analysis.R

msbernst — Sep 12, 2013, 11:59 PM

library(plyr)
library(ggplot2)
#library(MASS)
library(car)
Loading required package: MASS Loading required package: nnet

# Analyze the cognitive load study results
results <- read.csv("~/Dropbox/Twitch Crowdsourcing/working-memory/cogLoad.csv")
# results <- rbind(results, read.csv("~/Dropbox/Twitch Crowdsourcing/working-memory/extracted_small.csv"))

results$session <- factor( paste( results$phoneID, results$timestamp, sep = "@" ) ) # uniquely identify each person who did the study
results$task <- factor( ifelse((results$task == "2back" | results$task == "3back"), "back", as.character(results$task)))
results$previousTask <- factor( ifelse((results$previousTask == "2back" | results$previousTask == "3back"), "back", as.character(results$previousTask)))
results$isCorrect = (results$correctAnswer==results$userGuess)

backtasks = subset(results, task=='back' & !is.na(correctAnswer) & !is.na(userGuess) & !is.null(correctAnswer) & !is.null(userGuess) & correctAnswer != 'null' & userGuess != 'null')
head(backtasks)
   X_id  phoneID number condition task  previousTask duration userGuess
5     5 3ad3559c      4     3back back          back     3970         0
7     7 3ad3559c      6     3back back Census/Energy     3154         0
8     8 3ad3559c      7     3back back          back     1998         1
9     9 3ad3559c      8     3back back          back     1363         0
11   11 3ad3559c     10     3back back Census/People     2653         0
12   12 3ad3559c     11     3back back          back      891         0
   correctAnswer timestamp                session isCorrect
5              0 1.379e+12 3ad3559c@1379025691476      TRUE
7              0 1.379e+12 3ad3559c@1379025691476      TRUE
8              1 1.379e+12 3ad3559c@1379025691476      TRUE
9              0 1.379e+12 3ad3559c@1379025691476      TRUE
11             0 1.379e+12 3ad3559c@1379025691476      TRUE
12             0 1.379e+12 3ad3559c@1379025691476      TRUE

# double check that things look right --- look at participants
countsPerSession <- ddply(backtasks,
  c('session'), summarise,
  count=length(duration)
)
countsPerSession
                  session count
1  26742641@1379035244203   337
2  3acecffb@1379010624637    39
3  3ad3559c@1379025691476    13
4  3ad3559c@1379026295046   447
5  46b48894@1378844106838   346
6  46b48894@1378845864401   337
7  46b48894@1378890269202     3
8  46b48894@1378890315953     2
9  5d9ab4f5@1378410039867    76
10 5d9ab4f5@1378412329855  1001
11 7f20b1c7@1378712963763   276
12 7f20b1c7@1378713851854   371
13 8ae2fe42@1378827268681   335
14 986c8378@1378826177581   127
15 986c8378@1378826842544   361
16 db95fbf3@1376916217350    15
17 db95fbf3@1377977536970    42
18 db95fbf3@1378285306843    41
19 db95fbf3@1378285383048     3
20 e71d2d62@1378737168452   269
21 fec9b094@1378936198432   375
includedSessions <- subset(countsPerSession, count >= 100)[,'session']

backtasks <- subset(backtasks, backtasks$session %in% includedSessions)

# look at the overall distribution

# Analysis of reaction time data: http://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=1077&context=tpr

# Test for normality --- this should be a straight line and not significant
# if it's normally distributed
qqnorm(y=backtasks$duration)
qqline(y=backtasks$duration)

plot of chunk unnamed-chunk-1

shapiro.test(backtasks$duration)

    Shapiro-Wilk normality test

data:  backtasks$duration
W = 0.5199, p-value < 2.2e-16

# Box-Cox transformation to make data normal (varsity maneuver!)
boxcox <- powerTransform(backtasks$duration)
backtasks$transformed <- bcPower(backtasks$duration, boxcox$lambda)
qqnorm(y=backtasks$transformed)
qqline(y=backtasks$transformed)

plot of chunk unnamed-chunk-1

shapiro.test(backtasks$transformed)

    Shapiro-Wilk normality test

data:  backtasks$transformed
W = 0.9839, p-value < 2.2e-16

# Alternate: drop outliers >= 2 s.d. from mean
filtered <- subset(backtasks, duration <= mean(duration) + 2*sd(duration))
qqnorm(y=filtered$duration)
qqline(y=filtered$duration)

plot of chunk unnamed-chunk-1

shapiro.test(filtered$duration)

    Shapiro-Wilk normality test

data:  filtered$duration
W = 0.8217, p-value < 2.2e-16

# Conclusion: dropping outliers doesn't help; let's use Box-Cox

# --------------------------------
# What's the mean/median delay?
delay <- ddply(backtasks,
  c('previousTask','condition'), summarise,
  p.05=quantile(duration, prob=0.05),
  p.25=quantile(duration, prob=0.25),
  p.50=quantile(duration, prob=0.50),
  p.75=quantile(duration, prob=0.75),
  p.95=quantile(duration, prob=0.95),
  meanDelay=mean(duration),
  meanAccuracy=mean((correctAnswer == userGuess))
)
delay
      previousTask condition  p.05   p.25 p.50 p.75  p.95 meanDelay
1             back     2back 488.8  689.0 1155 2182  4933      1812
2             back     3back 507.0  767.0 1160 2226  5424      1889
3  Census/Activity     2back 524.0 1216.0 1681 2761  8661      2629
4  Census/Activity     3back 526.8 1082.0 1609 2501 11574      3644
5     Census/Dress     2back 536.9  995.5 1778 3288  5559      2535
6     Census/Dress     3back 496.2 1060.0 2249 3897  9091      3278
7    Census/Energy     2back 548.4  861.0 1596 3308  6497      2332
8    Census/Energy     3back 555.6 1024.0 1887 2857  5844      2693
9    Census/People     2back 531.0  960.2 1576 3142 12502      2772
10   Census/People     3back 539.8 1264.2 1675 3158  6608      2535
11    PhotoRanking     2back 591.6 1084.0 1657 2594  8509      2630
12    PhotoRanking     3back 589.2  997.0 1588 2933  8940      2479
13   SlideToUnlock     2back 663.2  933.5 1405 2098  6004      1926
14   SlideToUnlock     3back 649.7  943.8 1728 2915  7075      2418
   meanAccuracy
1        0.9237
2        0.8873
3        0.9459
4        0.9167
5        0.9474
6        0.9730
7        0.9459
8        0.9189
9        0.9211
10       0.8333
11       0.8378
12       0.8611
13       0.9107
14       0.8545

# Plot the delays
qplot(duration, data=backtasks, geom="histogram")
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust
this.

plot of chunk unnamed-chunk-1

boxplot <- ggplot(backtasks, aes(x=condition, y=duration)) + geom_boxplot() + scale_y_continuous(limits = c(0, 2500))
boxplot + facet_grid(. ~ previousTask)
Warning: Removed 843 rows containing non-finite values (stat_boxplot).
Warning: Removed 21 rows containing non-finite values (stat_boxplot).
Warning: Removed 32 rows containing non-finite values (stat_boxplot).
Warning: Removed 26 rows containing non-finite values (stat_boxplot).
Warning: Removed 21 rows containing non-finite values (stat_boxplot).
Warning: Removed 22 rows containing non-finite values (stat_boxplot).
Warning: Removed 60 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-1


transformedDelay <- ddply(backtasks,
                          c('previousTask', 'condition'), summarise,
                          p.05=quantile(transformed, prob=0.05),
                          p.25=quantile(transformed, prob=0.25),
                          p.50=quantile(transformed, prob=0.50),
                          p.75=quantile(transformed, prob=0.75),
                          p.95=quantile(transformed, prob=0.95),
                          meanDelay=mean(transformed),
                          meanAccuracy=mean((correctAnswer == userGuess))
)
transformedDelay
      previousTask condition  p.05  p.25  p.50  p.75  p.95 meanDelay
1             back     2back 2.603 2.643 2.696 2.749 2.803     2.698
2             back     3back 2.607 2.655 2.696 2.751 2.808     2.702
3  Census/Activity     2back 2.611 2.701 2.729 2.766 2.832     2.728
4  Census/Activity     3back 2.612 2.690 2.725 2.759 2.845     2.725
5     Census/Dress     2back 2.614 2.681 2.733 2.778 2.810     2.727
6     Census/Dress     3back 2.605 2.688 2.751 2.789 2.835     2.739
7    Census/Energy     2back 2.617 2.667 2.724 2.778 2.818     2.720
8    Census/Energy     3back 2.618 2.684 2.738 2.769 2.811     2.728
9    Census/People     2back 2.613 2.678 2.723 2.774 2.849     2.723
10   Census/People     3back 2.615 2.704 2.728 2.775 2.819     2.728
11    PhotoRanking     2back 2.626 2.690 2.727 2.762 2.831     2.730
12    PhotoRanking     3back 2.625 2.682 2.724 2.770 2.834     2.726
13   SlideToUnlock     2back 2.639 2.675 2.713 2.746 2.814     2.714
14   SlideToUnlock     3back 2.637 2.676 2.731 2.770 2.822     2.728
   meanAccuracy
1        0.9237
2        0.8873
3        0.9459
4        0.9167
5        0.9474
6        0.9730
7        0.9459
8        0.9189
9        0.9211
10       0.8333
11       0.8378
12       0.8611
13       0.9107
14       0.8545

qplot(transformed, data=backtasks, geom="histogram")
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust
this.

plot of chunk unnamed-chunk-1

boxplot <- ggplot(backtasks, aes(x=condition, y=transformed)) + geom_boxplot() #+ scale_y_continuous(limits = c(0, 10000))
boxplot + facet_grid(. ~ previousTask)

plot of chunk unnamed-chunk-1




###########
# Tests

#TODO: check homogeneity of variance (levene's test)

# ANOVA predicting transformed time using the previous task
model <- aov(transformed ~ previousTask * condition + session, data=backtasks)
untransformedModel <- aov(duration ~ previousTask * condition + session, data=backtasks)

# Original model is significant
anova(untransformedModel)
Analysis of Variance Table

Response: duration
                         Df   Sum Sq  Mean Sq F value  Pr(>F)    
previousTask              6 3.08e+08 5.14e+07   11.66 5.3e-13 ***
condition                 1 1.61e+07 1.61e+07    3.65   0.056 .  
session                  11 5.13e+09 4.66e+08  105.85 < 2e-16 ***
previousTask:condition    6 3.79e+07 6.32e+06    1.44   0.197    
Residuals              4557 2.01e+10 4.41e+06                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# No differences between factor levels are significant, but there is a significant effect of condition
TukeyHSD(untransformedModel, 'previousTask')
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = duration ~ previousTask * condition + session, data = backtasks)

$previousTask
                                 diff      lwr     upr  p adj
Census/Activity-back          1282.01   550.77 2013.25 0.0000
Census/Dress-back             1053.78   332.17 1775.38 0.0003
Census/Energy-back             664.78   -61.59 1391.16 0.0985
Census/People-back             808.99    82.61 1535.36 0.0178
PhotoRanking-back              707.93   -23.31 1439.17 0.0651
SlideToUnlock-back             322.22  -104.72  749.16 0.2815
Census/Dress-Census/Activity  -228.23 -1246.18  789.71 0.9946
Census/Energy-Census/Activity -617.23 -1638.56  404.11 0.5600
Census/People-Census/Activity -473.02 -1494.36  548.31 0.8199
PhotoRanking-Census/Activity  -574.08 -1598.89  450.72 0.6480
SlideToUnlock-Census/Activity -959.79 -1795.12 -124.46 0.0125
Census/Energy-Census/Dress    -388.99 -1403.45  625.47 0.9187
Census/People-Census/Dress    -244.79 -1259.25  769.67 0.9919
PhotoRanking-Census/Dress     -345.85 -1363.80  672.10 0.9537
SlideToUnlock-Census/Dress    -731.56 -1558.47   95.36 0.1232
Census/People-Census/Energy    144.20  -873.65 1162.06 0.9996
PhotoRanking-Census/Energy      43.14  -978.19 1064.48 1.0000
SlideToUnlock-Census/Energy   -342.56 -1173.64  488.51 0.8883
PhotoRanking-Census/People    -101.06 -1122.39  920.28 1.0000
SlideToUnlock-Census/People   -486.77 -1317.84  344.31 0.5974
SlideToUnlock-PhotoRanking    -385.71 -1221.04  449.63 0.8220

# Transformed model is significant
anova(model)
Analysis of Variance Table

Response: transformed
                         Df Sum Sq Mean Sq F value  Pr(>F)    
previousTask              6   0.34   0.056    28.3 < 2e-16 ***
condition                 1   0.03   0.025    12.7 0.00037 ***
session                  11   9.88   0.898   450.0 < 2e-16 ***
previousTask:condition    6   0.01   0.002     0.9 0.49219    
Residuals              4557   9.09   0.002                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Which pairs of factor levels are significantly different from each other?
TukeyHSD(model)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = transformed ~ previousTask * condition + session, data = backtasks)

$previousTask
                                    diff       lwr     upr  p adj
Census/Activity-back           0.0265974  0.011036 0.04216 0.0000
Census/Dress-back              0.0334440  0.018088 0.04880 0.0000
Census/Energy-back             0.0241928  0.008736 0.03965 0.0001
Census/People-back             0.0257237  0.010266 0.04118 0.0000
PhotoRanking-back              0.0284599  0.012899 0.04402 0.0000
SlideToUnlock-back             0.0212574  0.012172 0.03034 0.0000
Census/Dress-Census/Activity   0.0068466 -0.014815 0.02851 0.9674
Census/Energy-Census/Activity -0.0024045 -0.024139 0.01933 0.9999
Census/People-Census/Activity -0.0008737 -0.022608 0.02086 1.0000
PhotoRanking-Census/Activity   0.0018626 -0.019945 0.02367 1.0000
SlideToUnlock-Census/Activity -0.0053400 -0.023116 0.01244 0.9747
Census/Energy-Census/Dress    -0.0092512 -0.030839 0.01234 0.8683
Census/People-Census/Dress    -0.0077203 -0.029308 0.01387 0.9409
PhotoRanking-Census/Dress     -0.0049840 -0.026646 0.01668 0.9938
SlideToUnlock-Census/Dress    -0.0121866 -0.029783 0.00541 0.3877
Census/People-Census/Energy    0.0015308 -0.020129 0.02319 1.0000
PhotoRanking-Census/Energy     0.0042671 -0.017467 0.02600 0.9974
SlideToUnlock-Census/Energy   -0.0029354 -0.020621 0.01475 0.9990
PhotoRanking-Census/People     0.0027363 -0.018998 0.02447 0.9998
SlideToUnlock-Census/People   -0.0044663 -0.022152 0.01322 0.9897
SlideToUnlock-PhotoRanking    -0.0072025 -0.024979 0.01057 0.8962

$condition
               diff      lwr      upr p adj
3back-2back 0.00471 0.002118 0.007303 4e-04

$session
                                                    diff        lwr
3ad3559c@1379026295046-26742641@1379035244203 -0.1023880 -0.1129244
46b48894@1378844106838-26742641@1379035244203 -0.0059490 -0.0171269
46b48894@1378845864401-26742641@1379035244203  0.0050133 -0.0062380
5d9ab4f5@1378412329855-26742641@1379035244203 -0.1094633 -0.1186614
7f20b1c7@1378712963763-26742641@1379035244203  0.0096483 -0.0022083
7f20b1c7@1378713851854-26742641@1379035244203 -0.0422905 -0.0532809
8ae2fe42@1378827268681-26742641@1379035244203 -0.0630171 -0.0742852
986c8378@1378826177581-26742641@1379035244203 -0.0161432 -0.0313502
986c8378@1378826842544-26742641@1379035244203 -0.0638570 -0.0749197
e71d2d62@1378737168452-26742641@1379035244203 -0.1072739 -0.1192150
fec9b094@1378936198432-26742641@1379035244203 -0.0138291 -0.0247917
46b48894@1378844106838-3ad3559c@1379026295046  0.0964391  0.0859811
46b48894@1378845864401-3ad3559c@1379026295046  0.1074013  0.0968650
5d9ab4f5@1378412329855-3ad3559c@1379026295046 -0.0070753 -0.0153836
7f20b1c7@1378712963763-3ad3559c@1379026295046  0.1120364  0.1008558
7f20b1c7@1378713851854-3ad3559c@1379026295046  0.0600976  0.0498402
8ae2fe42@1378827268681-3ad3559c@1379026295046  0.0393709  0.0288166
986c8378@1378826177581-3ad3559c@1379026295046  0.0862448  0.0715589
986c8378@1378826842544-3ad3559c@1379026295046  0.0385310  0.0281963
e71d2d62@1378737168452-3ad3559c@1379026295046 -0.0048858 -0.0161559
fec9b094@1378936198432-3ad3559c@1379026295046  0.0885589  0.0783315
46b48894@1378845864401-46b48894@1378844106838  0.0109623 -0.0002156
5d9ab4f5@1378412329855-46b48894@1378844106838 -0.1035143 -0.1126225
7f20b1c7@1378712963763-46b48894@1378844106838  0.0155973  0.0038103
7f20b1c7@1378713851854-46b48894@1378844106838 -0.0363415 -0.0472568
8ae2fe42@1378827268681-46b48894@1378844106838 -0.0570682 -0.0682629
986c8378@1378826177581-46b48894@1378844106838 -0.0101942 -0.0253470
986c8378@1378826842544-46b48894@1378844106838 -0.0579080 -0.0688961
e71d2d62@1378737168452-46b48894@1378844106838 -0.1013249 -0.1131969
fec9b094@1378936198432-46b48894@1378844106838 -0.0078801 -0.0187673
5d9ab4f5@1378412329855-46b48894@1378845864401 -0.1144766 -0.1236747
7f20b1c7@1378712963763-46b48894@1378845864401  0.0046350 -0.0072216
7f20b1c7@1378713851854-46b48894@1378845864401 -0.0473038 -0.0582942
8ae2fe42@1378827268681-46b48894@1378845864401 -0.0680304 -0.0792985
986c8378@1378826177581-46b48894@1378845864401 -0.0211565 -0.0363635
986c8378@1378826842544-46b48894@1378845864401 -0.0688703 -0.0799330
e71d2d62@1378737168452-46b48894@1378845864401 -0.1122872 -0.1242283
fec9b094@1378936198432-46b48894@1378845864401 -0.0188424 -0.0298050
7f20b1c7@1378712963763-5d9ab4f5@1378412329855  0.1191117  0.1091822
7f20b1c7@1378713851854-5d9ab4f5@1378412329855  0.0671729  0.0582957
8ae2fe42@1378827268681-5d9ab4f5@1378412329855  0.0464462  0.0372276
986c8378@1378826177581-5d9ab4f5@1378412329855  0.0933201  0.0795627
986c8378@1378826842544-5d9ab4f5@1378412329855  0.0456063  0.0366399
e71d2d62@1378737168452-5d9ab4f5@1378412329855  0.0021895 -0.0078408
fec9b094@1378936198432-5d9ab4f5@1378412329855  0.0956342  0.0867916
7f20b1c7@1378713851854-7f20b1c7@1378712963763 -0.0519388 -0.0635483
8ae2fe42@1378827268681-7f20b1c7@1378712963763 -0.0726655 -0.0845381
986c8378@1378826177581-7f20b1c7@1378712963763 -0.0257916 -0.0414518
986c8378@1378826842544-7f20b1c7@1378712963763 -0.0735054 -0.0851832
e71d2d62@1378737168452-7f20b1c7@1378712963763 -0.1169222 -0.1294354
fec9b094@1378936198432-7f20b1c7@1378712963763 -0.0234775 -0.0350605
8ae2fe42@1378827268681-7f20b1c7@1378713851854 -0.0207267 -0.0317343
986c8378@1378826177581-7f20b1c7@1378713851854  0.0261473  0.0111322
986c8378@1378826842544-7f20b1c7@1378713851854 -0.0215666 -0.0323639
e71d2d62@1378737168452-7f20b1c7@1378713851854 -0.0649834 -0.0766792
fec9b094@1378936198432-7f20b1c7@1378713851854  0.0284614  0.0177667
986c8378@1378826177581-8ae2fe42@1378827268681  0.0468739  0.0316545
986c8378@1378826842544-8ae2fe42@1378827268681 -0.0008399 -0.0119196
e71d2d62@1378737168452-8ae2fe42@1378827268681 -0.0442567 -0.0562137
fec9b094@1378936198432-8ae2fe42@1378827268681  0.0491880  0.0382083
986c8378@1378826842544-986c8378@1378826177581 -0.0477138 -0.0627818
e71d2d62@1378737168452-986c8378@1378826177581 -0.0911307 -0.1068549
fec9b094@1378936198432-986c8378@1378826177581  0.0023141 -0.0126805
e71d2d62@1378737168452-986c8378@1378826842544 -0.0434168 -0.0551805
fec9b094@1378936198432-986c8378@1378826842544  0.0500279  0.0392590
fec9b094@1378936198432-e71d2d62@1378737168452  0.0934447  0.0817752
                                                     upr  p adj
3ad3559c@1379026295046-26742641@1379035244203 -0.0918517 0.0000
46b48894@1378844106838-26742641@1379035244203  0.0052289 0.8495
46b48894@1378845864401-26742641@1379035244203  0.0162646 0.9518
5d9ab4f5@1378412329855-26742641@1379035244203 -0.1002652 0.0000
7f20b1c7@1378712963763-26742641@1379035244203  0.0215050 0.2465
7f20b1c7@1378713851854-26742641@1379035244203 -0.0313000 0.0000
8ae2fe42@1378827268681-26742641@1379035244203 -0.0517491 0.0000
986c8378@1378826177581-26742641@1379035244203 -0.0009362 0.0262
986c8378@1378826842544-26742641@1379035244203 -0.0527943 0.0000
e71d2d62@1378737168452-26742641@1379035244203 -0.0953327 0.0000
fec9b094@1378936198432-26742641@1379035244203 -0.0028666 0.0022
46b48894@1378844106838-3ad3559c@1379026295046  0.1068970 0.0000
46b48894@1378845864401-3ad3559c@1379026295046  0.1179377 0.0000
5d9ab4f5@1378412329855-3ad3559c@1379026295046  0.0012331 0.1868
7f20b1c7@1378712963763-3ad3559c@1379026295046  0.1232169 0.0000
7f20b1c7@1378713851854-3ad3559c@1379026295046  0.0703550 0.0000
8ae2fe42@1378827268681-3ad3559c@1379026295046  0.0499252 0.0000
986c8378@1378826177581-3ad3559c@1379026295046  0.1009308 0.0000
986c8378@1378826842544-3ad3559c@1379026295046  0.0488658 0.0000
e71d2d62@1378737168452-3ad3559c@1379026295046  0.0063843 0.9604
fec9b094@1378936198432-3ad3559c@1379026295046  0.0987864 0.0000
46b48894@1378845864401-46b48894@1378844106838  0.0221402 0.0605
5d9ab4f5@1378412329855-46b48894@1378844106838 -0.0944062 0.0000
7f20b1c7@1378712963763-46b48894@1378844106838  0.0273843 0.0009
7f20b1c7@1378713851854-46b48894@1378844106838 -0.0254262 0.0000
8ae2fe42@1378827268681-46b48894@1378844106838 -0.0458734 0.0000
986c8378@1378826177581-46b48894@1378844106838  0.0049585 0.5499
986c8378@1378826842544-46b48894@1378844106838 -0.0469200 0.0000
e71d2d62@1378737168452-46b48894@1378844106838 -0.0894529 0.0000
fec9b094@1378936198432-46b48894@1378844106838  0.0030070 0.4292
5d9ab4f5@1378412329855-46b48894@1378845864401 -0.1052785 0.0000
7f20b1c7@1378712963763-46b48894@1378845864401  0.0164917 0.9818
7f20b1c7@1378713851854-46b48894@1378845864401 -0.0363133 0.0000
8ae2fe42@1378827268681-46b48894@1378845864401 -0.0567624 0.0000
986c8378@1378826177581-46b48894@1378845864401 -0.0059495 0.0003
986c8378@1378826842544-46b48894@1378845864401 -0.0578076 0.0000
e71d2d62@1378737168452-46b48894@1378845864401 -0.1003460 0.0000
fec9b094@1378936198432-46b48894@1378845864401 -0.0078799 0.0000
7f20b1c7@1378712963763-5d9ab4f5@1378412329855  0.1290411 0.0000
7f20b1c7@1378713851854-5d9ab4f5@1378412329855  0.0760500 0.0000
8ae2fe42@1378827268681-5d9ab4f5@1378412329855  0.0556648 0.0000
986c8378@1378826177581-5d9ab4f5@1378412329855  0.1070775 0.0000
986c8378@1378826842544-5d9ab4f5@1378412329855  0.0545727 0.0000
e71d2d62@1378737168452-5d9ab4f5@1378412329855  0.0122197 0.9999
fec9b094@1378936198432-5d9ab4f5@1378412329855  0.1044768 0.0000
7f20b1c7@1378713851854-7f20b1c7@1378712963763 -0.0403293 0.0000
8ae2fe42@1378827268681-7f20b1c7@1378712963763 -0.0607929 0.0000
986c8378@1378826177581-7f20b1c7@1378712963763 -0.0101313 0.0000
986c8378@1378826842544-7f20b1c7@1378712963763 -0.0618275 0.0000
e71d2d62@1378737168452-7f20b1c7@1378712963763 -0.1044090 0.0000
fec9b094@1378936198432-7f20b1c7@1378712963763 -0.0118944 0.0000
8ae2fe42@1378827268681-7f20b1c7@1378713851854 -0.0097190 0.0000
986c8378@1378826177581-7f20b1c7@1378713851854  0.0411623 0.0000
986c8378@1378826842544-7f20b1c7@1378713851854 -0.0107692 0.0000
e71d2d62@1378737168452-7f20b1c7@1378713851854 -0.0532876 0.0000
fec9b094@1378936198432-7f20b1c7@1378713851854  0.0391560 0.0000
986c8378@1378826177581-8ae2fe42@1378827268681  0.0620933 0.0000
986c8378@1378826842544-8ae2fe42@1378827268681  0.0102399 1.0000
e71d2d62@1378737168452-8ae2fe42@1378827268681 -0.0322997 0.0000
fec9b094@1378936198432-8ae2fe42@1378827268681  0.0601678 0.0000
986c8378@1378826842544-986c8378@1378826177581 -0.0326458 0.0000
e71d2d62@1378737168452-986c8378@1378826177581 -0.0754064 0.0000
fec9b094@1378936198432-986c8378@1378826177581  0.0173087 1.0000
e71d2d62@1378737168452-986c8378@1378826842544 -0.0316532 0.0000
fec9b094@1378936198432-986c8378@1378826842544  0.0607968 0.0000
fec9b094@1378936198432-e71d2d62@1378737168452  0.1051143 0.0000

$`previousTask:condition`
                                                  diff        lwr
Census/Activity:2back-back:2back             0.0304351  0.0055827
Census/Dress:2back-back:2back                0.0284498  0.0039209
Census/Energy:2back-back:2back               0.0214074 -0.0034450
Census/People:2back-back:2back               0.0247679  0.0002390
PhotoRanking:2back-back:2back                0.0328535  0.0080010
SlideToUnlock:2back-back:2back               0.0159819  0.0014533
back:3back-back:2back                        0.0042052 -0.0005517
Census/Activity:3back-back:2back             0.0266142  0.0014248
Census/Dress:3back-back:2back                0.0425329  0.0176805
Census/Energy:3back-back:2back               0.0308852  0.0060328
Census/People:3back-back:2back               0.0307481  0.0055586
PhotoRanking:3back-back:2back                0.0279057  0.0027162
SlideToUnlock:3back-back:2back               0.0305713  0.0159177
Census/Dress:2back-Census/Activity:2back    -0.0019853 -0.0366016
Census/Energy:2back-Census/Activity:2back   -0.0090277 -0.0438740
Census/People:2back-Census/Activity:2back   -0.0056672 -0.0402835
PhotoRanking:2back-Census/Activity:2back     0.0024183 -0.0324279
SlideToUnlock:2back-Census/Activity:2back   -0.0144532 -0.0428733
back:3back-Census/Activity:2back            -0.0262299 -0.0511146
Census/Activity:3back-Census/Activity:2back -0.0038209 -0.0389083
Census/Dress:3back-Census/Activity:2back     0.0120978 -0.0227485
Census/Energy:3back-Census/Activity:2back    0.0004501 -0.0343961
Census/People:3back-Census/Activity:2back    0.0003129 -0.0347745
PhotoRanking:3back-Census/Activity:2back    -0.0025295 -0.0376169
SlideToUnlock:3back-Census/Activity:2back    0.0001362 -0.0283480
Census/Energy:2back-Census/Dress:2back      -0.0070424 -0.0416587
Census/People:2back-Census/Dress:2back      -0.0036819 -0.0380666
PhotoRanking:2back-Census/Dress:2back        0.0044036 -0.0302126
SlideToUnlock:2back-Census/Dress:2back      -0.0124679 -0.0406055
back:3back-Census/Dress:2back               -0.0242446 -0.0488062
Census/Activity:3back-Census/Dress:2back    -0.0018356 -0.0366946
Census/Dress:3back-Census/Dress:2back        0.0140831 -0.0205331
Census/Energy:3back-Census/Dress:2back       0.0024354 -0.0321808
Census/People:3back-Census/Dress:2back       0.0022982 -0.0325608
PhotoRanking:3back-Census/Dress:2back       -0.0005441 -0.0354031
SlideToUnlock:3back-Census/Dress:2back       0.0021215 -0.0260808
Census/People:2back-Census/Energy:2back      0.0033605 -0.0312557
PhotoRanking:2back-Census/Energy:2back       0.0114460 -0.0234002
SlideToUnlock:2back-Census/Energy:2back     -0.0054255 -0.0338456
back:3back-Census/Energy:2back              -0.0172022 -0.0420869
Census/Activity:3back-Census/Energy:2back    0.0052068 -0.0298806
Census/Dress:3back-Census/Energy:2back       0.0211255 -0.0137208
Census/Energy:3back-Census/Energy:2back      0.0094778 -0.0253684
Census/People:3back-Census/Energy:2back      0.0093406 -0.0257468
PhotoRanking:3back-Census/Energy:2back       0.0064983 -0.0285892
SlideToUnlock:3back-Census/Energy:2back      0.0091639 -0.0193203
PhotoRanking:2back-Census/People:2back       0.0080855 -0.0265307
SlideToUnlock:2back-Census/People:2back     -0.0087860 -0.0369236
back:3back-Census/People:2back              -0.0205627 -0.0451243
Census/Activity:3back-Census/People:2back    0.0018463 -0.0330127
Census/Dress:3back-Census/People:2back       0.0177650 -0.0168512
Census/Energy:3back-Census/People:2back      0.0061173 -0.0284989
Census/People:3back-Census/People:2back      0.0059801 -0.0288788
PhotoRanking:3back-Census/People:2back       0.0031378 -0.0317212
SlideToUnlock:3back-Census/People:2back      0.0058034 -0.0223989
SlideToUnlock:2back-PhotoRanking:2back      -0.0168715 -0.0452916
back:3back-PhotoRanking:2back               -0.0286483 -0.0535329
Census/Activity:3back-PhotoRanking:2back    -0.0062392 -0.0413266
Census/Dress:3back-PhotoRanking:2back        0.0096795 -0.0251668
Census/Energy:3back-PhotoRanking:2back      -0.0019682 -0.0368145
Census/People:3back-PhotoRanking:2back      -0.0021054 -0.0371928
PhotoRanking:3back-PhotoRanking:2back       -0.0049478 -0.0400352
SlideToUnlock:3back-PhotoRanking:2back      -0.0022821 -0.0307663
back:3back-SlideToUnlock:2back              -0.0117767 -0.0263605
Census/Activity:3back-SlideToUnlock:2back    0.0106323 -0.0180829
Census/Dress:3back-SlideToUnlock:2back       0.0265510 -0.0018691
Census/Energy:3back-SlideToUnlock:2back      0.0149033 -0.0135167
Census/People:3back-SlideToUnlock:2back      0.0147661 -0.0139491
PhotoRanking:3back-SlideToUnlock:2back       0.0119238 -0.0167915
SlideToUnlock:3back-SlideToUnlock:2back      0.0145894 -0.0055299
Census/Activity:3back-back:3back             0.0224090 -0.0028122
Census/Dress:3back-back:3back                0.0383277  0.0134430
Census/Energy:3back-back:3back               0.0266800  0.0017954
Census/People:3back-back:3back               0.0265429  0.0013216
PhotoRanking:3back-back:3back                0.0237005 -0.0015208
SlideToUnlock:3back-back:3back               0.0263661  0.0116579
Census/Dress:3back-Census/Activity:3back     0.0159187 -0.0191687
Census/Energy:3back-Census/Activity:3back    0.0042710 -0.0308164
Census/People:3back-Census/Activity:3back    0.0041338 -0.0311931
PhotoRanking:3back-Census/Activity:3back     0.0012914 -0.0340355
SlideToUnlock:3back-Census/Activity:3back    0.0039571 -0.0248216
Census/Energy:3back-Census/Dress:3back      -0.0116477 -0.0464939
Census/People:3back-Census/Dress:3back      -0.0117849 -0.0468723
PhotoRanking:3back-Census/Dress:3back       -0.0146272 -0.0497147
SlideToUnlock:3back-Census/Dress:3back      -0.0119616 -0.0404458
Census/People:3back-Census/Energy:3back     -0.0001372 -0.0352246
PhotoRanking:3back-Census/Energy:3back      -0.0029796 -0.0380670
SlideToUnlock:3back-Census/Energy:3back     -0.0003139 -0.0287981
PhotoRanking:3back-Census/People:3back      -0.0028424 -0.0381693
SlideToUnlock:3back-Census/People:3back     -0.0001767 -0.0289554
SlideToUnlock:3back-PhotoRanking:3back       0.0026657 -0.0261130
                                                   upr  p adj
Census/Activity:2back-back:2back             0.0552875 0.0032
Census/Dress:2back-back:2back                0.0529787 0.0076
Census/Energy:2back-back:2back               0.0462598 0.1820
Census/People:2back-back:2back               0.0492968 0.0451
PhotoRanking:2back-back:2back                0.0577059 0.0008
SlideToUnlock:2back-back:2back               0.0305106 0.0162
back:3back-back:2back                        0.0089621 0.1509
Census/Activity:3back-back:2back             0.0518037 0.0269
Census/Dress:3back-back:2back                0.0673853 0.0000
Census/Energy:3back-back:2back               0.0557377 0.0025
Census/People:3back-back:2back               0.0559375 0.0034
PhotoRanking:3back-back:2back                0.0530951 0.0147
SlideToUnlock:3back-back:2back               0.0452249 0.0000
Census/Dress:2back-Census/Activity:2back     0.0326309 1.0000
Census/Energy:2back-Census/Activity:2back    0.0258185 0.9999
Census/People:2back-Census/Activity:2back    0.0289490 1.0000
PhotoRanking:2back-Census/Activity:2back     0.0372646 1.0000
SlideToUnlock:2back-Census/Activity:2back    0.0139669 0.9141
back:3back-Census/Activity:2back            -0.0013452 0.0277
Census/Activity:3back-Census/Activity:2back  0.0312665 1.0000
Census/Dress:3back-Census/Activity:2back     0.0469441 0.9968
Census/Energy:3back-Census/Activity:2back    0.0352964 1.0000
Census/People:3back-Census/Activity:2back    0.0354003 1.0000
PhotoRanking:3back-Census/Activity:2back     0.0325580 1.0000
SlideToUnlock:3back-Census/Activity:2back    0.0286204 1.0000
Census/Energy:2back-Census/Dress:2back       0.0275738 1.0000
Census/People:2back-Census/Dress:2back       0.0307028 1.0000
PhotoRanking:2back-Census/Dress:2back        0.0390199 1.0000
SlideToUnlock:2back-Census/Dress:2back       0.0156697 0.9702
back:3back-Census/Dress:2back                0.0003169 0.0572
Census/Activity:3back-Census/Dress:2back     0.0330234 1.0000
Census/Dress:3back-Census/Dress:2back        0.0486993 0.9857
Census/Energy:3back-Census/Dress:2back       0.0370517 1.0000
Census/People:3back-Census/Dress:2back       0.0371572 1.0000
PhotoRanking:3back-Census/Dress:2back        0.0343148 1.0000
SlideToUnlock:3back-Census/Dress:2back       0.0303238 1.0000
Census/People:2back-Census/Energy:2back      0.0379767 1.0000
PhotoRanking:2back-Census/Energy:2back       0.0462923 0.9982
SlideToUnlock:2back-Census/Energy:2back      0.0229946 1.0000
back:3back-Census/Energy:2back               0.0076825 0.5403
Census/Activity:3back-Census/Energy:2back    0.0402943 1.0000
Census/Dress:3back-Census/Energy:2back       0.0559718 0.7460
Census/Energy:3back-Census/Energy:2back      0.0443241 0.9998
Census/People:3back-Census/Energy:2back      0.0444281 0.9998
PhotoRanking:3back-Census/Energy:2back       0.0415857 1.0000
SlideToUnlock:3back-Census/Energy:2back      0.0376481 0.9985
PhotoRanking:2back-Census/People:2back       0.0427018 1.0000
SlideToUnlock:2back-Census/People:2back      0.0193516 0.9989
back:3back-Census/People:2back               0.0039988 0.2200
Census/Activity:3back-Census/People:2back    0.0367053 1.0000
Census/Dress:3back-Census/People:2back       0.0523813 0.9085
Census/Energy:3back-Census/People:2back      0.0407336 1.0000
Census/People:3back-Census/People:2back      0.0408391 1.0000
PhotoRanking:3back-Census/People:2back       0.0379968 1.0000
SlideToUnlock:3back-Census/People:2back      0.0340057 1.0000
SlideToUnlock:2back-PhotoRanking:2back       0.0115485 0.7731
back:3back-PhotoRanking:2back               -0.0037636 0.0085
Census/Activity:3back-PhotoRanking:2back     0.0288482 1.0000
Census/Dress:3back-PhotoRanking:2back        0.0445257 0.9997
Census/Energy:3back-PhotoRanking:2back       0.0328781 1.0000
Census/People:3back-PhotoRanking:2back       0.0329820 1.0000
PhotoRanking:3back-PhotoRanking:2back        0.0301396 1.0000
SlideToUnlock:3back-PhotoRanking:2back       0.0262020 1.0000
back:3back-SlideToUnlock:2back               0.0028071 0.2734
Census/Activity:3back-SlideToUnlock:2back    0.0393476 0.9940
Census/Dress:3back-SlideToUnlock:2back       0.0549711 0.0962
Census/Energy:3back-SlideToUnlock:2back      0.0433234 0.8939
Census/People:3back-SlideToUnlock:2back      0.0434814 0.9072
PhotoRanking:3back-SlideToUnlock:2back       0.0406390 0.9828
SlideToUnlock:3back-SlideToUnlock:2back      0.0347087 0.4559
Census/Activity:3back-back:3back             0.0476303 0.1452
Census/Dress:3back-back:3back                0.0632124 0.0000
Census/Energy:3back-back:3back               0.0515647 0.0225
Census/People:3back-back:3back               0.0517641 0.0282
PhotoRanking:3back-back:3back                0.0489217 0.0914
SlideToUnlock:3back-back:3back               0.0410744 0.0000
Census/Dress:3back-Census/Activity:3back     0.0510061 0.9638
Census/Energy:3back-Census/Activity:3back    0.0393584 1.0000
Census/People:3back-Census/Activity:3back    0.0394607 1.0000
PhotoRanking:3back-Census/Activity:3back     0.0366183 1.0000
SlideToUnlock:3back-Census/Activity:3back    0.0327358 1.0000
Census/Energy:3back-Census/Dress:3back       0.0231986 0.9978
Census/People:3back-Census/Dress:3back       0.0233026 0.9977
PhotoRanking:3back-Census/Dress:3back        0.0204602 0.9822
SlideToUnlock:3back-Census/Dress:3back       0.0165226 0.9811
Census/People:3back-Census/Energy:3back      0.0349502 1.0000
PhotoRanking:3back-Census/Energy:3back       0.0321078 1.0000
SlideToUnlock:3back-Census/Energy:3back      0.0281702 1.0000
PhotoRanking:3back-Census/People:3back       0.0324845 1.0000
SlideToUnlock:3back-Census/People:3back      0.0286019 1.0000
SlideToUnlock:3back-PhotoRanking:3back       0.0314443 1.0000



#########
# Accuracy investigation
accuracyLogit <- glm(isCorrect ~ factor(previousTask) + factor(condition) + factor(session), data=backtasks, family='binomial')
summary(accuracyLogit)

Call:
glm(formula = isCorrect ~ factor(previousTask) + factor(condition) + 
    factor(session), family = "binomial", data = backtasks)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-2.616   0.332   0.397   0.460   0.926  

Coefficients:
                                      Estimate Std. Error z value Pr(>|z|)
(Intercept)                              3.052      0.245   12.48  < 2e-16
factor(previousTask)Census/Activity      0.308      0.471    0.65  0.51325
factor(previousTask)Census/Dress         0.887      0.595    1.49  0.13589
factor(previousTask)Census/Energy        0.332      0.471    0.71  0.48038
factor(previousTask)Census/People       -0.347      0.365   -0.95  0.34261
factor(previousTask)PhotoRanking        -0.596      0.338   -1.77  0.07745
factor(previousTask)SlideToUnlock       -0.292      0.219   -1.33  0.18265
factor(condition)3back                  -0.429      0.104   -4.13  3.6e-05
factor(session)3ad3559c@1379026295046   -1.402      0.265   -5.29  1.2e-07
factor(session)46b48894@1378844106838    0.226      0.349    0.65  0.51698
factor(session)46b48894@1378845864401    0.197      0.349    0.56  0.57261
factor(session)5d9ab4f5@1378412329855   -0.861      0.256   -3.36  0.00077
factor(session)7f20b1c7@1378712963763   -0.370      0.325   -1.14  0.25457
factor(session)7f20b1c7@1378713851854   -0.179      0.315   -0.57  0.56871
factor(session)8ae2fe42@1378827268681   -0.380      0.311   -1.22  0.22111
factor(session)986c8378@1378826177581   -0.150      0.420   -0.36  0.72129
factor(session)986c8378@1378826842544   -0.318      0.310   -1.02  0.30551
factor(session)e71d2d62@1378737168452   -0.550      0.317   -1.74  0.08246
factor(session)fec9b094@1378936198432   -0.551      0.296   -1.86  0.06271

(Intercept)                           ***
factor(previousTask)Census/Activity      
factor(previousTask)Census/Dress         
factor(previousTask)Census/Energy        
factor(previousTask)Census/People        
factor(previousTask)PhotoRanking      .  
factor(previousTask)SlideToUnlock        
factor(condition)3back                ***
factor(session)3ad3559c@1379026295046 ***
factor(session)46b48894@1378844106838    
factor(session)46b48894@1378845864401    
factor(session)5d9ab4f5@1378412329855 ***
factor(session)7f20b1c7@1378712963763    
factor(session)7f20b1c7@1378713851854    
factor(session)8ae2fe42@1378827268681    
factor(session)986c8378@1378826177581    
factor(session)986c8378@1378826842544    
factor(session)e71d2d62@1378737168452 .  
factor(session)fec9b094@1378936198432 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2857.7  on 4581  degrees of freedom
Residual deviance: 2742.6  on 4563  degrees of freedom
AIC: 2781

Number of Fisher Scoring iterations: 5
# Census is significantly less accurate than 'back'