library(tidyverse)
library(here)
library(performance)
library(lme4)
library(glmmTMB)
library(see)
library(ggrepel)
library(qqplotr)
DianaModel <- 
  "tecnica =~ i1 + i2 
   critica =~ i3 + i4 + i5 + i6 
   clinica =~ i7 + i8 
   personal =~ i9 + i10 
   form_didac =~ i11 + i12 + i13
   prac_pedago =~ i14 + i15 + i16  
   form_didac =~ tecnica
   form_didac =~ critica
   form_didac =~ clinica
   form_didac =~ personal
   prac_pedago =~ form_didac
   "

https://docs.google.com/document/d/1totXBfhF7oq9XmF1Mjhn7UAfC8M9z9KSyFhthUn2guo/edit#

Creo que formación didáctica la generamos de forma incorrecta.

Adquiriendo los datos

diana_raw <- 
  read_csv(here("SEM lavaan/data_sem", 
                "diana.csv"))

Organizando los datos

Análisis descriptivo

Análisis inferencial

Modelo de regresión lineal múltiple

Construimos el modelo

diana_model_LM <- 
  lm(prac_pedago ~ tecnica + critica +  clinica + personal + genero, 
     data = diana_LM)
Error in model.frame.default(formula = prac_pedago ~ tecnica + critica +  : 
  variable lengths differ (found for 'genero')

Revisamos el modelo

summary(diana_model_LM)

Call:
lm(formula = prac_pedago ~ tecnica + critica + clinica + personal, 
    data = diana_LM)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.1940 -0.3500  0.0102  0.3763  1.6397 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.70404    0.11720  14.539  < 2e-16 ***
tecnica      0.14000    0.03578   3.913 0.000102 ***
critica      0.13947    0.03994   3.492 0.000515 ***
clinica      0.11749    0.03690   3.184 0.001528 ** 
personal     0.16925    0.03584   4.722 2.91e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.568 on 595 degrees of freedom
Multiple R-squared:  0.2567,    Adjusted R-squared:  0.2517 
F-statistic: 51.37 on 4 and 595 DF,  p-value: < 2.2e-16

Que por cada unidad incrementada en asimilador el desempeño aumentará en un 2.40 unidades.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGhlcmUpCmxpYnJhcnkocGVyZm9ybWFuY2UpCmxpYnJhcnkobG1lNCkKbGlicmFyeShnbG1tVE1CKQpsaWJyYXJ5KHNlZSkKbGlicmFyeShnZ3JlcGVsKQpsaWJyYXJ5KHFxcGxvdHIpCmBgYAoKYGBge3J9CkRpYW5hTW9kZWwgPC0gCiAgInRlY25pY2EgPX4gaTEgKyBpMiAKICAgY3JpdGljYSA9fiBpMyArIGk0ICsgaTUgKyBpNiAKICAgY2xpbmljYSA9fiBpNyArIGk4IAogICBwZXJzb25hbCA9fiBpOSArIGkxMCAKICAgZm9ybV9kaWRhYyA9fiBpMTEgKyBpMTIgKyBpMTMKICAgcHJhY19wZWRhZ28gPX4gaTE0ICsgaTE1ICsgaTE2ICAKICAgZm9ybV9kaWRhYyA9fiB0ZWNuaWNhCiAgIGZvcm1fZGlkYWMgPX4gY3JpdGljYQogICBmb3JtX2RpZGFjID1+IGNsaW5pY2EKICAgZm9ybV9kaWRhYyA9fiBwZXJzb25hbAogICBwcmFjX3BlZGFnbyA9fiBmb3JtX2RpZGFjCiAgICIKYGBgCmh0dHBzOi8vZG9jcy5nb29nbGUuY29tL2RvY3VtZW50L2QvMXRvdFhCZmhGN29xOVhtRjFNamhuN1VBZkM4TTl6OUtTeUZodGhVbjJndW8vZWRpdCMKCkNyZW8gcXVlIGZvcm1hY2nDs24gZGlkw6FjdGljYSBsYSBnZW5lcmFtb3MgZGUgZm9ybWEgaW5jb3JyZWN0YS4gCgojIEFkcXVpcmllbmRvIGxvcyBkYXRvcyAKCmBgYHtyfQpkaWFuYV9yYXcgPC0gCiAgcmVhZF9jc3YoaGVyZSgiU0VNIGxhdmFhbi9kYXRhX3NlbSIsIAogICAgICAgICAgICAgICAgImRpYW5hLmNzdiIpKQpgYGAKCiMgT3JnYW5pemFuZG8gbG9zIGRhdG9zIAoKYGBge3J9CmRpYW5hX0xNIDwtIAogIGRpYW5hX3JhdyAlPiUgCiAgcm93d2lzZSgpICU+JSAKICBtdXRhdGUodGVjbmljYSA9IG1lYW4oYyhpMSwgaTIpKSwKICAgICAgICAgY3JpdGljYSA9IG1lYW4oYyhpMywgaTQsIGk1LCBpNikpLAogICAgICAgICBjbGluaWNhID0gbWVhbihjKGk3LCBpOCkpLAogICAgICAgICBwZXJzb25hbCA9IG1lYW4oYyhpOSwgaTEwKSksCiAgICAgICAgIHByYWNfcGVkYWdvID0gbWVhbihjKGkxNCwgaTE1LCBpMTYpKSkgJT4lIAogIHNlbGVjdChwcmFjX3BlZGFnbywgdGVjbmljYSwgY3JpdGljYSwgIGNsaW5pY2EsIHBlcnNvbmFsKQoKaGVhZChkaWFuYV9MTSkKYGBgCgojIEFuw6FsaXNpcyBkZXNjcmlwdGl2bwoKYGBge3J9CmRpYW5hX0xNICU+JQogIGtlZXAoaXMubnVtZXJpYykgJT4lIAogIGdhdGhlcigpICU+JSAKICBnZ3Bsb3QoYWVzKHZhbHVlKSkgKwogIGZhY2V0X3dyYXAofiBrZXksIHNjYWxlcyA9ICJmcmVlIikgKwogIGdlb21faGlzdG9ncmFtKCkKYGBgCgojIEFuw6FsaXNpcyBpbmZlcmVuY2lhbCAKCiMjIE1vZGVsbyBkZSByZWdyZXNpw7NuIGxpbmVhbCBtw7psdGlwbGUKCkNvbnN0cnVpbW9zIGVsIG1vZGVsbwoKYGBge3J9CmRpYW5hX21vZGVsX0xNIDwtIAogIGxtKHByYWNfcGVkYWdvIH4gdGVjbmljYSArIGNyaXRpY2EgKyAgY2xpbmljYSArIHBlcnNvbmFsLCAKICAgICBkYXRhID0gZGlhbmFfTE0pCmBgYAoKUmV2aXNhbW9zIGVsIG1vZGVsbyAKCmBgYHtyfQpzdW1tYXJ5KGRpYW5hX21vZGVsX0xNKQpgYGAKClF1ZSBwb3IgY2FkYSB1bmlkYWQgaW5jcmVtZW50YWRhIGVuIGFzaW1pbGFkb3IgZWwgZGVzZW1wZcOxbyBhdW1lbnRhcsOhIGVuIHVuIDIuNDAgdW5pZGFkZXMuCgpgYGB7cn0KY2hlY2tfbW9kZWwoZGlhbmFfbW9kZWxfTE0pCmBgYAoK