describe(ds$media_1, na.rm = T) #NTTimes = 3.78
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 3.78 2.76 4 3.88 2.97 -2 8 10 -0.1 -0.68 0.65
describe(ds$media_2, na.rm = T) #WSJ = -1.38
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 -1.38 4.94 -2 -1.57 4.45 -8 8 16 0.76 -0.69 1.23
describe(ds$media_3, na.rm = T) #WashPost = 1.88
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 1.88 4.22 2 1.86 2.97 -6 10 16 0.39 -0.34 1.06
describe(ds$media_4, na.rm = T) #USA today = 1.67
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 12 1.67 3.8 0 1.2 1.48 -2 10 12 1.09 -0.25 1.1
describe(ds$media_5, na.rm = T) #Fox News = -6.78
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 -6.78 4.76 -8 -7.25 1.48 -10 4 14 1.53 0.64 1.12
describe(ds$media_6, na.rm = T) #CNN = 5.56
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 5.56 2.91 6 5.56 2.97 1 10 9 0.09 -1.3 0.69
describe(ds$media_7, na.rm = T) #MSNBC = 5.17
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 18 5.17 3.76 6 5.31 5.19 -2 10 12 -0.32 -1.25 0.89
describe(ds$media_8, na.rm = T) #Yahoo = 1.92
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 12 1.92 3.82 0 1.5 2.22 -2 10 12 0.92 -0.58 1.1
describe(ds$media_9, na.rm = T) #HuffPost = 5.56
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 5.56 3.16 6 5.79 2.97 -2 10 12 -0.9 0.02 0.79
describe(ds$media_10, na.rm = T) #AOL = 2
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 7 2 4.32 0 2 0 -2 10 12 0.85 -1.08 1.63
describe(ds$media_11, na.rm = T) #NPR = 3.5
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 14 3.5 3.67 2 3.25 2.97 0 10 10 0.51 -1.53 0.98
describe(ds$media_12, na.rm = T) #ABC = 0.81
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 0.81 2.01 1 0.79 1.48 -2 4 6 -0.13 -1.2 0.5
describe(ds$media_13, na.rm = T) #NBC = 2.18
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 17 2.18 3.38 2 2.07 1.48 -4 10 14 0.62 0.13 0.82
describe(ds$media_14, na.rm = T) #CBS = 3.24
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 17 3.24 3.4 2 3.13 2.97 -2 10 12 0.59 -0.94 0.82
describe(ds$media_15, na.rm = T) #PBS = 1.38
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 16 1.38 2.13 0 1.14 0 0 6 6 1.26 0.05 0.53
kripp.alpha(as.matrix(ds), method = c("interval"))
## Krippendorff's alpha
##
## Subjects = 16
## Raters = 18
## alpha = 0.466
d$media_1 <- 3.78 #NYTimes = 3.78
d$media_2 <- -1.38 #WSJ = -1.38
d$media_3 <- 1.88 #WashPost = 1.88
d$media_4 <- 1.67 #USA today = 1.67
d$media_5 <- -6.78 #Fox News = -6.78
d$media_6 <- 5.56 #CNN = 5.56
d$media_7 <- 5.17 #MSNBC = 5.17
d$media_8 <- 1.92 #Yahoo = 1.92
d$media_9 <- 5.56 #HuffPost = 5.56
d$media_10 <- 2 #AOL = 2
d$media_11 <- 3.5 #NPR = 3.5
d$media_12 <- 0.81 #ABC = 0.81
d$media_13 <- 2.18 #NBC = 2.18
d$media_14 <- 3.24 #CBS = 3.24
d$media_15 <- 1.38 #PBS = 1.38
#calculate index
d$index_1 <- d$mediaPerception_1 *d$media_1
d$index_2 <- d$mediaPerception_2 *d$media_2
d$index_3 <- d$mediaPerception_3 *d$media_3
d$index_4 <- d$mediaPerception_4 *d$media_4
d$index_5 <- d$mediaPerception_5 *d$media_5
d$index_6 <- d$mediaPerception_6 *d$media_6
d$index_7 <- d$mediaPerception_7 *d$media_7
d$index_8 <- d$mediaPerception_8 *d$media_8
d$index_9 <- d$mediaPerception_9 *d$media_9
d$index_10 <- d$mediaPerception_10*d$media_10
d$index_11 <- d$mediaPerception_11*d$media_11
d$index_12 <- d$mediaPerception_12*d$media_12
d$index_13 <- d$mediaPerception_13*d$media_13
d$index_14 <- d$mediaPerception_14*d$media_14
d$index_15 <- d$mediaPerception_15*d$media_15
d$mediaIndex <- (d$index_1 +
d$index_2 +
d$index_3 +
d$index_4 +
d$index_5 +
d$index_6 +
d$index_7 +
d$index_8 +
d$index_9 +
d$index_10+
d$index_11+
d$index_12+
d$index_13+
d$index_14+
d$index_15)/15
d$mediaIndex.c <- d$mediaIndex - mean(d$mediaIndex, na.rm = T)
m1 <- lm(ownvote.c ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
tab_model(m1)
| ownvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.19 | -0.28 – -0.11 | <0.001 |
| mediaIndex.c | 0.17 | 0.13 – 0.21 | <0.001 |
| pDem_Rep | -0.54 | -0.72 – -0.35 | <0.001 |
| pInd_Not | 0.68 | 0.48 – 0.87 | <0.001 |
| mediaIndex.c * pDem_Rep | -0.09 | -0.17 – -0.01 | 0.023 |
| mediaIndex.c * pInd_Not | -0.10 | -0.20 – 0.00 | 0.055 |
| Observations | 1202 | ||
| R2 / R2 adjusted | 0.202 / 0.198 | ||
m2 <- lm(overallvote.c ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
tab_model(m2)
| overallvote.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.05 | -0.13 – 0.03 | 0.191 |
| mediaIndex.c | 0.26 | 0.22 – 0.29 | <0.001 |
| pDem_Rep | -0.95 | -1.13 – -0.78 | <0.001 |
| pInd_Not | 0.41 | 0.22 – 0.59 | <0.001 |
| mediaIndex.c * pDem_Rep | 0.09 | 0.02 – 0.16 | 0.013 |
| mediaIndex.c * pInd_Not | -0.12 | -0.21 – -0.03 | 0.013 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.389 / 0.387 | ||
m3 <- lm(voteLegit.c ~ mediaIndex.c * (pDem_Rep + pInd_Not), data = d)
tab_model(m3)
| voteLegit.c | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | -0.12 | -0.20 – -0.05 | 0.002 |
| mediaIndex.c | 0.21 | 0.18 – 0.25 | <0.001 |
| pDem_Rep | -0.75 | -0.91 – -0.58 | <0.001 |
| pInd_Not | 0.54 | 0.36 – 0.71 | <0.001 |
| mediaIndex.c * pDem_Rep | 0.00 | -0.07 – 0.07 | 0.989 |
| mediaIndex.c * pInd_Not | -0.11 | -0.20 – -0.02 | 0.021 |
| Observations | 1201 | ||
| R2 / R2 adjusted | 0.319 / 0.316 | ||