Bivariate Analysis –
This type of analysis involves two different variables. The analysis of this type of data deals with causes and relationships and the analysis is done to find out the relationship among the two variables.
. Multivariate Analysis–
When the analysis involves three or more variables, it is categorized under multivariate.
Relationship among assortative mating,education and WLS partcipant’s health:
WLS_educ <- read_dta("C:/Users/malia/OneDrive/Desktop/WLS_educ.dta")
WLS_health <- read_dta("C:/Users/malia/OneDrive/Desktop/WLS_health.dta")glimpse(WLS_educ)## Rows: 4,641
## Columns: 7
## $ idpub <dbl> 900034, 900042, 900069, 900078, 900079, 900096, 900106, 900~
## $ brdxdy <dbl+lbl> 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 39,~
## $ sexrsp <dbl+lbl> 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1~
## $ edfa57q <dbl+lbl> 7, 16, 13, 12, 13, 16, 12, 10, 10, 13, 16, 7, 10, 7,~
## $ edmo57q <dbl+lbl> 7, 7, 14, 13, 12, 12, 12, 10, 10, -1, 16, 12, 10, 7,~
## $ spouse_edu <dbl> 12, 12, 12, 12, 12, 18, 12, 12, 12, 12, 12, 12, 12, 10, 14,~
## $ resp_edu <dbl> 12, 12, 19, 12, 12, 18, 18, 12, 16, 12, 16, 12, 12, 16, 12,~
glimpse(WLS_health)## Rows: 4,641
## Columns: 2
## $ idpub <dbl> 900034, 900042, 900069, 900078, 900079, 900096, 900106, 900117,~
## $ health <dbl+lbl> 1, 3, 3, 4, 2, 4, 4, 4, 3, 1, 4, 3, 2, 3, 3, 3, 2, 4, 4, 2,~
WLS<- cbind(WLS_educ,WLS_health)%>%
select(brdxdy,sexrsp,spouse_edu,resp_edu,health)
glimpse(WLS)## Rows: 4,641
## Columns: 5
## $ brdxdy <dbl+lbl> 38, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 38, 39,~
## $ sexrsp <dbl+lbl> 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1~
## $ spouse_edu <dbl> 12, 12, 12, 12, 12, 18, 12, 12, 12, 12, 12, 12, 12, 10, 14,~
## $ resp_edu <dbl> 12, 12, 19, 12, 12, 18, 18, 12, 16, 12, 16, 12, 12, 16, 12,~
## $ health <dbl+lbl> 1, 3, 3, 4, 2, 4, 4, 4, 3, 1, 4, 3, 2, 3, 3, 3, 2, 4, 4~
###part 1 educational observational mating
WLS <- WLS %>%
mutate (
r_edu = case_when(
resp_edu ==12 ~ "1 HS or Less",
resp_edu >= 13 & resp_edu <16 ~ "2 Some College",
resp_edu >=16 & resp_edu ~ "3 BA or more"),
sp_edu = case_when (
spouse_edu == 12 ~ "1 HS or Less",
spouse_edu >=13 & spouse_edu < 16 ~ "2 Some College",
spouse_edu >=16 ~ "3 BA or more"))#crosstabulation
table(WLS$r_edu, WLS$sp_edu) #basic cross tabulation of frequencies##
## 1 HS or Less 2 Some College 3 BA or more
## 1 HS or Less 1853 329 299
## 2 Some College 319 109 187
## 3 BA or more 274 237 668
prop.table(table(WLS$r_edu, WLS$sp_edu), 1)##
## 1 HS or Less 2 Some College 3 BA or more
## 1 HS or Less 0.7468763 0.1326078 0.1205159
## 2 Some College 0.5186992 0.1772358 0.3040650
## 3 BA or more 0.2324003 0.2010178 0.5665818
chisq.test(WLS$r_edu, WLS$sp_edu)##
## Pearson's Chi-squared test
##
## data: WLS$r_edu and WLS$sp_edu
## X-squared = 990.89, df = 4, p-value < 2.2e-16
crosstab(WLS$r_edu, WLS$sp_edu, prop.r = T, chisq = T, dnn=c("Respondent's education", "Spouse's education"))## Cell Contents
## |-------------------------|
## | Count |
## | Row Percent |
## |-------------------------|
##
## ==============================================================================
## Spouse's education
## Respondent's education 1 HS or Less 2 Some College 3 BA or more Total
## ------------------------------------------------------------------------------
## 1 HS or Less 1853 329 299 2481
## 74.7% 13.3% 12.1% 58.0%
## ------------------------------------------------------------------------------
## 2 Some College 319 109 187 615
## 51.9% 17.7% 30.4% 14.4%
## ------------------------------------------------------------------------------
## 3 BA or more 274 237 668 1179
## 23.2% 20.1% 56.7% 27.6%
## ------------------------------------------------------------------------------
## Total 2446 675 1154 4275
## ==============================================================================
##
## Statistics for All Table Factors
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 990.8927 d.f. = 4 p <2e-16
##
## Minimum expected frequency: 97.10526
WLS <- WLS %>%
mutate(
homogamous = ifelse(r_edu == sp_edu, 1, 0 ),
hypergamous = ifelse(sexrsp == 1 & r_edu > sp_edu | sexrsp == 2 & r_edu < sp_edu, 1, 0),
hypogamous = ifelse(sexrsp == 2 & r_edu > sp_edu | sexrsp == 1 & r_edu < sp_edu, 1, 0),
marriage_type = case_when(
homogamous==1 ~ "1 Homogamous",
hypergamous==1 ~ "2 Hypergamous",
hypogamous==1 ~ "3 Hypogamous"
))
#freq(WLS$homogamous)
#freq(WLS$hypergamous)
#freq(WLS$hypogamous)
freq(WLS$marriage_type)## WLS$marriage_type
## Frequency Percent Valid Percent
## 1 Homogamous 2630 56.669 61.52
## 2 Hypergamous 1192 25.684 27.88
## 3 Hypogamous 453 9.761 10.60
## NA's 366 7.886
## Total 4641 100.000 100.00
#table(WLS$marriage_type, WLS$homogamous)
#table(WLS$marriage_type, WLS$hypergamous)
#table(WLS$marriage_type, WLS$hypogamous)##part2Assessing the relationship between educational assortative mating and self-rated health.
WLS <- WLS %>%
mutate(
r_edu = case_when(
resp_edu ==12 ~ "1 HS or Less",
resp_edu >= 13 & resp_edu <16 ~ "2 Some College",
resp_edu >=16 & resp_edu ~ "3 BA or more"),
health.1 = case_when(
health == 1 ~ "1 Fair/Worse",
health == 2 ~ "2 Good",
health == 3 ~ "3 Very Good",
health == 4 ~ "4 Excellent"))
crosstab(WLS$r_edu, WLS$health.1, prop.r = T, chisq = T, dnn=c("Education level", "Self-rated health"))## Cell Contents
## |-------------------------|
## | Count |
## | Row Percent |
## |-------------------------|
##
## ============================================================================
## Self-rated health
## Education level 1 Fair/Worse 2 Good 3 Very Good 4 Excellent Total
## ----------------------------------------------------------------------------
## 1 HS or Less 388 969 1061 387 2805
## 13.8% 34.5% 37.8% 13.8% 60.4%
## ----------------------------------------------------------------------------
## 2 Some College 62 170 250 152 634
## 9.8% 26.8% 39.4% 24.0% 13.7%
## ----------------------------------------------------------------------------
## 3 BA or more 85 249 493 375 1202
## 7.1% 20.7% 41.0% 31.2% 25.9%
## ----------------------------------------------------------------------------
## Total 535 1388 1804 914 4641
## ============================================================================
##
## Statistics for All Table Factors
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 229.9411 d.f. = 6 p <2e-16
##
## Minimum expected frequency: 73.08554
WLS <- WLS %>%
mutate(
homogamous = ifelse(r_edu == sp_edu, 1, 0 ),
hypergamous = ifelse(sexrsp == 1 & r_edu > sp_edu | sexrsp == 2 & r_edu < sp_edu, 1, 0),
hypogamous = ifelse(sexrsp == 2 & r_edu > sp_edu | sexrsp == 1 & r_edu < sp_edu, 1, 0),
marriage_type = case_when(
homogamous==1 ~ "1 Homogamous",
hypergamous==1 ~ "2 Hypergamous",
hypogamous==1 ~ "3 Hypogamous"),
health.1 = case_when(
health == 1 ~ "1 Fair/Worse",
health == 2 ~ "2 Good",
health == 3 ~ "3 Very Good",
health == 4 ~ "4 Excellent"))
crosstab(WLS$marriage_type, WLS$health.1, prop.r = T, chisq = T, dnn=c("Marriage Type", "Self-rated health"))## Cell Contents
## |-------------------------|
## | Count |
## | Row Percent |
## |-------------------------|
##
## ==========================================================================
## Self-rated health
## Marriage Type 1 Fair/Worse 2 Good 3 Very Good 4 Excellent Total
## --------------------------------------------------------------------------
## 1 Homogamous 311 828 1000 491 2630
## 11.8% 31.5% 38.0% 18.7% 61.5%
## --------------------------------------------------------------------------
## 2 Hypergamous 120 300 492 280 1192
## 10.1% 25.2% 41.3% 23.5% 27.9%
## --------------------------------------------------------------------------
## 3 Hypogamous 49 122 188 94 453
## 10.8% 26.9% 41.5% 20.8% 10.6%
## --------------------------------------------------------------------------
## Total 480 1250 1680 865 4275
## ==========================================================================
##
## Statistics for All Table Factors
##
## Pearson's Chi-squared test
## ------------------------------------------------------------
## Chi^2 = 26.76577 d.f. = 6 p = 0.00016
##
## Minimum expected frequency: 50.86316