Glaciares en Chile
II Parte: FeatureCollection y muestras de entrenamiento.
Abstract
Ésta entrega profundiza el concepto de FeatureCollection para construir un set de entrenamiento.
El set de entrenamiento se construye del siguiente modo con sampleRegions:
training <- first$select(bands)$sampleRegions(
collection = fc_puntos,
properties = list(label),
scale = 30
)
donde fc_puntos es un FeatureCollection que es simplemente una columna con geometrias y otra con el valor de un atributo.
Estructura de una FC:
Es muy importante comprender que tanto name como fill son los nombres de las columnas, siendo los atributos de , por ejemplo name, Colorado y Utah.
fc <- ee$FeatureCollection(list(
ee$Feature(
ee$Geometry$Polygon(
list(
c(-109.05, 41),
c(-109.05, 37),
c(-102.05, 37),
c(-102.05, 41)
)
),
list(name = "Colorado", fill = 1)
),
ee$Feature(
ee$Geometry$Polygon(
list(
c(-114.05, 37.0),
c(-109.05, 37.0),
c(-109.05, 41.0),
c(-111.05, 41.0),
c(-111.05, 42.0),
c(-114.05, 42.0)
)
),
list(name = "Utah", fill = 2)
)
))
Map$addLayer(fc)
Esta area es enorme lo que nos traera problemas de rendimiento.
Construyamos un FeatureCollection con dos areas asociadas a dos valores de nd, 0 y 1:
fc_chico <- ee$FeatureCollection(list(
ee$Feature(
ee$Geometry$Polygon(
list(
c(-72.19614, -42.12838),
c(-72.10482, -42.12940),
c(-72.10413, -42.19811),
c(-72.19614, -42.19684)
)
),
list(nd = 0)
),
ee$Feature(
ee$Geometry$Polygon(
list(
c(-72.19614, -42.2),
c(-72.10482, -42.2),
c(-72.10413, -42.3),
c(-72.19614, -42.3)
)
),
list(nd = 1)
)
))
Map$setCenter(lon = -72.151, lat = -42.1988, zoom = 8)
Map$addLayer(fc_chico)
fc_chico ahora es nuestro FC
# Input imagery is a cloud-free Landsat 8 composite.
l8 <- ee$ImageCollection("LANDSAT/LC08/C01/T1")
image <- ee$Algorithms$Landsat$simpleComposite(
collection = l8$filterDate("2018-01-01", "2018-12-31"),
asFloat = TRUE
)
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B5", "B6", "B7", "B10", "B11")
# Load training points. The numeric property 'class' stores known labels.
points <- ee$FeatureCollection("GOOGLE/EE/DEMOS/demo_landcover_labels")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- image$select(bands)$sampleRegions(
collection = fc_chico,
properties = list(label),
scale = 30
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileCart()$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- image$select(bands)$classify(trained)
# Viz parameters.
viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
# Display the inputs and the results.
Map$centerObject(points)
## NOTE: Center obtained from the first element.
Map$addLayer(image, viz_img, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
fc_puntos <- ee$FeatureCollection(list(
ee$Feature(
ee$Geometry$Point(
-72.19614, -42.2
),
list(nd = 0)
),
ee$Feature(
ee$Geometry$Point(
-72.19615, -42.1
),
list(nd = 1)
)
))
Map$setCenter(lon = -72.151, lat = -42.1988, zoom = 7)
Map$addLayer(fc_puntos)
# Input imagery is a cloud-free Landsat 8 composite.
l8 <- ee$ImageCollection("LANDSAT/LC08/C01/T1")
image <- ee$Algorithms$Landsat$simpleComposite(
collection = l8$filterDate("2018-01-01", "2018-12-31"),
asFloat = TRUE
)
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B5", "B6", "B7", "B10", "B11")
# Load training points. The numeric property 'class' stores known labels.
points <- ee$FeatureCollection("GOOGLE/EE/DEMOS/demo_landcover_labels")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- image$select(bands)$sampleRegions(
collection = fc_puntos,
properties = list(label),
scale = 30
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileCart()$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- image$select(bands)$classify(trained)
# Viz parameters.
viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
# Display the inputs and the results.
Map$centerObject(points)
## NOTE: Center obtained from the first element.
Map$addLayer(image, viz_img, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
Tenemos un dataframe que queremos integrar como Feature collection a un set de entrenamiento.
rescatemos nuestras muestras:
u <- readRDS("union_de_muestras.rds")
kbl(u) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
| nd | geometry | |
|---|---|---|
| 1 | 0 | POINT (-72.23802 -42.99786) |
| 2 | 0 | POINT (-72.22904 -42.99786) |
| 4 | 0 | POINT (-72.23802 -42.98888) |
| 5 | 0 | POINT (-72.22904 -42.98888) |
| 6 | 0 | POINT (-72.22006 -42.98888) |
| 8 | 0 | POINT (-72.25599 -42.97989) |
| 9 | 0 | POINT (-72.21107 -42.97989) |
| 10 | 0 | POINT (-72.27396 -42.97091) |
| 11 | 0 | POINT (-72.22006 -42.97091) |
| 12 | 0 | POINT (-72.22904 -42.90803) |
| 13 | 0 | POINT (-72.24701 -42.89905) |
| 14 | 0 | POINT (-72.23802 -42.89905) |
| 15 | 0 | POINT (-72.52548 -42.88108) |
| 17 | 0 | POINT (-72.53447 -42.8721) |
| 22 | 0 | POINT (-72.53447 -42.86311) |
| 27 | 0 | POINT (-72.4626 -42.85413) |
| 32 | 0 | POINT (-72.45362 -42.84515) |
| 37 | 0 | POINT (-72.33684 -42.83616) |
| 38 | 0 | POINT (-72.32786 -42.83616) |
| 39 | 0 | POINT (-72.31887 -42.83616) |
| 40 | 0 | POINT (-72.30989 -42.83616) |
| 41 | 0 | POINT (-72.52548 -42.82718) |
| 42 | 0 | POINT (-72.5165 -42.82718) |
| 44 | 0 | POINT (-72.26497 -42.82718) |
| 49 | 0 | POINT (-72.50752 -42.80023) |
| 58 | 0 | POINT (-72.37277 -42.77328) |
| 59 | 0 | POINT (-72.36379 -42.77328) |
| 60 | 0 | POINT (-72.3548 -42.77328) |
| 61 | 0 | POINT (-72.47159 -42.7643) |
| 62 | 0 | POINT (-72.4626 -42.7643) |
| 63 | 0 | POINT (-72.45362 -42.7643) |
| 67 | 0 | POINT (-72.39074 -42.7643) |
| 68 | 0 | POINT (-72.38175 -42.7643) |
| 70 | 0 | POINT (-72.33684 -42.6565) |
| 71 | 0 | POINT (-72.30091 -42.63853) |
| 73 | 0 | POINT (-72.28294 -42.62955) |
| 74 | 0 | POINT (-72.33684 -42.61159) |
| 75 | 0 | POINT (-72.26497 -42.61159) |
| 76 | 0 | POINT (-72.34582 -42.6026) |
| 77 | 0 | POINT (-72.33684 -42.6026) |
| 78 | 0 | POINT (-72.34582 -42.59362) |
| 79 | 0 | POINT (-72.38175 -42.58464) |
| 80 | 0 | POINT (-72.37277 -42.58464) |
| 81 | 0 | POINT (-72.31887 -42.57565) |
| 82 | 0 | POINT (-72.34582 -42.56667) |
| 83 | 0 | POINT (-72.39972 -42.55769) |
| 84 | 0 | POINT (-72.21107 -42.53972) |
| 85 | 0 | POINT (-72.20209 -42.50379) |
| 86 | 0 | POINT (-72.38175 -42.44989) |
| 87 | 0 | POINT (-72.37277 -42.44989) |
| 89 | 0 | POINT (-72.38175 -42.44091) |
| 90 | 0 | POINT (-72.37277 -42.44091) |
| 91 | 0 | POINT (-72.38175 -42.43192) |
| 92 | 0 | POINT (-72.24701 -42.42294) |
| 93 | 0 | POINT (-72.34582 -42.41396) |
| 95 | 0 | POINT (-72.32786 -42.40497) |
| 96 | 0 | POINT (-72.37277 -42.39599) |
| 97 | 0 | POINT (-72.37277 -42.38701) |
| 98 | 0 | POINT (-72.23802 -42.38701) |
| 99 | 0 | POINT (-72.28294 -42.36006) |
| 100 | 0 | POINT (-72.23802 -42.33311) |
| 101 | 0 | POINT (-72.22006 -42.33311) |
| 102 | 0 | POINT (-72.22006 -42.31514) |
| 103 | 0 | POINT (-72.22904 -42.30616) |
| 104 | 0 | POINT (-72.22006 -42.29718) |
| 106 | 0 | POINT (-72.25599 -42.26124) |
| 107 | 0 | POINT (-72.27396 -42.25226) |
| 108 | 0 | POINT (-72.22006 -42.25226) |
| 109 | 0 | POINT (-72.21107 -42.25226) |
| 110 | 0 | POINT (-72.20209 -42.25226) |
| 111 | 0 | POINT (-72.20209 -42.16243) |
| 112 | 0 | POINT (-72.21107 -42.15344) |
| 113 | 0 | POINT (-72.20209 -42.15344) |
| 114 | 0 | POINT (-72.23802 -42.14446) |
| 115 | 0 | POINT (-72.25599 -42.13548) |
| 117 | 0 | POINT (-72.22904 -42.13548) |
| 118 | 0 | POINT (-72.25599 -42.1265) |
| 119 | 0 | POINT (-72.24701 -42.1265) |
| 124 | 0 | POINT (-72.22006 -42.09955) |
| 126 | 0 | POINT (-72.34582 -42.09056) |
| 128 | 0 | POINT (-72.25599 -42.09056) |
| 129 | 0 | POINT (-72.23802 -42.09056) |
| 130 | 0 | POINT (-72.22006 -42.09056) |
| 131 | 0 | POINT (-72.21107 -42.09056) |
| 132 | 0 | POINT (-72.23802 -42.08158) |
| 133 | 0 | POINT (-72.21107 -42.0726) |
| 134 | 0 | POINT (-72.33684 -42.06361) |
| 135 | 0 | POINT (-72.29192 -42.06361) |
| 138 | 0 | POINT (-72.25599 -42.06361) |
| 139 | 0 | POINT (-72.33684 -42.05463) |
| 140 | 0 | POINT (-72.32786 -42.05463) |
| 141 | 0 | POINT (-72.30989 -42.05463) |
| 142 | 0 | POINT (-72.3548 -42.04565) |
| 143 | 0 | POINT (-72.33684 -42.04565) |
| 145 | 0 | POINT (-72.30989 -42.04565) |
| 146 | 0 | POINT (-72.36379 -42.03666) |
| 147 | 0 | POINT (-72.3548 -42.03666) |
| 149 | 0 | POINT (-72.30091 -42.03666) |
| 150 | 0 | POINT (-72.29192 -42.03666) |
| 151 | 0 | POINT (-72.31887 -42.02768) |
| 152 | 0 | POINT (-72.30091 -42.02768) |
| 153 | 0 | POINT (-72.3548 -42.0187) |
| 154 | 0 | POINT (-72.34582 -42.0187) |
| 155 | 0 | POINT (-72.29192 -42.0187) |
| 157 | 0 | POINT (-72.22904 -42.0187) |
| 158 | 0 | POINT (-72.22006 -42.0187) |
| 159 | 0 | POINT (-72.21107 -42.0187) |
| 160 | 0 | POINT (-72.20209 -42.0187) |
| 161 | 0 | POINT (-72.3548 -42.00971) |
| 162 | 0 | POINT (-72.34582 -42.00971) |
| 164 | 0 | POINT (-72.22904 -42.00971) |
| 165 | 0 | POINT (-72.22006 -42.00971) |
| 166 | 0 | POINT (-72.21107 -42.00971) |
| 167 | 0 | POINT (-72.3548 -42.00073) |
| 168 | 0 | POINT (-72.33684 -42.00073) |
| 170 | 0 | POINT (-72.25599 -42.00073) |
| 18 | 1 | POINT (-72.98812 -42.98439) |
| 210 | 1 | POINT (-72.89829 -42.98439) |
| 3 | 1 | POINT (-72.80845 -42.98439) |
| 410 | 1 | POINT (-72.71862 -42.98439) |
| 510 | 1 | POINT (-72.62879 -42.98439) |
| 610 | 1 | POINT (-72.53896 -42.98439) |
| 7 | 1 | POINT (-72.44913 -42.98439) |
| 810 | 1 | POINT (-72.3593 -42.98439) |
| 910 | 1 | POINT (-72.26946 -42.98439) |
| 105 | 1 | POINT (-72.98812 -42.89455) |
| 116 | 1 | POINT (-72.89829 -42.89455) |
| 121 | 1 | POINT (-72.80845 -42.89455) |
| 136 | 1 | POINT (-72.71862 -42.89455) |
| 156 | 1 | POINT (-72.53896 -42.89455) |
| 16 | 1 | POINT (-72.44913 -42.89455) |
| 171 | 1 | POINT (-72.3593 -42.89455) |
| 19 | 1 | POINT (-72.98812 -42.80472) |
| 20 | 1 | POINT (-72.89829 -42.80472) |
| 21 | 1 | POINT (-72.80845 -42.80472) |
| 221 | 1 | POINT (-72.71862 -42.80472) |
| 23 | 1 | POINT (-72.62879 -42.80472) |
| 24 | 1 | POINT (-72.53896 -42.80472) |
| 25 | 1 | POINT (-72.3593 -42.80472) |
| 26 | 1 | POINT (-72.26946 -42.80472) |
| 271 | 1 | POINT (-72.98812 -42.71489) |
| 28 | 1 | POINT (-72.89829 -42.71489) |
| 29 | 1 | POINT (-72.80845 -42.71489) |
| 30 | 1 | POINT (-72.71862 -42.71489) |
| 31 | 1 | POINT (-72.62879 -42.71489) |
| 321 | 1 | POINT (-72.53896 -42.71489) |
| 33 | 1 | POINT (-72.44913 -42.71489) |
| 34 | 1 | POINT (-72.3593 -42.71489) |
| 35 | 1 | POINT (-72.26946 -42.71489) |
| 36 | 1 | POINT (-72.98812 -42.62506) |
| 371 | 1 | POINT (-72.89829 -42.62506) |
| 381 | 1 | POINT (-72.80845 -42.62506) |
| 391 | 1 | POINT (-72.71862 -42.62506) |
| 401 | 1 | POINT (-72.62879 -42.62506) |
| 411 | 1 | POINT (-72.53896 -42.62506) |
| 421 | 1 | POINT (-72.44913 -42.62506) |
| 43 | 1 | POINT (-72.3593 -42.62506) |
| 441 | 1 | POINT (-72.26946 -42.62506) |
| 45 | 1 | POINT (-72.98812 -42.53523) |
| 46 | 1 | POINT (-72.89829 -42.53523) |
| 47 | 1 | POINT (-72.80845 -42.53523) |
| 48 | 1 | POINT (-72.71862 -42.53523) |
| 491 | 1 | POINT (-72.62879 -42.53523) |
| 50 | 1 | POINT (-72.53896 -42.53523) |
| 51 | 1 | POINT (-72.44913 -42.53523) |
| 52 | 1 | POINT (-72.3593 -42.53523) |
| 53 | 1 | POINT (-72.26946 -42.53523) |
| 54 | 1 | POINT (-72.98812 -42.4454) |
| 55 | 1 | POINT (-72.89829 -42.4454) |
| 56 | 1 | POINT (-72.80845 -42.4454) |
| 57 | 1 | POINT (-72.71862 -42.4454) |
| 581 | 1 | POINT (-72.62879 -42.4454) |
| 591 | 1 | POINT (-72.53896 -42.4454) |
| 601 | 1 | POINT (-72.44913 -42.4454) |
| 611 | 1 | POINT (-72.3593 -42.4454) |
| 621 | 1 | POINT (-72.26946 -42.4454) |
| 631 | 1 | POINT (-72.98812 -42.35557) |
| 64 | 1 | POINT (-72.89829 -42.35557) |
| 65 | 1 | POINT (-72.80845 -42.35557) |
| 66 | 1 | POINT (-72.71862 -42.35557) |
| 671 | 1 | POINT (-72.62879 -42.35557) |
| 681 | 1 | POINT (-72.53896 -42.35557) |
| 69 | 1 | POINT (-72.44913 -42.35557) |
| 701 | 1 | POINT (-72.3593 -42.35557) |
| 711 | 1 | POINT (-72.26946 -42.35557) |
| 72 | 1 | POINT (-72.98812 -42.26573) |
| 731 | 1 | POINT (-72.89829 -42.26573) |
| 741 | 1 | POINT (-72.80845 -42.26573) |
| 751 | 1 | POINT (-72.71862 -42.26573) |
| 761 | 1 | POINT (-72.62879 -42.26573) |
| 771 | 1 | POINT (-72.53896 -42.26573) |
| 781 | 1 | POINT (-72.44913 -42.26573) |
| 791 | 1 | POINT (-72.3593 -42.26573) |
| 801 | 1 | POINT (-72.26946 -42.26573) |
| 811 | 1 | POINT (-72.98812 -42.1759) |
| 821 | 1 | POINT (-72.89829 -42.1759) |
| 831 | 1 | POINT (-72.80845 -42.1759) |
| 841 | 1 | POINT (-72.71862 -42.1759) |
| 851 | 1 | POINT (-72.62879 -42.1759) |
| 861 | 1 | POINT (-72.53896 -42.1759) |
| 871 | 1 | POINT (-72.44913 -42.1759) |
| 88 | 1 | POINT (-72.3593 -42.1759) |
| 891 | 1 | POINT (-72.26946 -42.1759) |
| 901 | 1 | POINT (-72.98812 -42.08607) |
| 911 | 1 | POINT (-72.89829 -42.08607) |
| 921 | 1 | POINT (-72.80845 -42.08607) |
| 931 | 1 | POINT (-72.71862 -42.08607) |
| 94 | 1 | POINT (-72.62879 -42.08607) |
| 951 | 1 | POINT (-72.53896 -42.08607) |
| 961 | 1 | POINT (-72.44913 -42.08607) |
| 971 | 1 | POINT (-72.3593 -42.08607) |
roi_2 <- ee$Geometry$MultiPoint(u$geometry[1:100])
Map$setCenter(lon = -72.151, lat = -42.1988, zoom = 7)
Map$addLayer(roi_2)
Vamos a crear un programa para construir la estructura sintactica de una FC para entrenar nuestro RF.
union_a_b <- data.frame()
i = 1
aaa <- u$nd[i]
bbb <- u$geometry[[i]]
union_a_b <- cbind(aaa,bbb[1],bbb[2])
# <- rbind(union_a_b,union_a_b)
union_a_b
## aaa
## [1,] 0 -72.23802 -42.99786
i = 2
aaa <- u$nd[i]
bbb <- u$geometry[[i]]
union_a_b_2 <- cbind(aaa,bbb[1],bbb[2])
union_a_b <- rbind(union_a_b,union_a_b_2)
union_a_b
## aaa
## [1,] 0 -72.23802 -42.99786
## [2,] 0 -72.22904 -42.99786
i = 3
aaa <- u$nd[i]
bbb <- u$geometry[[i]]
union_a_b_2 <- cbind(aaa,bbb[1],bbb[2])
union_a_b <- rbind(union_a_b,union_a_b_2)
union_a_b
## aaa
## [1,] 0 -72.23802 -42.99786
## [2,] 0 -72.22904 -42.99786
## [3,] 0 -72.23802 -42.98888
t <- seq(2, 211, by = 1)
for(i in t){
aaa <- u$nd[i]
bbb <- u$geometry[[i]]
union_a_b_2 <- cbind(aaa,bbb[1],bbb[2])
union_a_b <- rbind(union_a_b,union_a_b_2)
}
head(union_a_b,5)
## aaa
## [1,] 0 -72.23802 -42.99786
## [2,] 0 -72.22904 -42.99786
## [3,] 0 -72.23802 -42.98888
## [4,] 0 -72.22904 -42.99786
## [5,] 0 -72.23802 -42.98888
nrow(union_a_b)
## [1] 213
palabra <- ""
palabra <- paste("ee$Feature(ee$Geometry$Point(", union_a_b[,2] , ",", union_a_b[,3] , ")," , "list(nd =" , union_a_b[,1] ,")),")
palabra2 <- ""
for (nn in 1:211) {
palabra2 <- paste(palabra2,palabra[nn])
}
Se construye la estructura del conjunto de muestras como Feature guardándola en formato excel, copiándola y pegándola en el código. No es ineficiente pero una forma más limpia sería manipulando el objeto como un gee object. Queda ésto pendiente.
palabra2 <- data.frame()
for (nn in 1:211) {
palabra2 <- rbind(palabra2,palabra[nn])
}
library(writexl)
library("readxl")
write_xlsx(palabra2,"palabra2.xlsx")
fc_puntos <- ee$FeatureCollection(list(
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.9978611 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2290404 , -42.9978611 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.9888779 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2290404 , -42.9888779 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.9888779 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2559899 , -42.9798948 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.9798948 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2739562 , -42.9709116 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.9709116 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2290404 , -42.9080295 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2470067 , -42.8990464 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.8990464 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.5254845 , -42.8810801 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.5344676 , -42.8720969 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.5344676 , -42.8631138 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.4626024 , -42.8541306 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.4536192 , -42.8451475 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.8361643 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3278551 , -42.8361643 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3188719 , -42.8361643 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3098888 , -42.8361643 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.5254845 , -42.8271812 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.5165013 , -42.8271812 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.264973 , -42.8271812 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.5075182 , -42.8002317 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3727709 , -42.7732823 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3637877 , -42.7732823 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3548046 , -42.7732823 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.4715855 , -42.7642991 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.4626024 , -42.7642991 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.4536192 , -42.7642991 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3907372 , -42.7642991 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.381754 , -42.7642991 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.6565013 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3009056 , -42.638535 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2829393 , -42.6295518 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.6115855 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.264973 , -42.6115855 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3458214 , -42.6026023 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.6026023 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3458214 , -42.5936192 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.381754 , -42.584636 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3727709 , -42.584636 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3188719 , -42.5756529 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3458214 , -42.5666697 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3997203 , -42.5576866 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.5397203 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.202091 , -42.5037877 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.381754 , -42.4498888 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3727709 , -42.4498888 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.381754 , -42.4409056 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3727709 , -42.4409056 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.381754 , -42.4319224 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2470067 , -42.4229393 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3458214 , -42.4139561 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3278551 , -42.404973 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3727709 , -42.3959898 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3727709 , -42.3870067 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.3870067 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2829393 , -42.3600572 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.3331078 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.3331078 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.3151415 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2290404 , -42.3061583 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.2971752 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2559899 , -42.2612425 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2739562 , -42.2522594 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.2522594 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.2522594 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.202091 , -42.2522594 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.202091 , -42.1624279 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.1534447 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.202091 , -42.1534447 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.1444616 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2559899 , -42.1354784 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2290404 , -42.1354784 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2559899 , -42.1264952 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2470067 , -42.1264952 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.0995458 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3458214 , -42.0905626 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2559899 , -42.0905626 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.0905626 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.0905626 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.0905626 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2380236 , -42.0815795 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.0725963 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.0636132 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2919225 , -42.0636132 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2559899 , -42.0636132 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.05463 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3278551 , -42.05463 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3098888 , -42.05463 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3548046 , -42.0456469 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.0456469 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3098888 , -42.0456469 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3637877 , -42.0366637 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3548046 , -42.0366637 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3009056 , -42.0366637 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2919225 , -42.0366637 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3188719 , -42.0276806 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3009056 , -42.0276806 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3548046 , -42.0186974 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3458214 , -42.0186974 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2919225 , -42.0186974 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2290404 , -42.0186974 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.0186974 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.0186974 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.202091 , -42.0186974 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3548046 , -42.0097143 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3458214 , -42.0097143 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2290404 , -42.0097143 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2200573 , -42.0097143 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2110741 , -42.0097143 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3548046 , -42.0007311 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.3368383 , -42.0007311 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.2559899 , -42.0007311 ), list(nd = 0 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.9843863 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.8945548 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.8945548 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.8945548 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.8945548 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.8945548 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.8945548 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.8945548 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.8047233 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.7148918 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.6250602 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.5352287 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.4453972 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.3555656 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.2657341 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.2694646 , -42.1759026 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.9881168 , -42.0860711 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8982853 , -42.0860711 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.8084538 , -42.0860711 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.7186222 , -42.0860711 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.6287907 , -42.0860711 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.5389592 , -42.0860711 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.4491277 , -42.0860711 ), list(nd = 1 )),
ee$Feature(ee$Geometry$Point( -72.3592961 , -42.0860711 ), list(nd = 1 ))
))
mask <- st_read("region_los_lagos.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region <- mask$geometry()
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# Use these bands for prediction.
bands <- c("B2", "B3", "B4", "B5", "B6", "B7", "B10", "B11")
# This property of the table stores the land cover labels.
label <- "nd"
# Overlay the points on the imagery to get training.
training <- first$select(bands)$sampleRegions(
collection = fc_puntos,
properties = list(label),
scale = 30
)
# Train a CART classifier with default parameters.
trained <- ee$Classifier$smileCart()$train(training, label, bands)
# Classify the image with the same bands used for training.
classified <- first$select(bands)$classify(trained)
# Viz parameters.
# viz_img <- list(bands = c("B4", "B3", "B2"), max = 0.4)
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
viz_class <- list(palette = c("red", "green", "blue"), min = 0, max = 2)
Map$addLayer(first, vizParams, name = "image") +
Map$addLayer(classified, viz_class, name = "classification")
# Create two circular geometries.
poly1 <- ee$Geometry$Point(c(-50, 30))$buffer(1e6)
poly2 <- ee$Geometry$Point(c(-40, 30))$buffer(1e6)
# Display polygon 1 in red and polygon 2 in blue.
Map$setCenter(-45, 30, zoom = 3)
Map$addLayer(poly1, list(color = "#666666"), "poly1") +
Map$addLayer(poly2, list(color = "#7f7f7f"), "poly2")
# Compute the intersection, display it in blue.
Map$setCenter(-45, 30, zoom = 3)
intersection <- poly1$intersection(poly2, ee$ErrorMargin(1))
Map$addLayer(intersection, list(color = "#7f7f7f"), "intersection")
# Compute the union, display it in magenta.
Map$setCenter(-45, 30, zoom = 3)
union <- poly1$union(poly2, ee$ErrorMargin(1))
Map$addLayer(union, list(color = "#666666"), "union")
# Compute the difference, display in yellow.
Map$setCenter(-45, 30, zoom = 3)
diff1 <- poly1$difference(poly2, ee$ErrorMargin(1))
Map$addLayer(diff1, list(color = "#666666"), "diff1")
https://www.rdocumentation.org/packages/BiocGenerics/versions/0.18.0/topics/sets
# selectMethod("intersect",c(region, region_0))
# ggg
box <- ee$Geometry$Rectangle(coords = c(-73,-43,-72.462,-42.811),
## WGS 84
proj = "EPSG:4326",
geodesic = FALSE)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(box)
vias<-readOGR(".","region_los_lagos")
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\usuario\Desktop\ds\ds_rgee\cart", layer: "region_los_lagos"
## with 1 features
## It has 17 fields
## Integer64 fields read as strings: FID_1 TOTAL_VIVI PARTICULAR COLECTIVAS TOTAL_PERS HOMBRES MUJERES
summary(vias)
## Object of class SpatialPolygonsDataFrame
## Coordinates:
## min max
## x -74.83774 -71.58093
## y -44.06706 -40.23878
## Is projected: FALSE
## proj4string : [+proj=longlat +datum=WGS84 +no_defs]
## Data attributes:
## FID_1 REGION NOM_REGION TOTAL_VIVI
## Length:1 Length:1 Length:1 Length:1
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## PARTICULAR COLECTIVAS TOTAL_PERS HOMBRES
## Length:1 Length:1 Length:1 Length:1
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## MUJERES DENSIDAD INDICE_MAS INDICE_DEP
## Length:1 Min. :17.11 Min. :97.64 Min. :47.03
## Class :character 1st Qu.:17.11 1st Qu.:97.64 1st Qu.:47.03
## Mode :character Median :17.11 Median :97.64 Median :47.03
## Mean :17.11 Mean :97.64 Mean :47.03
## 3rd Qu.:17.11 3rd Qu.:97.64 3rd Qu.:47.03
## Max. :17.11 Max. :97.64 Max. :47.03
## IND_DEP_JU IND_DEP_VE SHAPE_Leng Shape_Le_1
## Min. :30.55 Min. :16.48 Min. :7760164 Min. :60.65
## 1st Qu.:30.55 1st Qu.:16.48 1st Qu.:7760164 1st Qu.:60.65
## Median :30.55 Median :16.48 Median :7760164 Median :60.65
## Mean :30.55 Mean :16.48 Mean :7760164 Mean :60.65
## 3rd Qu.:30.55 3rd Qu.:16.48 3rd Qu.:7760164 3rd Qu.:60.65
## Max. :30.55 Max. :16.48 Max. :7760164 Max. :60.65
## Shape_Area
## Min. :5.259
## 1st Qu.:5.259
## Median :5.259
## Mean :5.259
## 3rd Qu.:5.259
## Max. :5.259
https://ecodata.nrel.colostate.edu/gdpe-gee-remote-sensing-lessons/module7.html
Referencias:
https://drive.google.com/drive/folders/1yDB9oZBS6ZSZ-U1Rf7WsNlLdaHdHl-3z
https://rstudio-pubs-static.s3.amazonaws.com/643255_63554e7e1f9f466dad4f9e62ff977a88.html
https://drive.google.com/drive/folders/1yDB9oZBS6ZSZ-U1Rf7WsNlLdaHdHl-3z?usp=sharing
https://rstudio-pubs-static.s3.amazonaws.com/639598_f8b124e23b7949a49250693dc3c5a6a7.html
https://github.com/csaybar/rgee/blob/examples//GetStarted/03_finding_images.R
https://rpubs.com/daniballari/raster
https://rpubs.com/ohfrancom/618462
https://www.ide.cl/index.php/limites-y-fronteras/item/1528-division-politica-administrativa-2020
Catastro de Lagos https://www.ide.cl/index.php/aguas-continentales/item/1508-catastro-de-lagos
Lagos de Chile
http://datos.cedeus.cl/layers/geonode:cl_lagos_geo