint(mod.3, level=0.99)
##                  0.5 %     99.5 %
## (Intercept) 2.02627491 4.80249216
## confirmed   0.03418846 0.05440469
 anova(mod.3)
## Analysis of Variance Table
## 
## Response: vent
##            Df Sum Sq Mean Sq F value    Pr(>F)    
## confirmed   1  12858 12858.4  128.51 < 2.2e-16 ***
## Residuals 448  44825   100.1                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 hist(residuals(mod.3))
 boxplot(residuals(mod.3))
 shapiro.test(residuals(mod.3))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(mod.3)
## W = 0.78364, p-value < 2.2e-16
 options(max.print=1000000)
 DATA1 = read.csv("data_for_project_1.csv")
 DATA1[c(1:450),c(1,2,3)]
##     \u9518\u7e1eonfirmed icu vent
## 1                      4   0    0
## 2                      0   0    0
## 3                      1   0    0
## 4                      0   0    0
## 5                      4   0    0
## 6                      0   0    0
## 7                      0   0    0
## 8                      1   0    0
## 9                      2   0    0
## 10                     0   0    0
## 11                     1   0    0
## 12                     1   0    0
## 13                     0   0    0
## 14                     0   0    0
## 15                     0   0    0
## 16                     0   0    0
## 17                     0   0    0
## 18                     0   0    0
## 19                     0   0    0
## 20                     0   0    0
## 21                     0   0    0
## 22                     0   0    0
## 23                     0   0    0
## 24                     0   0    0
## 25                     0   0    0
## 26                     0   0    0
## 27                     0   0    0
## 28                     4   0    0
## 29                     1   0    0
## 30                     0   0    0
## 31                     0   0    0
## 32                     0   0    0
## 33                     0   0    0
## 34                     3   0    0
## 35                     2   0    0
## 36                     0   0    0
## 37                     3   0    0
## 38                     4   0    0
## 39                     8   0    0
## 40                    11   0    0
## 41                     8   0    0
## 42                     4   0    0
## 43                    10   0    0
## 44                     7   0    0
## 45                    12   0    0
## 46                    20   0    0
## 47                    15   0    0
## 48                    30   0    0
## 49                    41   0    0
## 50                    51   0    0
## 51                    48   0    0
## 52                    79   0    0
## 53                    78   0    0
## 54                   113   0    0
## 55                   142   0    0
## 56                   138   0    0
## 57                   225   0    0
## 58                   280   0    0
## 59                   328   0    0
## 60                   370   0    0
## 61                   380   0    0
## 62                   379   0    0
## 63                   371   0    0
## 64                   460   0    0
## 65                   344   0    0
## 66                   266   0    0
## 67                   311   6    0
## 68                   303  76   33
## 69                   273  81   32
## 70                   225  86   32
## 71                   190  92   33
## 72                   141  96   33
## 73                   106  96   35
## 74                   119  93   37
## 75                   105  87   36
## 76                    85  81   36
## 77                   106  74   38
## 78                    88  80   38
## 79                    22  81   35
## 80                    41  79   46
## 81                    49  80   44
## 82                   223  73   42
## 83                    30  64   38
## 84                    47  60   38
## 85                    42  56   34
## 86                    44  48   33
## 87                    13  49   32
## 88                    22  47   33
## 89                     7  47   31
## 90                     8  46   29
## 91                    17  42   28
## 92                    18  43   28
## 93                    19  43   25
## 94                     7  44   27
## 95                    12  32   27
## 96                    13  38   26
## 97                     8  34   22
## 98                    13  29   21
## 99                    15  28   21
## 100                   18  28   20
## 101                   24  28   20
## 102                   26  27   20
## 103                   24  27   18
## 104                   22  23   17
## 105                   18  21   16
## 106                   14  19   15
## 107                   12  18   15
## 108                    7  16   14
## 109                   20  16   15
## 110                   11  17   14
## 111                   15  18   13
## 112                   31  18   13
## 113                   17  16   12
## 114                    8  16   12
## 115                    9  12    7
## 116                    8  11    7
## 117                   11  11    7
## 118                    2   9    7
## 119                   14   9    6
## 120                   13   5    5
## 121                    3   5    5
## 122                    4   5    5
## 123                   15   5    5
## 124                    6   6    3
## 125                   18   5    3
## 126                   16   4    3
## 127                   11   4    3
## 128                   10   4    1
## 129                    8   3    1
## 130                   17   4    2
## 131                    8   5    2
## 132                   11   4    2
## 133                   11   3    2
## 134                    2   4    2
## 135                    4   3    2
## 136                    6   3    2
## 137                    2   2    2
## 138                    7   3    2
## 139                    9   2    2
## 140                    4   2    2
## 141                   13   2    0
## 142                   18   3    0
## 143                   15   4    0
## 144                   12   3    2
## 145                   23   3    3
## 146                   21   3    2
## 147                   18   2    2
## 148                   26   3    0
## 149                   25   2    0
## 150                   13   2    0
## 151                   18   3    0
## 152                   29   2    0
## 153                   36   2    0
## 154                   37   1    0
## 155                   46   1    0
## 156                   45   1    0
## 157                   81   1    0
## 158                   67   1    0
## 159                   86   3    0
## 160                   81   5    0
## 161                   65   7    0
## 162                  106   4    0
## 163                   87   4    0
## 164                  137   6    0
## 165                  169  10    0
## 166                  130   8    0
## 167                  173  10    0
## 168                  300  13    0
## 169                  192  16    0
## 170                  244  17    0
## 171                  183  18    0
## 172                  271  27    0
## 173                  244  28    0
## 174                  315  30    0
## 175                  425  32   22
## 176                  204  26   18
## 177                  361  29   18
## 178                  268  33   17
## 179                  358  38   23
## 180                  468  42   25
## 181                  407  41   25
## 182                  289  44    1
## 183                  353  46    1
## 184                  453  46   22
## 185                  532  49   24
## 186                  369  47   24
## 187                  279  46    1
## 188                  717  40    1
## 189                  603  44   27
## 190                  374  50   28
## 191                  641  46   30
## 192                  395  43   31
## 193                  412  44    5
## 194                  714  51   36
## 195                  447  52   34
## 196                  410  51   33
## 197                  425  53   35
## 198                  386  51   32
## 199                  313  55   37
## 200                  317  59   33
## 201                  413  51   32
## 202                  231  44   31
## 203                  384  47   31
## 204                  293  48   33
## 205                  253  47   34
## 206                  271  51   37
## 207                  214  52   37
## 208                  220  53   34
## 209                  243  51   33
## 210                  171  47   31
## 211                  195  43   27
## 212                  210  39   26
## 213                  104  38   22
## 214                  137  42   23
## 215                  152  46   20
## 216                  117  35   15
## 217                  126  32   21
## 218                   99  32   21
## 219                  123  31   15
## 220                   76  27   17
## 221                   73  26   10
## 222                  104  23   16
## 223                  126  26   18
## 224                   87  27   17
## 225                   71  27   19
## 226                   72  26   20
## 227                   43  32   21
## 228                   52  29   16
## 229                   91  26   20
## 230                   48  23   15
## 231                   52  18   12
## 232                   41  15   10
## 233                   44  17    7
## 234                   41  18   10
## 235                   46  17   10
## 236                   42  16    9
## 237                   34  16    9
## 238                   48  15    9
## 239                   24  12    7
## 240                   13  10    6
## 241                   14   8    4
## 242                   30  11    6
## 243                    9  11    7
## 244                    9  11    7
## 245                   17  11    7
## 246                   16  12    5
## 247                   24  12    5
## 248                    4  11    4
## 249                   19   8    4
## 250                   15   9    3
## 251                   18   9    3
## 252                   17   6    3
## 253                    8   6    3
## 254                   15   6    1
## 255                   13   6    2
## 256                   25   5    2
## 257                    8   6    0
## 258                   24   3    0
## 259                   23   4    0
## 260                   15   4    0
## 261                   20   2    0
## 262                   22   1    0
## 263                   30   1    0
## 264                   25   1    0
## 265                   21   1    0
## 266                    9   1    0
## 267                   12   1    0
## 268                    8   1    0
## 269                    8   1    0
## 270                   31   1    0
## 271                   14   1    0
## 272                   22   1    0
## 273                   18   0    0
## 274                   15   0    0
## 275                   21   0    0
## 276                    7   0    0
## 277                   14   1    0
## 278                   14   1    0
## 279                   15   1    0
## 280                   12   1    0
## 281                    8   1    0
## 282                    5   1    1
## 283                    7   1    1
## 284                    8   1    1
## 285                   12   1    1
## 286                   12   1    1
## 287                   11   1    1
## 288                    7   1    1
## 289                    6   1    1
## 290                   10   1    1
## 291                    9   1    1
## 292                    8   0    0
## 293                   13   0    0
## 294                    5   0    0
## 295                    8   0    0
## 296                   17   0    0
## 297                   22   0    0
## 298                   10   0    0
## 299                   17   0    0
## 300                    7   0    0
## 301                    8   0    0
## 302                   14   0    0
## 303                   15   0    0
## 304                   14   0    0
## 305                   13   0    0
## 306                    8   0    0
## 307                    8   0    0
## 308                   10   0    0
## 309                   11   0    0
## 310                    7   0    0
## 311                   11   0    0
## 312                    9   0    0
## 313                   11   0    0
## 314                   17   0    0
## 315                    9   0    0
## 316                    7   0    0
## 317                    9   0    0
## 318                    7   0    0
## 319                   15   0    0
## 320                    6   0    0
## 321                    8   0    0
## 322                   11   0    0
## 323                   13   0    0
## 324                    5   0    0
## 325                    9   1    0
## 326                    8   1    0
## 327                   12   1    0
## 328                   13   1    0
## 329                   21   0    0
## 330                   35   0    0
## 331                   44   0    0
## 332                   26   0    0
## 333                   21   0    0
## 334                   18   0    0
## 335                   25   0    0
## 336                   14   0    0
## 337                   20   0    0
## 338                   16   0    0
## 339                   25   0    0
## 340                   13   0    0
## 341                   31   0    0
## 342                   26   0    0
## 343                   20   0    0
## 344                   43   0    0
## 345                   13   0    0
## 346                   22   0    0
## 347                   18   0    0
## 348                   13   0    0
## 349                   10   0    0
## 350                   25   0    0
## 351                   11   0    0
## 352                   13   0    0
## 353                   19   0    1
## 354                   20   0    1
## 355                   16   1    1
## 356                    8   1    1
## 357                   11   1    1
## 358                   20   2    0
## 359                   19   2    0
## 360                   13   2    0
## 361                   10   2    0
## 362                    9   1    0
## 363                    9   1    0
## 364                    6   1    0
## 365                    6   0    0
## 366                    5   0    0
## 367                   11   0    0
## 368                    3   0    0
## 369                    7   0    0
## 370                    7   0    0
## 371                    6   0    0
## 372                    6   0    0
## 373                    6   0    0
## 374                    6   0    0
## 375                    6   0    0
## 376                    5   0    0
## 377                    9   0    0
## 378                    4   0    0
## 379                    6   0    0
## 380                    2   0    0
## 381                    7   0    0
## 382                    3   1    0
## 383                   11   1    0
## 384                    8   1    0
## 385                    8   1    0
## 386                    5   1    0
## 387                    6   0    0
## 388                    2   0    0
## 389                    5   0    0
## 390                    6   0    0
## 391                    1   0    0
## 392                    6   1    0
## 393                    2   1    0
## 394                    6   1    0
## 395                    4   1    0
## 396                    7   0    0
## 397                    2   0    0
## 398                    8   0    0
## 399                   11   0    0
## 400                    7   1    0
## 401                    5   1    0
## 402                    8   1    0
## 403                    8   1    0
## 404                   10   1    0
## 405                   11   1    0
## 406                   13   1    0
## 407                   10   1    0
## 408                    7   1    0
## 409                    9   1    0
## 410                   15   1    1
## 411                   14   1    1
## 412                   15   1    0
## 413                   12   1    0
## 414                   10   0    0
## 415                    5   0    0
## 416                   13   0    0
## 417                    7   0    0
## 418                   16   1    0
## 419                   13   1    0
## 420                   17   1    0
## 421                    9   3    0
## 422                    4   2    0
## 423                   10   1    0
## 424                    5   1    0
## 425                    9   1    0
## 426                    8   1    0
## 427                   12   1    0
## 428                   13   2    0
## 429                    7   2    0
## 430                   18   2    0
## 431                   18   2    0
## 432                    9   1    0
## 433                   18   1    0
## 434                   12   1    0
## 435                    6   2    0
## 436                    7   3    0
## 437                    9   3    0
## 438                    8   2    0
## 439                   14   2    0
## 440                    6   2    0
## 441                    5   2    0
## 442                    6   2    0
## 443                    9   1    0
## 444                   14   1    0
## 445                   18   2    0
## 446                   13   2    0
## 447                   19   2    0
## 448                   15   2    0
## 449                   21   2    0
## 450                   14   3    0
 DATA3= DATA1[c(1:450),c(1,2,3)]
 DATA3 [] <- lapply(DATA3, function(x) diff(c(0, x)))
 class(confirmed)
## [1] "integer"
 class(icu)
## [1] "integer"
 class(vent)
## [1] "integer"
 plot(confirmed, icu, main="Scatterplot")
 cor(confirmed, icu)
## [1] 0.5330952
 mod <- lm(icu ~ confirmed)
 summary(mod)
## 
## Call:
## lm(formula = icu ~ confirmed)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.750  -6.823  -5.913   1.390  80.304 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.098493   0.932355   6.541 1.67e-10 ***
## confirmed   0.090547   0.006789  13.337  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.38 on 448 degrees of freedom
## Multiple R-squared:  0.2842, Adjusted R-squared:  0.2826 
## F-statistic: 177.9 on 1 and 448 DF,  p-value: < 2.2e-16

## Summary investigated the extent to which the inter-relationship between daily confirmed cases, ICU incidence, and ventilator-usage can serve as a predictive model. Data.1, and DATA1 displayed weak linear relationships for residuals, with respective R^2 values of 0.2824 and 0.2232. Hence, the power for drawing conclusive statements for predicted ICU incidence and ventilator-usage from daily cases were limited, challenging initial assumptions which projected strong positive correlations between the respective variables. Furthermore, residual plots for both regression models highlighted ununiform distributions that were right skewed. Hence, indicating the presence of exceptionally high outliers, where distribution is biased towards higher values. Therefore, the regression models serve as a poor predictor for ICU incidence and ventilator-usage when considering the quantity of daily cases. The residual discrepancy for both models is explained by the asynchronous reporting of ICU incidence and ventilator-usage during initial stages of Covid-19. It’s elucidated through reports indicating zero cases in ICU and ventilator-usage within the first 66 days of the outbreak, whilst daily confirmed cases progressively increased. Furthermore, it’s augmented by drastic increases in ICU incidence and ventilator-usage between the 67th and 68th day of the outbreak, 70 and 33, respectively. Hence, prior data were accumulated retroactively within the 68th day, explaining the greater degree of heteroscedasticity and absence of zero conditional mean within the models. Furthermore, as daily confirmed cases decreased, similar patterns were not observed for ICU incidence and ventilator-usage, indicating that disease progression occurs past a daily scale. However, conflicting results presented new insights for uncovering differences within these regression models throughout varying time intervals.

Data.2, which depicted the inter-relationship between residuals for variables ICU, and Vent displayed a strong linear relationship. This is evidenced by the R^2 value of 0.873, indicating that 87.3% of variance for cumulative ventilator-usage is explained by the predicator variable, where its closely aggregated around the fitted regression line, and no significant patterns of distribution were noticed within the Residual vs Fitted model. It’s elucidated through the proximity and immediate use of ventilators when required by patients in ICU. Furthermore, domain knowledge has indicated that sufficient quantities of ventilators were available when necessary. Consequently, residuals were relatively less prone to the temporal effects of delayed reporting. The predictive model is further augmented by a 0.93 correlation coefficient between the two variables, establishing their inter-relationship. However, residuals discrepancy between the quantiles poses a limitation as it indicates ununiform distribution of residuals. This was largely influenced by the presence of exceptionally high outliers which skewed the distribution of residuals to the right, observed in the graphical and numerical summaries. However, they were not influential upon the regression line, observed within the Residuals vs Leverage diagnostic plot.

Ultimately, only data.2, predicting ventilator-usage from ICU incidence, presents a viable fit inside the regression model due to the reduced influence of temporal factors during reporting and their proximity within the clinical context.

4 Research Question 2

COVID_during_20200125_20210418 <- read.csv("COVID_during_20200125_20210418.csv")
COVID_during_20200125_20210418 <- read.csv("COVID_during_20200125_20210418.csv")
 View(COVID_during_20200125_20210418)
 COVID_during_20200125_20210418[c(2:450),c(2,3)]
##     confirmed deaths
## 2           4      0
## 3           5      0
## 4           5      0
## 5           9      0
## 6           9      0
## 7           9      0
## 8          10      0
## 9          12      0
## 10         12      0
## 11         13      0
## 12         14      0
## 13         15      0
## 14         15      0
## 15         15      0
## 16         15      0
## 17         15      0
## 18         15      0
## 19         15      0
## 20         15      0
## 21         15      0
## 22         15      0
## 23         15      0
## 24         15      0
## 25         15      0
## 26         15      0
## 27         15      0
## 28         19      0
## 29         20      0
## 30         20      0
## 31         20      0
## 32         20      0
## 33         20      0
## 34         23      0
## 35         25      0
## 36         25      0
## 37         28      1
## 38         32      1
## 39         40      1
## 40         51      2
## 41         59      2
## 42         63      2
## 43         73      2
## 44         80      3
## 45         92      3
## 46        112      3
## 47        127      3
## 48        157      3
## 49        198      4
## 50        249      4
## 51        297      6
## 52        376      6
## 53        454      6
## 54        567      7
## 55        709      7
## 56        847      8
## 57       1072      8
## 58       1352      8
## 59       1680      8
## 60       2050      9
## 61       2430     10
## 62       2809     14
## 63       3180     14
## 64       3640     15
## 65       3984     17
## 66       4250     19
## 67       4561     20
## 68       4864     21
## 69       5137     25
## 70       5362     29
## 71       5552     31
## 72       5693     36
## 73       5799     41
## 74       5918     49
## 75       6023     51
## 76       6108     52
## 77       6214     55
## 78       6302     57
## 79       6324     60
## 80       6365     62
## 81       6414     63
## 82       6637     64
## 83       6667     64
## 84       6714     66
## 85       6756     69
## 86       6800     71
## 87       6813     72
## 88       6835     72
## 89       6842     75
## 90       6850     76
## 91       6867     79
## 92       6885     81
## 93       6904     84
## 94       6911     84
## 95       6923     85
## 96       6936     90
## 97       6944     92
## 98       6957     94
## 99       6972     94
## 100      6990     96
## 101      7014     96
## 102      7040     98
## 103      7064     98
## 104      7086     98
## 105      7104     98
## 106      7118     98
## 107      7130     98
## 108      7137     98
## 109      7157     98
## 110      7168     99
## 111      7183     99
## 112      7214     99
## 113      7231     99
## 114      7239     99
## 115      7248    100
## 116      7256    100
## 117      7267    101
## 118      7269    101
## 119      7283    102
## 120      7296    103
## 121      7299    103
## 122      7303    103
## 123      7318    103
## 124      7324    103
## 125      7342    103
## 126      7358    103
## 127      7369    103
## 128      7379    103
## 129      7387    103
## 130      7404    103
## 131      7412    103
## 132      7423    103
## 133      7434    103
## 134      7436    103
## 135      7440    103
## 136      7446    103
## 137      7448    103
## 138      7455    103
## 139      7464    103
## 140      7468    103
## 141      7481    103
## 142      7499    103
## 143      7514    103
## 144      7526    103
## 145      7549    103
## 146      7570    103
## 147      7588    103
## 148      7614    103
## 149      7639    103
## 150      7652    103
## 151      7670    103
## 152      7699    104
## 153      7735    104
## 154      7772    104
## 155      7818    104
## 156      7863    104
## 157      7944    104
## 158      8011    104
## 159      8097    104
## 160      8178    104
## 161      8243    104
## 162      8349    104
## 163      8436    104
## 164      8573    106
## 165      8742    106
## 166      8872    106
## 167      9045    106
## 168      9345    106
## 169      9537    107
## 170      9781    108
## 171      9964    108
## 172     10235    110
## 173     10479    111
## 174     10794    113
## 175     11219    116
## 176     11423    119
## 177     11784    122
## 178     12052    123
## 179     12410    126
## 180     12878    128
## 181     13285    133
## 182     13574    140
## 183     13927    145
## 184     14380    155
## 185     14912    161
## 186     15281    167
## 187     15560    176
## 188     16277    189
## 189     16880    197
## 190     17254    201
## 191     17895    208
## 192     18290    221
## 193     18702    232
## 194     19416    247
## 195     19863    255
## 196     20273    266
## 197     20698    278
## 198     21084    294
## 199     21397    312
## 200     21714    331
## 201     22127    352
## 202     22358    361
## 203     22742    375
## 204     23035    379
## 205     23288    396
## 206     23559    421
## 207     23773    438
## 208     23993    450
## 209     24236    463
## 210     24407    472
## 211     24602    485
## 212     24812    502
## 213     24916    517
## 214     25053    525
## 215     25205    549
## 216     25322    571
## 217     25448    582
## 218     25547    600
## 219     25670    611
## 220     25746    652
## 221     25819    657
## 222     25923    663
## 223     26049    678
## 224     26136    737
## 225     26207    748
## 226     26279    753
## 227     26322    762
## 228     26374    770
## 229     26465    781
## 230     26513    788
## 231     26565    797
## 232     26606    803
## 233     26650    809
## 234     26691    816
## 235     26737    816
## 236     26779    824
## 237     26813    832
## 238     26861    837
## 239     26885    843
## 240     26898    849
## 241     26912    851
## 242     26942    854
## 243     26974    859
## 244     26983    861
## 245     27000    869
## 246     27016    870
## 247     27040    872
## 248     27044    875
## 249     27063    882
## 250     27078    886
## 251     27096    888
## 252     27113    890
## 253     27121    893
## 254     27136    894
## 255     27149    894
## 256     27174    895
## 257     27182    897
## 258     27206    897
## 259     27229    897
## 260     27244    897
## 261     27264    898
## 262     27286    898
## 263     27316    899
## 264     27341    904
## 265     27362    904
## 266     27371    904
## 267     27383    904
## 268     27391    904
## 269     27399    905
## 270     27430    905
## 271     27444    905
## 272     27466    905
## 273     27484    905
## 274     27499    905
## 275     27520    905
## 276     27527    905
## 277     27541    905
## 278     27555    907
## 279     27570    907
## 280     27582    907
## 281     27590    907
## 282     27595    907
## 283     27602    907
## 284     27610    907
## 285     27622    907
## 286     27634    907
## 287     27645    907
## 288     27652    907
## 289     27658    907
## 290     27668    907
## 291     27677    907
## 292     27685    907
## 293     27698    907
## 294     27703    907
## 295     27711    907
## 296     27728    907
## 297     27750    907
## 298     27760    907
## 299     27777    907
## 300     27784    907
## 301     27792    907
## 302     27806    907
## 303     27821    907
## 304     27835    907
## 305     27848    907
## 306     27856    907
## 307     27864    907
## 308     27874    907
## 309     27885    907
## 310     27892    907
## 311     27903    908
## 312     27912    908
## 313     27923    908
## 314     27940    908
## 315     27949    908
## 316     27956    908
## 317     27965    908
## 318     27972    908
## 319     27987    908
## 320     27993    908
## 321     28001    908
## 322     28012    908
## 323     28025    908
## 324     28030    908
## 325     28039    908
## 326     28047    908
## 327     28059    908
## 328     28072    908
## 329     28093    908
## 330     28128    908
## 331     28172    908
## 332     28198    908
## 333     28219    908
## 334     28237    908
## 335     28262    908
## 336     28276    908
## 337     28296    908
## 338     28312    908
## 339     28337    909
## 340     28350    909
## 341     28381    909
## 342     28407    909
## 343     28427    909
## 344     28470    909
## 345     28483    909
## 346     28505    909
## 347     28523    909
## 348     28536    909
## 349     28546    909
## 350     28571    909
## 351     28582    909
## 352     28595    909
## 353     28614    909
## 354     28634    909
## 355     28650    909
## 356     28658    909
## 357     28669    909
## 358     28689    909
## 359     28708    909
## 360     28721    909
## 361     28731    909
## 362     28740    909
## 363     28749    909
## 364     28755    909
## 365     28761    909
## 366     28766    909
## 367     28777    909
## 368     28780    909
## 369     28787    909
## 370     28794    909
## 371     28800    909
## 372     28806    909
## 373     28812    909
## 374     28818    909
## 375     28824    909
## 376     28829    909
## 377     28838    909
## 378     28842    909
## 379     28848    909
## 380     28850    909
## 381     28857    909
## 382     28860    909
## 383     28871    909
## 384     28879    909
## 385     28887    909
## 386     28892    909
## 387     28898    909
## 388     28900    909
## 389     28905    909
## 390     28911    909
## 391     28912    909
## 392     28918    909
## 393     28920    909
## 394     28926    909
## 395     28930    909
## 396     28937    909
## 397     28939    909
## 398     28947    909
## 399     28958    909
## 400     28965    909
## 401     28970    909
## 402     28978    909
## 403     28986    909
## 404     28996    909
## 405     29007    909
## 406     29020    909
## 407     29030    909
## 408     29037    909
## 409     29046    909
## 410     29061    909
## 411     29075    909
## 412     29090    909
## 413     29102    909
## 414     29112    909
## 415     29117    909
## 416     29130    909
## 417     29137    909
## 418     29153    909
## 419     29166    909
## 420     29183    909
## 421     29192    909
## 422     29196    909
## 423     29206    909
## 424     29211    909
## 425     29220    909
## 426     29228    909
## 427     29240    909
## 428     29253    909
## 429     29260    909
## 430     29278    909
## 431     29296    909
## 432     29305    909
## 433     29323    909
## 434     29335    909
## 435     29341    909
## 436     29348    909
## 437     29357    909
## 438     29365    909
## 439     29379    909
## 440     29385    909
## 441     29390    909
## 442     29396    909
## 443     29405    909
## 444     29419    909
## 445     29437    910
## 446     29450    910
## 447     29469    910
## 448     29484    910
## 449     29505    910
## 450     29519    910
 data=COVID_during_20200125_20210418[c(2:450),c(2,3)]
 data [] <- lapply(data, function(x) diff(c(0, x)))
 View(data)
 confirmed=data$confirmed
 deaths=data$deaths
 plot(confirmed, deaths, main="Scatterplot")
 pop.1 <- lm(deaths ~ confirmed)
 abline(pop.1, col=2, lwd=3)

 hist(residuals(pop.1))

 plot(pop.1)

 cor(confirmed, deaths)
## [1] 0.4434641
 shapiro.test(residuals(pop.1))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(pop.1)
## W = 0.49626, p-value < 2.2e-16
 confint(pop.1, level=0.99)
##                  0.5 %     99.5 %
## (Intercept) 0.11335931 1.41777799
## confirmed   0.01443909 0.02392669

4.1 Summary

The first research question investigated differences within the patterns of confirmed cases on a daily scale, evaluating if the relationship of their subsequent difference on mortality rates statistic the scatter plot between the response variable was, daily deaths, and the predictor variable, daily confirmed cases, displayed a weak regression relationship, evidenced by the R^2 value of 0.4437. Hence, only 44.37% of variance for daily deaths is explained by the predictor variable. Furthermore, residuals plots indicated ununiform distribution of data, suggesting a strong right-skewed data. Hence, within the regression model, heteroskedasticity and non-constant variance was observed. This was visualised graphically through the residual histogram, indicating that residuals were biased towards higher value. Residual diagnostic plot for scale-location further augmented the uniform distribution of residuals, suggesting a positive correlation between residual variance with the x-axis. Hence, the OLS assumptions were violated within the linear model, depicted by the strongly right-skewed residuals which were not closely aggregated around the fitted regression line. Furthermore, within the Residuals vs Fitted diagnostic plot, a noticeable portion of the residuals were aggregated around the lower fitted values. Consequently, this alluded to an inadequate linear relationship between both variables. Hence, the linear model serves as a poor predictor for projecting mortality rates through daily confirmed cases. Furthermore, the regression line was largely influenced by the presence of exceptionally high outliers, skewing the distribution of residuals to the right as observed in the Residuals vs leverage diagnostic plot. Hence, further signifying patterns heteroskedasticity and non-linearity within the regression model

The discrepancy between residuals within the linear model is elucidated through the domain knowledge. Domain knowledge has indicated that Australia rapidly enacted border and health policies, which limited the transmission of Covid-19 within the population. Furthermore, the mortality rate was dampened as availability of medical instruments were enhanced. Thus, the mortality rate shows a weaker correlation with confirmed cases as time passed. However, it must be noted that mortality progression occurs past a daily scale, varying between individuals. Hence, lag within the recorded data between the respective variable is evident, impacting their correlation. In conclusion, the predicting capacities of the linear model predicting mortality through daily confirmed cases is poor due to advancements within the clinical environment as Covid-19 progressed.

5 Referfencing List

References Australian Financial Review. (2020). Has Australia been too successful in combating COVID-19?. Retrieved from https://www.afr.com/policy/health-and-education/has-australia-been-too-successful-in-combating-covid-19-20201022-p567n7

Bolton, M. (2021). COVID-19 Data Update 2021-4-18. Retrieved from: https://github.com/M3IT/COVID-19_Data/blob/master/Data/COVID19_Data_Hub.csv

Verity, R., Okell, L.O.,Dorigatti ,I., Winskill, P., Whittaker, C., Imai, N. (2020) Estimates of the severity of coronavirus disease 2019: a model-based analysis. THE LANCET Infectious Diseases, 20(6), 669-677. doi 10.1016/S1473-3099(20)30243-7

World Health Organisation. (2020). Archived: WHO Timeline - COVID-19. Retrieved from https://www.who.int/news/item/27-04-2020-who-timeline---covid-19