Al igual de que la \(\chi^2\) global se utiliza para probar la hipótesis nula de que distintas categorias son similares entre grupos
A diferencia de la \(\chi^2\) común las categorías tienen un orden, son variables ordinales, y se integra ese orden dentro del cálculo
Convertir valores numéricos a grados es frecuente, menos recomendable
0.5 | 0.1 | 0.05 | 0.02 | 0.01 | 0.001 | |
---|---|---|---|---|---|---|
gl | ||||||
1 | 0.455 | 2.706 | 3.841 | 5.412 | 6.635 | 10.828 |
2 | 1.386 | 4.605 | 5.991 | 7.824 | 9.210 | 13.816 |
3 | 2.366 | 6.251 | 7.815 | 9.837 | 11.345 | 16.266 |
4 | 3.357 | 7.779 | 9.488 | 11.668 | 13.277 | 18.467 |
5 | 4.351 | 9.236 | 11.070 | 13.388 | 15.086 | 20.515 |
10 | 9.342 | 15.987 | 18.307 | 21.161 | 23.209 | 29.588 |
Cambio en los hábitos alimenticios en un estudio clínico aleatorizado
Esperado del score dada la proporción
\(\large\boxed{E_{xp} = \frac{\sum{ax}-\sum{a}\sum{nx}}{N}}\)
Esperado del score dada la cantidad
\(\large\boxed{E_{xx} = \frac{\sum{nx}^2-(\sum{nx})^2}{N}}\)
\(\large\boxed{\chi^2 = \frac{Exp^2}{(Exxpq)}}\)
En donde
N es el total de la muestra = 627
p la proporción de sujetos en un grupo
\(\large\boxed{p = \frac{\sum{a}}{N}}\)
q la proporción de sujetos en el otro grupo
\(\large\boxed{q = \frac{\sum{b}}{N}}\)
Por tanto
\(\large\boxed{\sum{a}=317}\)
\(\large\boxed{\sum{ax} = 100*1 + 175*0 + 42*-1 = 100 - 42 = 58}\)
\(\large\boxed{\sum{nx} = 178*1 + 348*0 + 101*-1 = 178 - 101 = 77}\)
\(\large\boxed{\sum{nx^2} = 178*1^2 + 348*0^2 + 101*-1^2 = 178 + 101 = 279}\)
\(\large\boxed{(\sum{nx})^2 = 77^2 = 5929}\)
\(\large\boxed{E{xp} = \frac{58-317*77}{627} = 19.07}\)
\(\large\boxed{E{xx} = \frac{279-5929}{627} = 269.54}\)
\(\large\boxed{p = \frac{317}{627} = 0.5056}\) \(\large\boxed{q = \frac{310}{627} = 0.4944}\)
\(\large\boxed{\chi^2 = \frac{19.07^2}{(279.54*0.5056*0.4944)} = \frac{363.66}{69.87} = 5.205}\)
p <- pchisq(5.205, 1, lower.tail = FALSE)
round(p, 3)
## [1] 0.023
Much worse | Worse | Unchanged | Improved | Much improved | Sum | |
---|---|---|---|---|---|---|
New | 8 | 9 | 15 | 23 | 18 | 73 |
Standard | 9 | 13 | 19 | 17 | 12 | 70 |
Score | -2 | -1 | 0 | 1 | 2 | NA |
New | Standard | New | Standard | New | Standard | |
---|---|---|---|---|---|---|
Much worse | 8.68 | 8.32 | 0.68 | -0.68 | 0.05 | 0.06 |
Worse | 11.23 | 10.77 | 2.23 | -2.23 | 0.44 | 0.46 |
Unchanged | 17.36 | 16.64 | 2.36 | -2.36 | 0.32 | 0.33 |
Improved | 20.42 | 19.58 | -2.58 | 2.58 | 0.33 | 0.34 |
Much improved | 15.31 | 14.69 | -2.69 | 2.69 | 0.47 | 0.49 |
Total | 73.00 | 70.00 | 0.00 | 0.00 | 1.61 | 1.68 |
\(\chi^2\) = 1.61 + 1.68 = 3.29
Número de grados de libertad = (filas - 1) * (columnas - 1) = (2-1) * (5-1) = 4
p <- pchisq(3.29, df=4, lower.tail = FALSE)
round(p, 3)
## [1] 0.511
\(\large\boxed{E_{xp} = \frac{\sum{ax}-\sum{a}\sum{nx}}{N}}\)
\(\large\boxed{E_{xx} = \frac{\sum{nx}^2-(\sum{nx})^2}{N}}\)
\(\large\boxed{p = \frac{\sum{a}}{N}}\)
\(\large\boxed{q = \frac{\sum{b}}{N}}\)
\(\large\boxed{\chi^2 = \frac{Exp^2}{(Exxpq)}}\)
En este caso:
N = 143
\(\large\boxed{\sum{a}=73}\)
\(\large\boxed{\sum{ax} = 8*-2 + 9*-1 + 13*0 + 23*1 + 18*2 = 34}\)
\(\large\boxed{\sum{nx} = 17*-2 + 22*-1 + 34*0 + 40*1 + 30*2 = 44}\)
\(\large\boxed{\sum{nx^2} = 17*-2^2 + 22*-1^2 + 34*3^0 + 40*1^2 + 30*2^2 = 250}\)
\(\large\boxed{(\sum{nx})^2 = 44^2 = 1936}\)
\(\large\boxed{E{xp} = \frac{34-73*44}{143} = 11.53}\)
\(\large\boxed{E{xx} = \frac{1081-223729}{143} = 236.46}\)
\(\large\boxed{p = \frac{73}{143} = 0.5105}\) \(\large\boxed{q = \frac{70}{143} = 0.4895}\)
\(\large\boxed{\chi^2 = \frac{11.53^2}{(236.46*0.5105*0.4895)} = \frac{133.14}{59.09} = 2.253}\)
Grados de libertad = 1
p <- pchisq(2.253, df=1, lower.tail = FALSE)
round(p, 3)
## [1] 0.133
treatment <- c(rep("New", 73), rep("Standard", 70))
outcome <- c(rep(-2, 8), rep(-1, 9), rep(0, 15), rep(1, 23), rep(2, 18), rep(-2, 9), rep(-1, 13), rep(0, 19), rep(1, 17), rep(2, 12))
depre <- data.frame(treatment, outcome)
depre$treatment <- factor(depre$treatment)
table(depre$outcome)
##
## -2 -1 0 1 2
## 17 22 34 40 30
depre$outcome <- factor(depre$outcome, labels=c("Much worse", "Worse", "Unchanged", "Improved", "Much improved"))
table(depre$outcome)
##
## Much worse Worse Unchanged Improved Much improved
## 17 22 34 40 30
head(depre)
tail(depre)
## caso especial, solo 2 columnas
tabla <- table(depre)
tabla
## outcome
## treatment Much worse Worse Unchanged Improved Much improved
## New 8 9 15 23 18
## Standard 9 13 19 17 12
chisq.test(tabla)
##
## Pearson's Chi-squared test
##
## data: tabla
## X-squared = 3.2952, df = 4, p-value = 0.5097
tabla[1,]
## Much worse Worse Unchanged Improved Much improved
## 8 9 15 23 18
colSums(tabla)
## Much worse Worse Unchanged Improved Much improved
## 17 22 34 40 30
prop.trend.test(tabla[1,], colSums(tabla))
##
## Chi-squared Test for Trend in Proportions
##
## data: tabla[1, ] out of colSums(tabla) ,
## using scores: 1 2 3 4 5
## X-squared = 2.2531, df = 1, p-value = 0.1333
tabla
## outcome
## treatment Much worse Worse Unchanged Improved Much improved
## New 8 9 15 23 18
## Standard 9 13 19 17 12
prop.table(tabla, 1)
## outcome
## treatment Much worse Worse Unchanged Improved Much improved
## New 0.1095890 0.1232877 0.2054795 0.3150685 0.2465753
## Standard 0.1285714 0.1857143 0.2714286 0.2428571 0.1714286
prop.table(tabla, 1)*100
## outcome
## treatment Much worse Worse Unchanged Improved Much improved
## New 10.95890 12.32877 20.54795 31.50685 24.65753
## Standard 12.85714 18.57143 27.14286 24.28571 17.14286
tabla_prop <- prop.table(tabla, 1)*100
round(tabla_prop, 2)
## outcome
## treatment Much worse Worse Unchanged Improved Much improved
## New 10.96 12.33 20.55 31.51 24.66
## Standard 12.86 18.57 27.14 24.29 17.14
barplot(tabla_prop, beside = TRUE)
legend("topleft", levels(depre$treatment), fill = c("grey35", "grey80"))