installed.packages() install.packages(“rmarkdown”) install.packages(“knitr”) install.packages(“kable”) install.packages(“data.table”) install.packages(“ggplot2”) install.packages(“tidyverse”) install.packages(“plotly”) install.packages(‘RColorBrewer’) install.packages(“janitor”) install.packages(“broom”) install.packages(“rgbif”) install.packages(“xfun”) install.packages(“tinytex”) install.packages(“munsell”) tinytex::pdflatex(‘test.tex’) tinytex:::install_yihui_pkgs()

rm(list=ls())
library('data.table')
library("tidyverse")
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.1.1     v dplyr   1.0.5
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::between()   masks data.table::between()
## x dplyr::filter()    masks stats::filter()
## x dplyr::first()     masks data.table::first()
## x dplyr::lag()       masks stats::lag()
## x dplyr::last()      masks data.table::last()
## x purrr::transpose() masks data.table::transpose()
library("ggplot2")
library("janitor")
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library("RColorBrewer")
library("tinytex")
library("xfun")
## 
## Attaching package: 'xfun'
## The following objects are masked from 'package:base':
## 
##     attr, isFALSE
hogares=fread("Base_Hogares.csv", encoding = "Latin-1")
hogares= as.data.table(hogares)
hogares
##             Hogar Macrozona Zona Comuna Manzana DirCoordX DirCoordY      Fecha
##    1:       90431         1    9      2   90431  253073.7   6341154 2014-11-25
##    2:     1012966        13  101      3 1012966  266270.6   6342393 2015-05-08
##    3:     1580550        17  158      4 1580550  263457.5   6352430 2014-11-04
##    4:     1630397        17  163      4 1630397  261833.0   6353000 2015-11-18
##    5:     3385901         1    3      2   33843  252717.4   6341820 2015-04-01
##   ---                                                                         
## 8772:  3563001037        19  356      5 3563001  269103.5   6340579 2014-09-10
## 8773: 10100810901        13  101      3 1010081  265910.7   6341803 2015-05-08
## 8774: 21618310901        21  216      5 2161831  274441.3   6339604 2014-10-28
## 8775: 23550461901        26  235      6 2350461  278998.6   6341682 2014-09-30
## 8776: 50234990903         6   50      2  502349  259774.5   6332118 2015-05-13
##       DiaAsig TipoDia NumPer NumVeh Propiedad NoSabeNoResponde MontoDiv
##    1:       2       1      3      0         1                1       NA
##    2:       5       1      3      1         1                0       NA
##    3:       2       1      5      3         1                0       NA
##    4:       3       1      2      1         3                0       NA
##    5:       3       1      2      0         3                0       NA
##   ---                                                                  
## 8772:       3       1      4      0         1                0       NA
## 8773:       5       1      3      0         1                0       NA
## 8774:       2       1      3      0         3                0       NA
## 8775:       2       1      2      1         1                0       NA
## 8776:       3       1      2      1         1                0       NA
##       MontoArrEstima MontoArrPaga IngresoHogar Factor_Laboral Factor_Sabado
##    1:             NA           NA       241483       49.61113            NA
##    2:         280000           NA      1156372       47.45112            NA
##    3:        1000000           NA      3442226       53.75151            NA
##    4:             NA       350000       695736       35.05007            NA
##    5:             NA       100000       258299       40.28616            NA
##   ---                                                                      
## 8772:         120000           NA       331018       27.74549            NA
## 8773:         260000           NA       769430       45.89651            NA
## 8774:             NA        80000       626361       34.22977            NA
## 8775:         200000           NA      1000248       35.39052            NA
## 8776:         300000           NA      1191615       45.21407            NA
##       Factor_Domingo   Factor aux      comunahg          Macrozonahg Factorhg
##    1:             NA 40.82472   1    Valparaíso          Playa Ancha 40.82472
##    2:             NA 39.15974   1  Viña del Mar Viña del Mar Oriente 39.15974
##    3:             NA 45.42331   1        Concon      Concón Poniente 45.42331
##    4:             NA 35.33358   1        Concon      Concón Poniente 35.33358
##    5:             NA 32.25464   1    Valparaíso          Playa Ancha 32.25464
##   ---                                                                        
## 8772:             NA 23.72622   1       Quilpue     Quilpué Poniente 23.72622
## 8773:             NA 38.05306   1  Viña del Mar Viña del Mar Oriente 38.05306
## 8774:             NA 30.05988   1       Quilpue           El Belloto 30.05988
## 8775:             NA 27.56420   1 Villa Alemana  Villa Alemana Norte 27.56420
## 8776:             NA 39.39303   1    Valparaíso     Placilla-Curauma 39.39303
ggplot(data = hogares[IngresoHogar < 2000000], aes(x = IngresoHogar)) + geom_histogram(bins=40)

ingprom= hogares %>%
  group_by(Macrozona)%>%
  summarise(mean(IngresoHogar))
colnames(ingprom)
## [1] "Macrozona"          "mean(IngresoHogar)"
colnames(ingprom)= c("Macrozona", "Prom")
ggplot(aes (x = Macrozona, y = Prom), data= ingprom) + stat_summary(fun="mean", geom="bar")

ggplot(aes (x = Macrozona, y = Prom), data= ingprom) + stat_summary(fun="mean", geom="bar")+
labs(x="N°Macrozona", y="SalarioPromedio", title="Promedio de salario" , subtitle = "Por macrozona", caption = "Fuente:Base_Hogares.csv") +
  theme(axis.text.x = element_blank())

rest=fread("restaurantes.csv", encoding = "Latin-1")
ggplot(data=rest, aes (x = reviews, y = rating, colour = COMUNA)) + geom_point() 

mult=rest[, reviews]* rest[, rating]
indicador=mult/1000
total=cbind(rest, indicador)
total[,indicador]
##  [1] 7.7878 1.1528 0.0473 0.0111 0.3913 6.6375 2.7270 6.2235 6.9345 1.4076
## [11] 0.0329 0.8883 0.0150 7.6780 0.0980 3.8399 1.4112 1.6290 4.1630 2.4534
## [21] 1.5928 0.7812 0.5400 1.0648 0.0473 0.2392 0.0300 0.2565 0.1058 0.4563
## [31] 0.0100 0.0080 1.8814 0.0987 0.0090 0.1188 0.0070
PlanVina= c(7.7878, 1.1528, 0.0473, 0.0111, 0.3913, 6.6375, 2.7270, 6.2235, 1.4112, 0.7812)
mean(PlanVina)
## [1] 2.71707
PlanValp=c(6.9345, 1.4076, 0.0329, 0.0980, 3.8399, 0.2392, 1.0648)
mean(PlanValp)
## [1] 1.945271
Valpoal= c(0.8883, 0.0150, 7.6780, 0.1058)
mean(Valpoal)
## [1] 2.171775