Objetivo

Determinar medidas de localización basadas en estadísticos cuartiles y percentiles utilizando de un conjunto de datos así como determinar su significado, visualización e interpretación.

Descripción

El caso pretende dar a conocer como determinar cuartiles y percentiles de un conjunto de datos.

Los datos será simulados, primero un conjunto de valores numéricos y la segunda parte se hace uso de los datos descargados del promedio de alumnos.

Este caso inicia con la declaración con cargar las librerías, posteriormente, se simulan los datos y se descargan los datos de alumnos, finalmente se aplican los cuartiles y percentiles así como su visualización , se identifica también su significado e interpretación.

Marco teórico

pendiente

3.1 Fórmula para cuartiles, deciles y percentiles

\(L_p = (n+1) \cdot \frac{p}{100}\)

Siendo:

Lp El valor del percentil o del cuartil a buscar

n Es el total de los datos pp Es el valor porcentual ….25,30,50,75,….

100 dividido entre cien es el valor relativo

3.2 Visualización de cuartiles

El diagrama de caja permite es una representación gráfica basada en cuartiles que ayuda a presentar un conjunto de datos. Para construir un diagrama de caja solo se necesitan estos estadísticos: valor mínimo, Q1 (primer cuartil), mediana o Q2 (segundo cuartil), Q3 (tercer cuartil) y valor máximo.

DESARROLLO

El desarrollo del caso utiliza primero datos simulados.

Luego, se utilizan y se descargan los datos de alumnos que existen en la dirección “alumnos.”

Con ambos datos se encuentran cuartiles y percentiles; finalmente se visualizan con diagramas de cajas utilizando la librería ggplot.

Al final del caso se busca la interpretación del mismo.

4.1 Cargar librerias

Se cargan las librerías readr y ggplot2 cuya utilidad es disponer de funciones para importar datos de archivos separados por coma o csv y visualizar diversos tipos de gráficos respectivamente.

library(readr) library(ggplot2)

4.2 Datos simulados

4.2.1 Crear datos con sample

Se crean datos con la función sample de tal vez 100 valores de edades de personas entre 18 y 65. La variale datos es un vector que almacena dichos valores

set.seed(2021)
datos <- sample(18:65, 100, replace = TRUE)
datos
##   [1] 24 55 63 56 29 23 55 55 63 22 64 56 58 40 29 35 20 63 57 43 53 54 39 48 65
##  [26] 51 36 21 39 22 26 55 35 60 23 39 23 32 51 39 33 32 41 34 55 54 37 21 47 25
##  [51] 36 20 19 34 57 58 48 26 46 44 28 53 55 63 32 35 26 36 33 61 51 54 59 61 39
##  [76] 55 44 61 30 50 63 38 42 48 62 28 26 40 60 39 53 47 63 65 24 46 18 36 62 53
n <- length(datos)
n
## [1] 100
datos <- c(datos, c(-13,9,96,150))
datos
##   [1]  24  55  63  56  29  23  55  55  63  22  64  56  58  40  29  35  20  63
##  [19]  57  43  53  54  39  48  65  51  36  21  39  22  26  55  35  60  23  39
##  [37]  23  32  51  39  33  32  41  34  55  54  37  21  47  25  36  20  19  34
##  [55]  57  58  48  26  46  44  28  53  55  63  32  35  26  36  33  61  51  54
##  [73]  59  61  39  55  44  61  30  50  63  38  42  48  62  28  26  40  60  39
##  [91]  53  47  63  65  24  46  18  36  62  53 -13   9  96 150

4.2.2 Agregando datos atípicos a los datos

4.2.3 Ordenando los datos con order

Ordenando y mostrando los datos para luego determinar medidas de localización cuartiles y percentiles

datos.ordenados <- datos[order(datos)]
datos.ordenados
##   [1] -13   9  18  19  20  20  21  21  22  22  23  23  23  24  24  25  26  26
##  [19]  26  26  28  28  29  29  30  32  32  32  33  33  34  34  35  35  35  36
##  [37]  36  36  36  37  38  39  39  39  39  39  39  40  40  41  42  43  44  44
##  [55]  46  46  47  47  48  48  48  50  51  51  51  53  53  53  53  54  54  54
##  [73]  55  55  55  55  55  55  55  56  56  57  57  58  58  59  60  60  61  61
##  [91]  61  62  62  63  63  63  63  63  63  64  65  65  96 150

4.2.4 Cuartiles conforme a fórmula

\[ L_p = (n+1) \cdot \frac{p}{100} \]

Estos valores deberán ser aproximados a utilizar la función quantile() en R

q1 <- datos.ordenados[(n+1) * 25/100]; q1
## [1] 30
q2 <- datos.ordenados[(n+1) * 50/100]; q2
## [1] 41
q3 <- datos.ordenados[(n+1) * 75/100]; q3
## [1] 55

Para el resto del caso se le hará caso a los valores generados por la función quantile().

4.2.5 Cuartiles pormedio de la función quantile()

Q1 <- quantile(datos, c(0.25), type = 6); Q1
## 25% 
##  32
Q2 <- quantile(datos, c(0.50), type = 6); Q2
##  50% 
## 43.5
Q3 <- quantile(datos, c(0.75), type = 6); Q3
## 75% 
##  55

La mediana siempre será igual al cuartil del 50% o al segundo cuartil

mediana <- median(datos)
mediana
## [1] 43.5
Q2
##  50% 
## 43.5

4.2.6 Percentiles

Los percentiles es dividir los datos en un procentaje a decisión del analista, puede ser al 10%, al 20%, al 30%… al 90%

P10 <- quantile(datos, c(0.10)); P10
## 10% 
##  23
percentiles <- quantile(datos, c(0.2, 0.40, 0.50, 0.60, 0.80), type = 6)
percentiles
##  20%  40%  50%  60%  80% 
## 28.0 39.0 43.5 51.0 58.0

4.2.7 Máximos y mínimos

Se determinan los valores mínimos y máximos y se muestran. La función summary() describe los mismos datos

minimo <- min(datos)
maximo <- max(datos)
 
minimo; Q1; Q2; Q3; maximo
## [1] -13
## 25% 
##  32
##  50% 
## 43.5
## 75% 
##  55
## [1] 150

4.2.8 Convertir a data.frame

El vector de los datos se transforma a estructura data.frame para poderlo tratar con la libería ggplot2.

datos <- data.frame(datos)
datos
##     datos
## 1      24
## 2      55
## 3      63
## 4      56
## 5      29
## 6      23
## 7      55
## 8      55
## 9      63
## 10     22
## 11     64
## 12     56
## 13     58
## 14     40
## 15     29
## 16     35
## 17     20
## 18     63
## 19     57
## 20     43
## 21     53
## 22     54
## 23     39
## 24     48
## 25     65
## 26     51
## 27     36
## 28     21
## 29     39
## 30     22
## 31     26
## 32     55
## 33     35
## 34     60
## 35     23
## 36     39
## 37     23
## 38     32
## 39     51
## 40     39
## 41     33
## 42     32
## 43     41
## 44     34
## 45     55
## 46     54
## 47     37
## 48     21
## 49     47
## 50     25
## 51     36
## 52     20
## 53     19
## 54     34
## 55     57
## 56     58
## 57     48
## 58     26
## 59     46
## 60     44
## 61     28
## 62     53
## 63     55
## 64     63
## 65     32
## 66     35
## 67     26
## 68     36
## 69     33
## 70     61
## 71     51
## 72     54
## 73     59
## 74     61
## 75     39
## 76     55
## 77     44
## 78     61
## 79     30
## 80     50
## 81     63
## 82     38
## 83     42
## 84     48
## 85     62
## 86     28
## 87     26
## 88     40
## 89     60
## 90     39
## 91     53
## 92     47
## 93     63
## 94     65
## 95     24
## 96     46
## 97     18
## 98     36
## 99     62
## 100    53
## 101   -13
## 102     9
## 103    96
## 104   150

4.2.9 Diagrama de caja de los datos

4.2.9.1 Diagrama de caja en función del eje de las x.

library(ggplot2)
ggplot(data = datos, mapping = aes(x=datos)) + geom_boxplot(outlier.colour="blue")

4.2.9.2 Diagrama de caja en función del eje de las y.

ggplot(data = datos, mapping = aes(y=datos)) + geom_boxplot(outlier.colour="blue")

4.3 Datos de alumnos

4.3.1 Importar datos

Se importan los datos de alumnos.

Cabe hacer notar que en este conjunto de datos existen datos en la variable Promedio que son igual a cero, esto se interpreta como datos atípicos o que tal vez no debieran ser considerados en análisis estadísticos.

datos.alumnos <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/ALUMNOS%20EJ2021.csv")

head(datos.alumnos)
##   NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio  Carrera
## 1         1      1       12          207          19    79.84 SISTEMAS
## 2         2      2       13          226           9    82.55 SISTEMAS
## 3         3      3       10          235          10    95.16 SISTEMAS
## 4         4      4       13          231          14    79.32 SISTEMAS
## 5         5      5       10          235          10    92.67 SISTEMAS
## 6         6      6       10          235          10    91.25 SISTEMAS
tail(datos.alumnos)
##      NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio      Carrera
## 6037       750    750        9          170          20    81.16 ARQUITECTURA
## 6038       751    751        7          103          19    84.43 ARQUITECTURA
## 6039       752    752        4           76          34    92.47 ARQUITECTURA
## 6040       753    753        4           84          26    89.74 ARQUITECTURA
## 6041       754    754        3           52          28    87.75 ARQUITECTURA
## 6042       755    755        2           18          22    86.50 ARQUITECTURA
n <- nrow(datos.alumnos)

4.3.2 Summary de datos alumnos

Se factoriza la variable Carrera para que en summary se obtenga la frecuencia de la columna Carrera.

datos.alumnos$Carrera <- factor(datos.alumnos$Carrera)
summary(datos.alumnos)
##    NoControl         Alumno         Semestre       Cr.Aprobados  
##  Min.   :  1.0   Min.   :  1.0   Min.   : 1.000   Min.   :  0.0  
##  1st Qu.:112.0   1st Qu.:112.0   1st Qu.: 3.000   1st Qu.: 53.0  
##  Median :245.0   Median :245.0   Median : 5.000   Median :109.0  
##  Mean   :268.1   Mean   :268.1   Mean   : 5.428   Mean   :114.8  
##  3rd Qu.:394.0   3rd Qu.:394.0   3rd Qu.: 8.000   3rd Qu.:172.0  
##  Max.   :755.0   Max.   :755.0   Max.   :17.000   Max.   :264.0  
##                                                   NA's   :499    
##   Cr.Cursando       Promedio                Carrera    
##  Min.   : 3.00   Min.   :  0.00   ARQUITECTURA  : 755  
##  1st Qu.:23.00   1st Qu.: 82.20   INDUSTRIAL    : 721  
##  Median :27.00   Median : 85.83   CIVIL         : 674  
##  Mean   :26.09   Mean   : 79.33   QUIMICA       : 564  
##  3rd Qu.:30.00   3rd Qu.: 89.50   GESTION       : 557  
##  Max.   :42.00   Max.   :100.00   ADMINISTRACION: 492  
##                                   (Other)       :2279
n <- nrow(datos.alumnos)
n
## [1] 6042

4.3.2 Summary de datos.alumnos Se factoriza la variable Carrera para que en summary se obtenga la frecuencia de la columna Carrera.

datos.alumnos$Carrera <- factor(datos.alumnos$Carrera)

summary(datos.alumnos)
##    NoControl         Alumno         Semestre       Cr.Aprobados  
##  Min.   :  1.0   Min.   :  1.0   Min.   : 1.000   Min.   :  0.0  
##  1st Qu.:112.0   1st Qu.:112.0   1st Qu.: 3.000   1st Qu.: 53.0  
##  Median :245.0   Median :245.0   Median : 5.000   Median :109.0  
##  Mean   :268.1   Mean   :268.1   Mean   : 5.428   Mean   :114.8  
##  3rd Qu.:394.0   3rd Qu.:394.0   3rd Qu.: 8.000   3rd Qu.:172.0  
##  Max.   :755.0   Max.   :755.0   Max.   :17.000   Max.   :264.0  
##                                                   NA's   :499    
##   Cr.Cursando       Promedio                Carrera    
##  Min.   : 3.00   Min.   :  0.00   ARQUITECTURA  : 755  
##  1st Qu.:23.00   1st Qu.: 82.20   INDUSTRIAL    : 721  
##  Median :27.00   Median : 85.83   CIVIL         : 674  
##  Mean   :26.09   Mean   : 79.33   QUIMICA       : 564  
##  3rd Qu.:30.00   3rd Qu.: 89.50   GESTION       : 557  
##  Max.   :42.00   Max.   :100.00   ADMINISTRACION: 492  
##                                   (Other)       :2279

4.3.3 Cuartiles

Se determinan los cuartiles de la variable Promedio de los datos de alumnos con la función quantile().

cuartiles <- quantile(x = datos.alumnos$Promedio, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles
##   25%   50%   75% 
## 82.20 85.83 89.50
Q1 <- cuartiles[1]; Q1
##  25% 
## 82.2
Q2 <- cuartiles[2]; Q2
##   50% 
## 85.83
Q3 <- cuartiles[3]; Q3
##  75% 
## 89.5

El 50%50% de los datos está entre 82.2 y 89.5. El RI rango intercuartil es Q3−Q1 o sea 7.3.

Los valores atípicos mayores a Q3 serán los que estén por encima de 100.45 y los valores atípicos menores a Q1 serán los que estén por debajo de 71.25

4.3.4 Atípicos mayores. Rango intercuartil

4.3.5 Atípicos menores. Rango intercuartil

atipicos.mayores <- Q3 + 1.5 * (Q3-Q1)
atipicos.mayores
##    75% 
## 100.45
atipicos.menores <- Q1 - 1.5 * (Q3-Q1)
atipicos.menores
##   25% 
## 71.25

4.3.6 Diagramas de cajas con datos atípicos

ggplot(data = datos.alumnos, mapping = aes(y=Promedio)) + geom_boxplot(outlier.colour="blue")

En este diagrama de caja se detecta que hay valores atípicos principalemente los que tienen 00 en la variable promedio.

Aquí es en donde se hace prudente tomar decisiones de que ¿hacer con esos valores?, por lo pronto la decisión es simple, son alumnos que no tienen promedio en su historia académica, es decir que no han cursado semestre alguno y no han cerrado al menos un periodo escolar.

4.3.7 Limpiando valores atípicos

Por medio de la función subset() vista anteriormente, se eliminan o filtran esos registros.

datos.alumnos <- subset(datos.alumnos, Promedio > 0)
head(datos.alumnos)
##   NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio  Carrera
## 1         1      1       12          207          19    79.84 SISTEMAS
## 2         2      2       13          226           9    82.55 SISTEMAS
## 3         3      3       10          235          10    95.16 SISTEMAS
## 4         4      4       13          231          14    79.32 SISTEMAS
## 5         5      5       10          235          10    92.67 SISTEMAS
## 6         6      6       10          235          10    91.25 SISTEMAS

datos <- subset(datos, Promedio > 0) significa quitar los alumnos que no tienen promedio aún.

tail(datos.alumnos)
##      NoControl Alumno Semestre Cr.Aprobados Cr.Cursando Promedio      Carrera
## 6037       750    750        9          170          20    81.16 ARQUITECTURA
## 6038       751    751        7          103          19    84.43 ARQUITECTURA
## 6039       752    752        4           76          34    92.47 ARQUITECTURA
## 6040       753    753        4           84          26    89.74 ARQUITECTURA
## 6041       754    754        3           52          28    87.75 ARQUITECTURA
## 6042       755    755        2           18          22    86.50 ARQUITECTURA
n<-nrow(datos.alumnos)
n
## [1] 5535

4.3.8 Nuevos cuartiles con datos limpios

cuartiles <- quantile(x = datos.alumnos$Promedio, probs = c(0.25, 0.50, 0.75), type = 6)
cuartiles
##   25%   50%   75% 
## 83.24 86.36 89.83
Q1 <- cuartiles[1]; Q1
##   25% 
## 83.24
Q2 <- cuartiles[2]; Q2
##   50% 
## 86.36
Q3 <- cuartiles[3]; Q3
##   75% 
## 89.83

4.3.9 Diagramas de cajas con datos limpios

summary(datos.alumnos)
##    NoControl         Alumno         Semestre       Cr.Aprobados  Cr.Cursando  
##  Min.   :  1.0   Min.   :  1.0   Min.   : 2.000   Min.   :  4   Min.   : 3.0  
##  1st Qu.:106.0   1st Qu.:106.0   1st Qu.: 3.000   1st Qu.: 53   1st Qu.:23.0  
##  Median :239.0   Median :239.0   Median : 6.000   Median :109   Median :28.0  
##  Mean   :262.2   Mean   :262.2   Mean   : 5.826   Mean   :115   Mean   :26.1  
##  3rd Qu.:388.0   3rd Qu.:388.0   3rd Qu.: 8.000   3rd Qu.:172   3rd Qu.:30.0  
##  Max.   :755.0   Max.   :755.0   Max.   :17.000   Max.   :264   Max.   :42.0  
##                                                                               
##     Promedio                Carrera    
##  Min.   : 70.00   INDUSTRIAL    : 653  
##  1st Qu.: 83.25   ARQUITECTURA  : 633  
##  Median : 86.36   CIVIL         : 594  
##  Mean   : 86.60   GESTION       : 518  
##  3rd Qu.: 89.83   QUIMICA       : 515  
##  Max.   :100.00   ADMINISTRACION: 458  
##                   (Other)       :2164
ggplot(data = datos.alumnos, mapping = aes(y=Promedio)) + geom_boxplot(outlier.colour="red") +
  labs(title = "Promedio de Alumnos",subtitle =  paste("Q1 = ",Q1, ", Q2 = ",Q2, ", Q3 = ",Q3))

Se siguen visualizando datos atípicos, sin embargo estos si son datos extraños pero reales, que significa que hay alumnos con promedio de 100 y alumnos con promedio de 70 aproximadamente.

4.4 Histograma con cuartiles

ggplot(data = datos.alumnos, aes(x=Promedio)) +
    geom_histogram(bins = 30) + 
    geom_vline(aes(xintercept = Q1,
                  color = "Q1"),
              linetype = "dashed",
              size = 1) +
    geom_vline(aes(xintercept = Q2,
                  color = "Q2"),
              linetype = "dashed",
              size = 1) +
    geom_vline(aes(xintercept = Q3,
                  color = "Q3"),
              linetype = "dashed",
              size = 1) +  
  labs(title = "Histograma de Promedio de Alumnos",subtitle =  paste("Cuartil 1 al 25% = ",Q1, ", Cuartil 2 al 50% = ",Q2, ", Cuartil 3 al 75% = ",Q3))

4.5 Interpretación

¿Qué significan los cuartiles en un conjunto de datos?

es una herramienta que nos sirve paara poder localizar la mediana conm los datos ordenadamente administrandolos rn partes iguales, ademas de que los cuartiles Q1 y Q3 se encuentran en la mitad de los datos

¿Qué significa el rango intercuartil y para qué sirve?

tambirn es llamado rango intercuartilico y es la diferencis entre el primero y el tercer cuartil de una tabla de distribuciion que se utiliza en la elaboracion de un diagragrama de caja, eliminando los valores que se encentran alejados

En el conjunto de datos de alumnos si un alumno tiene promedio de 80 ¿está por encima o por debajo del segundo cuartil?

esta por debajo

¿que es un diagrama de caja?

muestra una cantidad de informacion distribuidos en rango a lo largo de la recta numerica

¿Cómo se interpreta e diagrama de caja?

tenemos que tener en claro la informacion de la que se esta realizando en la gradfica para poder demostrar de forma grafica las distribuciones dentro de una variable

¿Qué describe la función summary() y como se interpreta?

esta funcion recolecta la informacion organizadamente y hace un resumen del conjunto de informacion y se puede interpretar como maximo, minimo, media. primer cuartil y mediana

¿Qué les deja el caso?

recorde un poco acerca de las medidas como la moda, la media y mediana, asi como la aplicacion mediante codigos, facilitar un poco mas aplicar las formulas y que no solo las medidas de mediana , media y moda son las unicas que nos pueden ayudar a encontrar la ubicacion de los valores de los conjuntos y dejar que con ayuda de la tecnologia nos ayude a resolver problemas

Referencias bibliográficas Lind, Douglas, William Marchal, and Samuel Wathen. 2015. Estadística Aplicada a Los Negocios y La Economía. Decimo Sexta. México, D.F.: McGraw-Hill.