Question 3 Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of p^m1. The x-axis should display p^m1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, p^m1 = 1 ??? p^m2. You could make this plot by hand, but it will be much easier to make in R.
p <- seq(0, 1, 0.001)
gini.index <- 2 * p * (1 - p)
class.error <- 1 - pmax(p, 1 - p)
cross.entropy <- - (p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(gini.index, class.error, cross.entropy), col = c("red", "green", "blue"))
Question 8 In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.
library(ISLR)
set.seed(1)
train = sample(1:nrow(Carseats), nrow(Carseats) / 2)
Car.train = Carseats[train, ]
Car.test = Carseats[-train,]
library(tree)
## Warning: package 'tree' was built under R version 4.0.5
reg.tree = tree(Sales~.,data = Carseats, subset=train)
reg.tree = tree(Sales~.,data = Car.train)
summary(reg.tree)
##
## Regression tree:
## tree(formula = Sales ~ ., data = Car.train)
## Variables actually used in tree construction:
## [1] "ShelveLoc" "Price" "Age" "Advertising" "CompPrice"
## [6] "US"
## Number of terminal nodes: 18
## Residual mean deviance: 2.167 = 394.3 / 182
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.88200 -0.88200 -0.08712 0.00000 0.89590 4.09900
plot(reg.tree)
text(reg.tree ,pretty =0)
yhat = predict(reg.tree,newdata = Car.test)
mean((yhat - Car.test$Sales)^2)
## [1] 4.922039
set.seed(1)
cv.car = cv.tree(reg.tree)
plot(cv.car$size, cv.car$dev, type = "b")
prune.car = prune.tree(reg.tree, best = 8)
plot(prune.car)
text(prune.car,pretty=0)
yhat=predict(prune.car, newdata= Car.test)
mean((yhat-Car.test$Sales)^2)
## [1] 5.113254
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.0.5
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)
bag.car = randomForest(Sales~.,data=Car.train,mtry = 10, importance = TRUE)
yhat.bag = predict(bag.car,newdata=Car.test)
mean((yhat.bag-Car.test$Sales)^2)
## [1] 2.605253
importance(bag.car)
## %IncMSE IncNodePurity
## CompPrice 24.8888481 170.182937
## Income 4.7121131 91.264880
## Advertising 12.7692401 97.164338
## Population -1.8074075 58.244596
## Price 56.3326252 502.903407
## ShelveLoc 48.8886689 380.032715
## Age 17.7275460 157.846774
## Education 0.5962186 44.598731
## Urban 0.1728373 9.822082
## US 4.2172102 18.073863
varImpPlot(bag.car)
library(randomForest)
set.seed(1)
rf.car = randomForest(Sales~.,data=Car.train,mtry = 3, importance = TRUE)
yhat.rf = predict(rf.car,newdata=Car.test)
mean((yhat.rf-Car.test$Sales)^2)
## [1] 2.960559
Question 9 This problem involves the OJ data set which is part of the ISLR package.
library(ISLR)
set.seed(1)
train = sample(dim(OJ)[1],800)
OJ.train = OJ[train,]
OJ.test = OJ[-train,]
OJ.tree = tree(Purchase~., data=OJ.train)
summary(OJ.tree)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
OJ.tree
## node), split, n, deviance, yval, (yprob)
## * denotes terminal node
##
## 1) root 800 1073.00 CH ( 0.60625 0.39375 )
## 2) LoyalCH < 0.5036 365 441.60 MM ( 0.29315 0.70685 )
## 4) LoyalCH < 0.280875 177 140.50 MM ( 0.13559 0.86441 )
## 8) LoyalCH < 0.0356415 59 10.14 MM ( 0.01695 0.98305 ) *
## 9) LoyalCH > 0.0356415 118 116.40 MM ( 0.19492 0.80508 ) *
## 5) LoyalCH > 0.280875 188 258.00 MM ( 0.44149 0.55851 )
## 10) PriceDiff < 0.05 79 84.79 MM ( 0.22785 0.77215 )
## 20) SpecialCH < 0.5 64 51.98 MM ( 0.14062 0.85938 ) *
## 21) SpecialCH > 0.5 15 20.19 CH ( 0.60000 0.40000 ) *
## 11) PriceDiff > 0.05 109 147.00 CH ( 0.59633 0.40367 ) *
## 3) LoyalCH > 0.5036 435 337.90 CH ( 0.86897 0.13103 )
## 6) LoyalCH < 0.764572 174 201.00 CH ( 0.73563 0.26437 )
## 12) ListPriceDiff < 0.235 72 99.81 MM ( 0.50000 0.50000 )
## 24) PctDiscMM < 0.196197 55 73.14 CH ( 0.61818 0.38182 ) *
## 25) PctDiscMM > 0.196197 17 12.32 MM ( 0.11765 0.88235 ) *
## 13) ListPriceDiff > 0.235 102 65.43 CH ( 0.90196 0.09804 ) *
## 7) LoyalCH > 0.764572 261 91.20 CH ( 0.95785 0.04215 ) *
plot(OJ.tree)
text(OJ.tree,pretty=TRUE)
tree.pred = predict(OJ.tree, newdata = OJ.test, type = "class")
table(tree.pred,OJ.test$Purchase)
##
## tree.pred CH MM
## CH 160 38
## MM 8 64
(147+62)/270
## [1] 0.7740741
cv.OJ = cv.tree(OJ.tree, FUN = prune.misclass)
cv.OJ
## $size
## [1] 9 8 7 4 2 1
##
## $dev
## [1] 150 150 149 158 172 315
##
## $k
## [1] -Inf 0.000000 3.000000 4.333333 10.500000 151.000000
##
## $method
## [1] "misclass"
##
## attr(,"class")
## [1] "prune" "tree.sequence"
plot(cv.OJ$size,cv.OJ$dev,type='b', xlab = "Tree size", ylab = "Deviance")
Which tree size corresponds to the lowest cross-validated classification error rate? The 5 node tree is the smallest with the lowest classification error rate.
Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
prune.OJ = prune.misclass(OJ.tree, best=5)
plot(prune.OJ)
text(prune.OJ,pretty=0)
(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?
summary(OJ.tree)
##
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "SpecialCH" "ListPriceDiff"
## [5] "PctDiscMM"
## Number of terminal nodes: 9
## Residual mean deviance: 0.7432 = 587.8 / 791
## Misclassification error rate: 0.1588 = 127 / 800
summary(prune.OJ)
##
## Classification tree:
## snip.tree(tree = OJ.tree, nodes = c(4L, 10L))
## Variables actually used in tree construction:
## [1] "LoyalCH" "PriceDiff" "ListPriceDiff" "PctDiscMM"
## Number of terminal nodes: 7
## Residual mean deviance: 0.7748 = 614.4 / 793
## Misclassification error rate: 0.1625 = 130 / 800
tree.pred = predict(prune.OJ, newdata = OJ.test, type = "class")
table(tree.pred,OJ.test$Purchase)
##
## tree.pred CH MM
## CH 160 36
## MM 8 66
(147+62)/270
## [1] 0.7740741