##Recreate the simulated data from Exercise 7.2
## Warning: package 'mlbench' was built under R version 3.6.3
set.seed(200)
simulated <- mlbench.friedman1(200, sd = 1)
simulated <- cbind(simulated$x, simulated$y)
simulated <- as.data.frame(simulated)
colnames(simulated)[ncol(simulated)] <- "y"
head(simulated)## V1 V2 V3 V4 V5 V6 V7
## 1 0.5337724 0.6478064 0.85078526 0.18159957 0.92903976 0.36179060 0.8266609
## 2 0.5837650 0.4381528 0.67272659 0.66924914 0.16379784 0.45305931 0.6489601
## 3 0.5895783 0.5879065 0.40967108 0.33812728 0.89409334 0.02681911 0.1785614
## 4 0.6910399 0.2259548 0.03335447 0.06691274 0.63744519 0.52500637 0.5133614
## 5 0.6673315 0.8188985 0.71676079 0.80324287 0.08306864 0.22344157 0.6644906
## 6 0.8392937 0.3862983 0.64618857 0.86105431 0.63038947 0.43703891 0.3360117
## V8 V9 V10 y
## 1 0.4214081 0.59111440 0.5886216 18.46398
## 2 0.8446239 0.92819306 0.7584008 16.09836
## 3 0.3495908 0.01759542 0.4441185 17.76165
## 4 0.7970260 0.68986918 0.4450716 13.78730
## 5 0.9038919 0.39696995 0.5500808 18.42984
## 6 0.6489177 0.53116033 0.9066182 20.85817
##(a)
Fit a random forest model to all of the predictors, then estimate the variable importance scores Did the random forest model significantly use the uninformative predictors (V6 - V10)?
No. Looking at the top ten predictors, V6-V10 are in the bottom half of the top ten predictors.
model1 <- randomForest(y ~ ., data = simulated, importance = TRUE, ntree = 1000)
rfImp1 <- varImp(model1, scale = FALSE)
rfImp1 <- rfImp1 %>%
arrange(desc(Overall))
rfImp1## Overall
## V1 8.732235404
## V4 7.615118809
## V2 6.415369387
## V5 2.023524577
## V3 0.763591825
## V6 0.165111172
## V7 -0.005961659
## V10 -0.074944788
## V9 -0.095292651
## V8 -0.166362581
rfImp1_df <- as.data.frame(rfImp1)
rfImp1_df['Predictors'] <- rownames(rfImp1_df)
colnames(rfImp1_df) <- c("Overall", "Predictors")
rfImp1_df <- rfImp1_df[, c("Predictors", "Overall") ]
rownames(rfImp1_df) <- 1:nrow(rfImp1_df)
rfImp1_df## Predictors Overall
## 1 V1 8.732235404
## 2 V4 7.615118809
## 3 V2 6.415369387
## 4 V5 2.023524577
## 5 V3 0.763591825
## 6 V6 0.165111172
## 7 V7 -0.005961659
## 8 V10 -0.074944788
## 9 V9 -0.095292651
## 10 V8 -0.166362581
rfImp1_df %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "darkgoldenrod4") +
theme_minimal() +
coord_flip() +
labs(title="randomForest Predictor Variable Importance",
y="randomForest Importance", x="Predictors") +
scale_y_continuous()Now add an additional predictor that is highly correlated with one of the informative predictors. For example:
Below another the variable “predictor” is created and correlated to existing predictor, “V1”.
set.seed(100)
simulated$predictor <- simulated$V1 + rnorm(200) * .1
cor(simulated$predictor, simulated$V1)## [1] 0.9509187
model <- randomForest(y ~ ., data = simulated, importance = TRUE, ntree = 1000)
rfImp1 <- varImp(model, scale = FALSE)
rfImp1 <- rfImp1 %>%
arrange(desc(Overall))
rfImp1## Overall
## V4 7.20204040
## V1 6.49306066
## V2 6.21582190
## predictor 4.16423346
## V5 2.13524474
## V3 0.64839591
## V6 0.14024806
## V10 0.04098736
## V7 -0.04983958
## V9 -0.11410645
## V8 -0.19251042
Fit another random forest model to these data. Did the importance score for V1 change? What happens when you add another predictor that is also highly correlated with V1?
The importance score for V1 declined from the most importamt to the 2nd most important. Adding another highly correlated predictor with V1 dropped its importance.
Use the cforest function in the party package to fit a random forest model using conditional inference trees. The party package function varimp can calculate predictor importance. The conditional argument of that function toggles between the traditional importance measure and the modified version described in Strobl et al. (2007). Do these importances show the same pattern as the traditional random forest model?
Yes. They do show the same patterns.
rfImp2 <- as.data.frame( varimp(model2, conditional = TRUE))
rfImp2['Predictors'] <- rownames(rfImp2)
colnames(rfImp2) <- c("Overall", "Predictors")
rownames(rfImp2) <- 1:nrow(rfImp2)
rfImp2 <- rfImp2 %>%
arrange(desc(Overall))rfImp2 %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "green") +
theme_gray() +
coord_flip() +
labs(title="cForest Predictor Variable Importance",
y="cForest Importance", x="Predictors") +
scale_y_continuous()Repeat this process with different tree models, such as boosted trees and Cubist. Does the same pattern occur?
Boosted Trees
library(mlbench)
set.seed(200)
simulated2 <- mlbench.friedman1(200, sd = 1)
simulated2 <- cbind(simulated2$x, simulated2$y)
simulated2 <- as.data.frame(simulated2)
colnames(simulated2)[ncol(simulated2)] <- "y"gbmGrid <- expand.grid(interaction.depth = seq(1, 7, by = 2),
n.trees = seq(100, 1000, by = 50),
shrinkage = c(0.01, 0.1),
n.minobsinnode = 5)set.seed(100)
gbmTune <- train(simulated2[1:10], simulated2$y,
method = "gbm",
tuneGrid = gbmGrid,
verbose = FALSE)## Overall
## V1 100.0000000
## V4 98.1097981
## V2 88.2693765
## V5 38.4827377
## V3 24.8130798
## V7 5.0311729
## V6 3.6098923
## V8 1.0913383
## V10 0.8008837
## V9 0.0000000
gbmTune1_df <- as.data.frame(gbmTune1$importance)
gbmTune1_df['Predictors'] <- rownames(gbmTune1_df)
colnames(gbmTune1_df) <- c("Overall", "Predictors")
rownames(gbmTune1_df) <- 1:nrow(gbmTune1_df)
gbmTune1_df## Overall Predictors
## 1 100.0000000 V1
## 2 88.2693765 V2
## 3 24.8130798 V3
## 4 98.1097981 V4
## 5 38.4827377 V5
## 6 3.6098923 V6
## 7 5.0311729 V7
## 8 1.0913383 V8
## 9 0.0000000 V9
## 10 0.8008837 V10
gbmTune1_df %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "steelblue") +
theme_gray() +
coord_flip() +
labs(title="boosted Predictor Variable Importance",
y="boosted Importance", x="Predictors") +
scale_y_continuous()Now add an additional predictor that is highly correlated with one of the informative predictors as was done in Part A:
set.seed(100)
simulated2$duplicate <- simulated2$V1 + rnorm(200) * .1
cor(simulated2$duplicate, simulated2$V1)## [1] 0.9509187
col_order <- colnames(simulated2)
col_order <- c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10", "duplicate", "y")
simulated2 <- simulated2[, col_order]
simulated2## V1 V2 V3 V4 V5 V6
## 1 0.533772448 0.6478064333 0.850785258 0.181599574 0.929039760 0.361790597
## 2 0.583765033 0.4381527551 0.672726594 0.669249143 0.163797838 0.453059313
## 3 0.589578298 0.5879064940 0.409671080 0.338127280 0.894093335 0.026819108
## 4 0.691039888 0.2259547510 0.033354474 0.066912736 0.637445191 0.525006367
## 5 0.667331498 0.8188985116 0.716760786 0.803242873 0.083068641 0.223441572
## 6 0.839293735 0.3862983445 0.646188573 0.861054306 0.630389472 0.437038906
## 7 0.711600085 0.1162793254 0.767706224 0.859962373 0.520582290 0.990291612
## 8 0.096501224 0.8445782231 0.153528016 0.412814007 0.746725963 0.662056439
## 9 0.523824728 0.2514584265 0.285196133 0.452202451 0.506808798 0.019370317
## 10 0.235350536 0.4317718598 0.780373945 0.072122673 0.100005680 0.294671116
## 11 0.454364888 0.1192040211 0.220170008 0.351687343 0.001755818 0.149134940
## 12 0.649252912 0.0973321993 0.598340076 0.734892188 0.669684836 0.668878612
## 13 0.153727122 0.0128550101 0.608990930 0.633952646 0.094662402 0.616397752
## 14 0.649288674 0.1866738056 0.365308329 0.045665963 0.806304601 0.476613421
## 15 0.383213673 0.4608722613 0.345225364 0.735293760 0.217474412 0.350192171
## 16 0.307298063 0.4219112301 0.979319583 0.144514926 0.489620249 0.516859321
## 17 0.566767377 0.7811157859 0.890115921 0.995679246 0.413354418 0.379292418
## 18 0.131787853 0.1998720246 0.379945722 0.570354241 0.932332295 0.175180161
## 19 0.922177571 0.4675492314 0.010254486 0.008189635 0.789955666 0.846729845
## 20 0.646329618 0.7929329765 0.053864328 0.652274119 0.226417012 0.510733424
## 21 0.460360692 0.0697931792 0.784207606 0.686981049 0.379707196 0.434224161
## 22 0.098747006 0.2313314399 0.520667098 0.298788559 0.058919030 0.321473247
## 23 0.206593813 0.6473270494 0.606014522 0.086910314 0.536598262 0.592455531
## 24 0.922339834 0.6342856146 0.888005181 0.503549783 0.504815002 0.519335387
## 25 0.319426806 0.0545100805 0.381021996 0.999287510 0.982473919 0.515890769
## 26 0.265324291 0.8564205186 0.050943109 0.395974373 0.937435226 0.983467527
## 27 0.717369557 0.2948283439 0.736812766 0.919277884 0.128039610 0.414260471
## 28 0.380335360 0.0004408562 0.733275530 0.345613460 0.443263867 0.558792540
## 29 0.030620939 0.2731315538 0.903001443 0.758067884 0.147233479 0.146207562
## 30 0.521419376 0.3537345366 0.830735998 0.393664814 0.671653698 0.573219036
## 31 0.263748623 0.5057117699 0.140882633 0.678475745 0.562049805 0.812396222
## 32 0.166053713 0.2998292497 0.377729565 0.270103104 0.711894969 0.103405041
## 33 0.483074695 0.5088484667 0.636458001 0.654003645 0.616297887 0.399691042
## 34 0.325727710 0.9247118952 0.817825248 0.371338245 0.382548874 0.441881776
## 35 0.925363897 0.2371832319 0.010075368 0.345586454 0.547638883 0.201830557
## 36 0.560558849 0.4270182950 0.313384585 0.610149687 0.802779849 0.815573796
## 37 0.178553036 0.4352612651 0.153328084 0.549069691 0.356350074 0.094069178
## 38 0.972322052 0.6359792664 0.445975145 0.899534479 0.268725364 0.903799011
## 39 0.493773325 0.3447996511 0.445896353 0.449058379 0.003265168 0.759522119
## 40 0.485940594 0.8554888491 0.813352563 0.045685444 0.880070203 0.513183234
## 41 0.586856649 0.2803302526 0.037726685 0.018251117 0.150030803 0.053033940
## 42 0.720570024 0.9092058453 0.210796098 0.875075159 0.094086062 0.585604633
## 43 0.691673029 0.5930176671 0.420771204 0.247303587 0.983297946 0.427623936
## 44 0.176150461 0.7141316915 0.741954805 0.197583070 0.836461429 0.296208750
## 45 0.952475880 0.8493538222 0.317191089 0.925082660 0.607305124 0.803849567
## 46 0.689011891 0.7483011317 0.807849665 0.877950979 0.967313918 0.574638351
## 47 0.157799606 0.6691785671 0.353649540 0.368825636 0.377917988 0.298162997
## 48 0.576220999 0.8380715831 0.609410121 0.191988432 0.172759505 0.113711787
## 49 0.653276739 0.9181834545 0.893769723 0.622584245 0.327600596 0.832185488
## 50 0.832807913 0.2265766494 0.355865418 0.047708418 0.547652281 0.939744496
## 51 0.067187183 0.1867572814 0.053412318 0.788249273 0.069746084 0.175875548
## 52 0.118626094 0.4984532818 0.081841033 0.847314714 0.095897603 0.953105583
## 53 0.892374709 0.9191673915 0.179852584 0.484247719 0.850093837 0.771444682
## 54 0.557935121 0.9555177600 0.070927210 0.284588894 0.860588939 0.018207328
## 55 0.515005544 0.6027795288 0.491738453 0.258037420 0.287011503 0.054381748
## 56 0.134100055 0.7252116359 0.862601955 0.610891974 0.280598821 0.785266264
## 57 0.149258960 0.1695368735 0.566346588 0.563854012 0.273068628 0.328188200
## 58 0.161343819 0.2199983387 0.222847626 0.136463749 0.596218371 0.105031757
## 59 0.561064044 0.7804879546 0.169082082 0.368560432 0.294977250 0.618674891
## 60 0.671786989 0.5629266184 0.306758978 0.797413421 0.402194366 0.169488368
## 61 0.147402651 0.9183623586 0.999923422 0.435399952 0.960000194 0.746313307
## 62 0.570647350 0.8898196355 0.359521539 0.807744707 0.942994522 0.850621036
## 63 0.758280237 0.4162223253 0.651333184 0.088788726 0.318467662 0.789343349
## 64 0.565787035 0.2931080312 0.935225714 0.254972817 0.682191425 0.116470202
## 65 0.775718143 0.2964265901 0.815802228 0.778016577 0.345414489 0.608970067
## 66 0.677378375 0.2773598756 0.627044755 0.937812351 0.439045849 0.796132486
## 67 0.218266052 0.7430458625 0.370964498 0.678309920 0.850654966 0.108555941
## 68 0.281448058 0.2555278649 0.540702318 0.102928993 0.499993075 0.200114859
## 69 0.094555768 0.6770530874 0.857065403 0.147499445 0.190941744 0.593200353
## 70 0.593106887 0.6049814720 0.829584161 0.068155296 0.812524924 0.272600746
## 71 0.355217626 0.9024892272 0.162602290 0.167165469 0.786120466 0.253500610
## 72 0.153351908 0.5403167598 0.522081524 0.131646728 0.303439272 0.406195677
## 73 0.466252540 0.2189726466 0.649081210 0.876677948 0.373312224 0.500154867
## 74 0.275116619 0.5810471375 0.328282601 0.821013230 0.365157783 0.574757167
## 75 0.397941506 0.0506482811 0.736786507 0.069037383 0.465576746 0.526418373
## 76 0.311401952 0.8876241017 0.829994129 0.273672034 0.822258464 0.576108309
## 77 0.586229856 0.6614987573 0.510906287 0.863162806 0.946865431 0.895700728
## 78 0.150715668 0.0240218288 0.293724078 0.763388061 0.337483510 0.572278405
## 79 0.644267766 0.5393897707 0.438592263 0.678769260 0.816074158 0.739229684
## 80 0.006409079 0.3240858268 0.081627410 0.388581997 0.143550989 0.586718400
## 81 0.816851889 0.8537856233 0.217289788 0.442311989 0.143528348 0.926974642
## 82 0.742108528 0.2384303520 0.580422256 0.720915187 0.629143175 0.597393914
## 83 0.654247520 0.5939083034 0.994853858 0.936799756 0.912532976 0.215555561
## 84 0.440734623 0.8666409499 0.564446902 0.379492091 0.822953047 0.368613384
## 85 0.442322013 0.2467340643 0.826851101 0.198192747 0.346601916 0.981209712
## 86 0.786464168 0.9204477360 0.150473845 0.543170314 0.512502319 0.773290500
## 87 0.459340288 0.2267787226 0.645397100 0.169832431 0.382568107 0.076924091
## 88 0.984272037 0.7370369236 0.306019300 0.648133427 0.114868225 0.384680568
## 89 0.371441818 0.1517067349 0.995130365 0.887727774 0.512004345 0.986306011
## 90 0.997792503 0.6529070695 0.098833617 0.917166736 0.471261014 0.157362159
## 91 0.474391870 0.6010630331 0.278657043 0.790569007 0.927579608 0.305082921
## 92 0.220132116 0.6547463359 0.537419467 0.345841283 0.043483641 0.429867428
## 93 0.031105185 0.6107613579 0.025156959 0.909916925 0.158163789 0.016845753
## 94 0.229582377 0.6054298035 0.639548430 0.572823923 0.743228543 0.887359502
## 95 0.609273809 0.9123187338 0.725720419 0.461442270 0.011241655 0.763862459
## 96 0.370745452 0.0759057687 0.361935701 0.433070669 0.090679155 0.101371452
## 97 0.307162299 0.6478466513 0.830584273 0.446856117 0.350730690 0.442842154
## 98 0.157705784 0.3871437064 0.703486373 0.566900127 0.685163247 0.440206385
## 99 0.448205397 0.8644333375 0.422698680 0.633362517 0.233479040 0.103215690
## 100 0.683045527 0.9840194189 0.611699514 0.531140843 0.797903161 0.597651707
## 101 0.686627647 0.6046307203 0.167846072 0.456818942 0.607740600 0.314174908
## 102 0.831901784 0.2939653466 0.672954567 0.803079295 0.280210467 0.998987383
## 103 0.113058501 0.2546948988 0.218817725 0.057622184 0.279840802 0.239368085
## 104 0.556645789 0.8126982844 0.692510723 0.966434979 0.351036289 0.281969752
## 105 0.192172982 0.3423131080 0.496556215 0.413942024 0.088539597 0.727522285
## 106 0.048556563 0.9640056610 0.605707243 0.566484744 0.508386431 0.614031048
## 107 0.636388587 0.4812663090 0.156460918 0.863360892 0.745412975 0.765995033
## 108 0.002806243 0.9363095718 0.649450997 0.242205442 0.870268838 0.335062859
## 109 0.501964895 0.7322653499 0.968477561 0.455123628 0.558531469 0.644129353
## 110 0.479473393 0.8101365152 0.371763220 0.896207781 0.851932624 0.277587108
## 111 0.904642434 0.7766639574 0.927888780 0.170289954 0.499319865 0.493327187
## 112 0.076446557 0.3885678530 0.869672049 0.631985184 0.508797599 0.512153390
## 113 0.171706995 0.6642553948 0.447441930 0.109595960 0.687226565 0.990115111
## 114 0.598192136 0.8803027971 0.934215342 0.184075910 0.930016244 0.015515274
## 115 0.494660591 0.5270667071 0.165982118 0.279556816 0.548412474 0.006808892
## 116 0.822326746 0.0874312406 0.339381942 0.624753956 0.139959793 0.881927748
## 117 0.884809928 0.2049752097 0.351055704 0.772163214 0.897429584 0.373503622
## 118 0.195553894 0.1479548330 0.547592697 0.426198894 0.233539708 0.459527157
## 119 0.463013117 0.4677024283 0.079132932 0.123636657 0.209901525 0.249119067
## 120 0.007715050 0.9759014850 0.647108061 0.623121100 0.489483954 0.913406589
## 121 0.623211886 0.7964882990 0.725319422 0.268862381 0.873370248 0.629094972
## 122 0.632887607 0.6062786465 0.027653304 0.215499579 0.437937672 0.412266847
## 123 0.313287797 0.6479254356 0.003295714 0.679255102 0.590496615 0.988463188
## 124 0.775744612 0.1102327388 0.168523920 0.228762099 0.965724084 0.842011251
## 125 0.998992379 0.8608238841 0.913439707 0.130730744 0.663723183 0.934387672
## 126 0.751483215 0.3711484901 0.757779663 0.436154100 0.914117961 0.487309208
## 127 0.512864344 0.4433466932 0.777240771 0.131851328 0.666940580 0.893005643
## 128 0.594934646 0.6147596298 0.629629193 0.029415055 0.156732836 0.675986912
## 129 0.108193488 0.0456732074 0.553760919 0.836029727 0.991577258 0.029231649
## 130 0.213286245 0.6094768783 0.343689348 0.090614796 0.383258829 0.830723291
## 131 0.511472948 0.8676087293 0.542017557 0.964182970 0.315437378 0.805567415
## 132 0.653088958 0.0627070705 0.925106390 0.035819308 0.250788742 0.872808259
## 133 0.680070220 0.4819761757 0.543910673 0.283038010 0.721935218 0.261010709
## 134 0.594429644 0.9517888685 0.487364555 0.429615057 0.077726093 0.396774478
## 135 0.566119617 0.7702909564 0.283901030 0.481008470 0.085473549 0.392161391
## 136 0.292137912 0.4600951856 0.031411853 0.355790904 0.714166709 0.646736944
## 137 0.621721983 0.8975026356 0.486688155 0.237542561 0.754609415 0.993754126
## 138 0.734009909 0.7064418797 0.685221680 0.159361927 0.678954404 0.522533498
## 139 0.250146729 0.2166299177 0.828084011 0.759835896 0.783513594 0.528184886
## 140 0.725502808 0.3214482346 0.801824650 0.683726188 0.785781410 0.368117954
## 141 0.518633971 0.1892801912 0.636985009 0.216002044 0.823852410 0.130777703
## 142 0.353793057 0.1187343048 0.771915119 0.228639466 0.026823693 0.470881379
## 143 0.536732926 0.5057627214 0.544558276 0.408174795 0.220592264 0.716128180
## 144 0.827716813 0.1134541789 0.151092910 0.249067954 0.167421041 0.812992523
## 145 0.799086446 0.2226722005 0.314966519 0.644402519 0.296044190 0.010295009
## 146 0.121202702 0.5125092892 0.736546513 0.173788953 0.987242828 0.128936096
## 147 0.965792880 0.2959974960 0.281766439 0.181185599 0.460291081 0.428525911
## 148 0.655097562 0.9138811582 0.685150367 0.203402501 0.556077081 0.384476536
## 149 0.523663767 0.3619226965 0.790130149 0.296799039 0.181327148 0.809934170
## 150 0.406266008 0.1738398047 0.437415589 0.528837076 0.650578036 0.017366972
## 151 0.811131607 0.4745276461 0.736739275 0.090695082 0.734380059 0.640642888
## 152 0.195899217 0.1883440749 0.036628024 0.037811573 0.361777857 0.891157788
## 153 0.901721909 0.7641276480 0.975725230 0.649152147 0.125422492 0.843844815
## 154 0.419387562 0.7132732121 0.537194521 0.663290517 0.813946252 0.346468189
## 155 0.502626143 0.1582271636 0.926717208 0.752402752 0.534871275 0.519248105
## 156 0.505678876 0.5922643617 0.249804128 0.229866606 0.489065639 0.002901212
## 157 0.914411720 0.3216436969 0.149495436 0.232416035 0.057981907 0.278796293
## 158 0.148558215 0.5582501232 0.832446445 0.294442032 0.117299439 0.885807658
## 159 0.937065663 0.7175001081 0.341711296 0.826616130 0.589513207 0.927866664
## 160 0.975472900 0.4723303919 0.144815880 0.495536016 0.437703832 0.338820112
## 161 0.424515043 0.6310416884 0.783094346 0.510714823 0.314462922 0.086185409
## 162 0.812289485 0.6547854072 0.352954853 0.395277522 0.834191832 0.642550439
## 163 0.029440868 0.7336349678 0.287532780 0.481363036 0.646652654 0.586816839
## 164 0.917813970 0.6703584662 0.014808858 0.308127946 0.908841855 0.511950091
## 165 0.214090701 0.3539453736 0.441450395 0.704947843 0.190465599 0.788839862
## 166 0.553994835 0.3797423861 0.426848450 0.406387825 0.583469785 0.982102466
## 167 0.087216421 0.0444812854 0.887981009 0.334847389 0.958314174 0.631051316
## 168 0.051853288 0.5381637057 0.287162258 0.544222318 0.580674538 0.138133082
## 169 0.153477015 0.7609185344 0.588195231 0.726811070 0.869440276 0.140277030
## 170 0.585922012 0.6343205774 0.114031907 0.054257943 0.132969180 0.262855512
## 171 0.915327054 0.6440016078 0.582549772 0.953309200 0.661264660 0.182328664
## 172 0.021536301 0.3673074185 0.137482502 0.985332304 0.359814066 0.504694133
## 173 0.175545276 0.5064939184 0.364339191 0.650103795 0.942291794 0.238556437
## 174 0.083142271 0.1788396279 0.373116091 0.705161238 0.367621270 0.640988169
## 175 0.491874318 0.4900236735 0.297881532 0.331352153 0.870221517 0.530976141
## 176 0.665890210 0.6166888489 0.978142474 0.226049843 0.988691468 0.411653516
## 177 0.028172681 0.3769877132 0.719316378 0.022271170 0.711718217 0.537131623
## 178 0.879781784 0.7322189799 0.869278736 0.649725121 0.669133191 0.397410648
## 179 0.795590631 0.2757800566 0.781217543 0.406130929 0.115849692 0.363247100
## 180 0.066798607 0.4353600563 0.641473262 0.070881601 0.725632793 0.845899404
## 181 0.369471576 0.2884542705 0.375342084 0.381129961 0.752541286 0.080834012
## 182 0.111091629 0.5124843172 0.743466425 0.401846189 0.632692037 0.334856320
## 183 0.825969449 0.7803220809 0.425994063 0.961734195 0.726619251 0.637834937
## 184 0.612556007 0.9145965697 0.257388497 0.629601910 0.375935599 0.271460483
## 185 0.637976925 0.1076111828 0.280669488 0.654566472 0.932735895 0.974294363
## 186 0.722749287 0.4142492083 0.976476628 0.461700869 0.261488323 0.760588499
## 187 0.088224613 0.3651040641 0.112417366 0.427385604 0.630677684 0.064398194
## 188 0.206456413 0.6789903478 0.269728941 0.026255392 0.533788505 0.339906024
## 189 0.271994818 0.4532893968 0.732908373 0.710368193 0.555094344 0.429670967
## 190 0.520548412 0.3144283574 0.803517855 0.349941988 0.498034912 0.495041399
## 191 0.776805477 0.9616133086 0.754222457 0.091987771 0.551281321 0.733340201
## 192 0.289232634 0.8427688032 0.202012851 0.496472600 0.546778636 0.428116115
## 193 0.989449516 0.2357514210 0.704040867 0.447436986 0.046436282 0.493715242
## 194 0.310988950 0.4760307493 0.771920531 0.274742047 0.416478656 0.183150188
## 195 0.581546503 0.0395606223 0.147069360 0.853941998 0.729293162 0.166967576
## 196 0.701018440 0.7045858139 0.531901518 0.318705286 0.510770075 0.799619116
## 197 0.539472235 0.1585750368 0.654213027 0.492335809 0.606566809 0.903776626
## 198 0.011292625 0.9602364919 0.776298914 0.773416284 0.594650894 0.984942808
## 199 0.603909890 0.9586990301 0.875057548 0.093729714 0.825522528 0.624501048
## 200 0.089178660 0.6006974212 0.113622466 0.825916705 0.558199830 0.084706127
## V7 V8 V9 V10 duplicate y
## 1 0.8266608594 0.421408064 0.59111440 0.588621560 0.483553213 18.463980
## 2 0.6489600763 0.844623926 0.92819306 0.758400814 0.596918149 16.098360
## 3 0.1785614495 0.349590781 0.01759542 0.444118458 0.581686589 17.761647
## 4 0.5133613953 0.797025980 0.68986918 0.445071622 0.779718369 13.787300
## 5 0.6644906041 0.903891937 0.39696995 0.550080800 0.679028625 18.429836
## 6 0.3360117343 0.648917723 0.53116033 0.906618237 0.871156744 20.858166
## 7 0.0084998407 0.072795420 0.97395768 0.440172910 0.653421017 13.888401
## 8 0.4722572784 0.381633542 0.75877525 0.710887919 0.167954496 12.915431
## 9 0.3058403293 0.525661726 0.43136410 0.400128186 0.441298786 12.149448
## 10 0.3228343336 0.960311741 0.92426620 0.832559698 0.199364323 5.271123
## 11 0.1315679180 0.939230266 0.46228702 0.775593376 0.463353503 8.946052
## 12 0.7618696443 0.550847133 0.08637756 0.524860506 0.658880358 12.894078
## 13 0.4806034924 0.485595847 0.54158360 0.081258474 0.133563727 6.533292
## 14 0.4200604216 0.282479481 0.62596273 0.003172379 0.723272724 7.520004
## 15 0.6595693664 0.469818084 0.03909819 0.706367689 0.395551623 15.141730
## 16 0.6941591527 0.917750880 0.33898498 0.689810129 0.304366392 12.974733
## 17 0.1693497750 0.290054937 0.69159996 0.120331543 0.527881952 25.016165
## 18 0.1774999567 0.724190771 0.14320681 0.075203559 0.182873479 12.436690
## 19 0.6109301876 0.182253540 0.20626788 0.247241936 0.830796153 16.899482
## 20 0.1655056404 0.996789995 0.57239957 0.970613467 0.877359300 22.052472
## 21 0.8696455043 0.480284780 0.94174627 0.525216599 0.416551694 12.892896
## 22 0.2200369346 0.543487359 0.91963756 0.948926731 0.175153068 3.555960
## 23 0.6324701225 0.833171203 0.91811502 0.181142754 0.232789942 10.032559
## 24 0.6703429641 0.285668603 0.84918471 0.397776954 0.999680294 19.728886
## 25 0.0101521015 0.960430558 0.23506862 0.230721395 0.237988893 15.271168
## 26 0.2522400960 0.634320574 0.87522970 0.635452710 0.221479234 21.921927
## 27 0.6650384206 0.650785477 0.28744271 0.616526859 0.645347402 17.848795
## 28 0.0648198922 0.178094681 0.56876498 0.428627433 0.403429814 5.964147
## 29 0.6192647608 0.146737191 0.33908035 0.938806834 -0.085152007 13.254190
## 30 0.3292513283 0.042337252 0.86859891 0.880950373 0.546126975 15.181016
## 31 0.2824812313 0.332542812 0.95191869 0.763801782 0.254637267 18.021637
## 32 0.2051616914 0.785139066 0.04968553 0.968671421 0.341791275 8.385652
## 33 0.6479521065 0.175871460 0.67905283 0.730759681 0.469281733 17.967104
## 34 0.3500645757 0.635448656 0.89620270 0.575594178 0.314608361 14.097415
## 35 0.8686830916 0.324884567 0.03161212 0.849832683 0.856362465 17.352764
## 36 0.6281718945 0.651751797 0.69222388 0.442386812 0.538379426 17.608729
## 37 0.5401211150 0.802915463 0.51344968 0.959669129 0.196843804 13.136663
## 38 0.0954262505 0.271751555 0.91415621 0.535858047 1.014054381 21.879995
## 39 0.3189930974 0.487114596 0.38007261 0.068724414 0.600313558 9.980150
## 40 0.0987321541 0.398785473 0.70468780 0.814099950 0.582960796 18.002840
## 41 0.8256829928 0.274217872 0.24911536 0.363809015 0.576693725 9.489052
## 42 0.4254488801 0.543745558 0.56771488 0.586587886 0.860890373 19.991424
## 43 0.6002272039 0.303179812 0.30442762 0.996330470 0.513995466 17.766711
## 44 0.0993871398 0.726330749 0.51122937 0.574089565 0.238437201 13.299483
## 45 0.3573383761 0.659334866 0.82108557 0.880166529 0.900247544 18.828347
## 46 0.3369224169 0.171208087 0.58813299 0.298467441 0.821234986 26.945666
## 47 0.7216083466 0.347465995 0.45980972 0.522110901 0.121455573 9.358890
## 48 0.1637666794 0.465182498 0.67228512 0.549377529 0.708127573 12.133777
## 49 0.0661412831 0.662970975 0.67190601 0.712600555 0.657654646 22.132197
## 50 0.5044657106 0.684693513 0.23367805 0.853776497 0.644942325 8.886239
## 51 0.4450478635 0.954027392 0.87891811 0.228369326 0.022480965 13.343289
## 52 0.8620285194 0.258589442 0.96154879 0.437253388 -0.055233701 12.709052
## 53 0.0236228870 0.676012672 0.37005100 0.260396947 0.910261194 16.708610
## 54 0.1452215833 0.955375290 0.70495617 0.882332698 0.747681691 19.797593
## 55 0.3742820916 0.214503606 0.13091783 0.462896239 0.287812995 12.166608
## 56 0.5384509673 0.037968947 0.61604382 0.535041264 0.232146468 13.772781
## 57 0.2577628391 0.186539843 0.93924713 0.942935549 0.009376398 6.563014
## 58 0.2109247684 0.363152975 0.22155711 0.789319306 0.343831061 5.325261
## 59 0.4573113865 0.197379992 0.41096121 0.626259638 0.699193917 18.244465
## 60 0.2189239766 0.259368576 0.39850931 0.322176775 0.587901802 20.632950
## 61 0.9801436167 0.418736819 0.50638210 0.791115409 0.121203074 18.974731
## 62 0.2792056827 0.632583834 0.92330341 0.663045999 0.563762947 21.779238
## 63 0.6202754262 0.088279070 0.26778657 0.207211251 0.720391881 9.197490
## 64 0.6345477444 0.994484988 0.67288102 0.949158964 0.823982928 15.073224
## 65 0.1516102208 0.669617534 0.12557122 0.392013110 0.788701557 17.561914
## 66 0.0638373715 0.153521036 0.22166633 0.123506922 0.606075877 17.601765
## 67 0.3630222164 0.350279308 0.14200169 0.041529058 0.282065476 15.824533
## 68 0.0141349288 0.663475810 0.67553172 0.501539484 0.301617217 7.134264
## 69 0.5267603784 0.429941210 0.97828898 0.885561631 0.087564073 6.413136
## 70 0.6532241760 0.671208466 0.65576477 0.673768810 0.583857899 14.613611
## 71 0.2219880908 0.476079757 0.71183447 0.425648322 0.400107953 16.255757
## 72 0.1531321660 0.691954747 0.65801907 0.426056444 0.046916341 4.698295
## 73 0.5008657877 0.040073613 0.92800985 0.381413696 0.350010608 14.105578
## 74 0.9806543912 0.819187354 0.84159996 0.896280786 0.439968794 15.707841
## 75 0.9244000583 0.198013207 0.23337787 0.116631588 0.191731905 4.888355
## 76 0.0099979453 0.295807930 0.90356056 0.885416760 0.312676924 16.992321
## 77 0.2356902743 0.506900013 0.55981430 0.534760828 0.477477021 22.980799
## 78 0.3650656492 0.810620838 0.11388461 0.410755347 0.177769617 9.623636
## 79 0.7987873172 0.366785977 0.60186782 0.973480208 0.745112953 20.669432
## 80 0.5599248759 0.116578872 0.34580507 0.714962742 -0.201031396 7.096990
## 81 0.7522757188 0.026414874 0.34715430 0.836363711 0.906534116 13.593588
## 82 0.8865377689 0.061911004 0.97803556 0.612240904 0.737108952 15.468199
## 83 0.0590573207 0.684142034 0.71260502 0.255351776 0.519712589 28.381673
## 84 0.7768231640 0.850076108 0.17097505 0.408350330 0.247613470 17.977054
## 85 0.4138241454 0.755554634 0.92548457 0.945293089 0.513280171 10.694865
## 86 0.9818397635 0.945009324 0.68008657 0.510965007 0.770673665 17.640215
## 87 0.2916908523 0.702514261 0.85496045 0.604653787 0.480977075 7.138598
## 88 0.1587244619 0.582193831 0.05235641 0.486561552 1.066008245 15.656878
## 89 0.0014450864 0.128084549 0.47699398 0.679715703 0.544159394 18.363995
## 90 0.2105985023 0.884157248 0.18779775 0.402003791 0.987415473 23.572686
## 91 0.8245949268 0.793933963 0.53137582 0.756866812 0.418679640 21.330888
## 92 0.0445211111 0.460617797 0.58243842 0.944980194 0.362962259 8.631156
## 93 0.5918905353 0.485206415 0.77555244 0.542896184 -0.058190556 16.373575
## 94 0.0303562423 0.324637733 0.98245833 0.605254818 0.113825253 13.359596
## 95 0.6099704383 0.731502909 0.49410755 0.882788646 0.556244164 15.744177
## 96 0.0619420919 0.788262721 0.32567336 0.790985481 0.615313728 8.078082
## 97 0.6019777379 0.718690965 0.24367231 0.571871065 0.223912719 14.497672
## 98 0.7470110336 0.789140293 0.18306352 0.852484180 0.199057769 14.942224
## 99 0.5261754794 0.983355801 0.37887188 0.765290411 0.330337083 15.829082
## 100 0.4876051969 0.122928050 0.08177731 0.848134163 0.565642051 19.178018
## 101 0.9011508890 0.617960313 0.12460480 0.702702949 0.653335312 19.928981
## 102 0.0003387642 0.388927228 0.97821702 0.104494945 0.968213155 17.178817
## 103 0.9080805883 0.905519754 0.60285307 0.877587634 0.066143767 5.784234
## 104 0.4965877566 0.636728981 0.79705572 0.319453278 0.640933352 22.061638
## 105 0.8487957353 0.912640729 0.11477043 0.155581983 0.046373610 5.776771
## 106 0.0822484379 0.955071241 0.06021731 0.421584291 0.008525971 9.597466
## 107 0.1611803344 0.599529999 0.26890232 0.188167820 0.558746858 23.395596
## 108 0.1425062015 0.571244097 0.74935739 0.464775090 -0.034123408 7.444598
## 109 0.4653496440 0.651546226 0.95540449 0.564070737 0.625975040 19.434952
## 110 0.1981665948 0.999560626 0.57950670 0.127039001 0.468730012 21.911755
## 111 0.8408644302 0.437424371 0.93131402 0.133683814 0.921901785 16.718751
## 112 0.9164640335 0.395302785 0.63386223 0.888060797 0.101906684 10.227144
## 113 0.3355441941 0.030395976 0.20250656 0.053323140 0.110253612 8.500874
## 114 0.6774176396 0.696283764 0.75913311 0.809930917 0.455270626 20.114536
## 115 0.9650529190 0.449902425 0.57304399 0.753339031 0.461563047 13.443701
## 116 0.1141603340 0.863953833 0.95345440 0.380650506 0.835165353 8.789036
## 117 0.4158274462 0.713239111 0.60102539 0.635894833 0.986621928 18.291185
## 118 0.1791522284 0.834004079 0.20838605 0.592570851 0.169996525 5.901247
## 119 0.5624954123 0.710008362 0.18311621 0.394101708 0.432759016 12.337007
## 120 0.9726133470 0.842078145 0.93576851 0.956083941 0.169234118 8.710816
## 121 0.4887156698 0.887054311 0.31041901 0.510736341 0.545840551 18.395967
## 122 0.9838132532 0.585472636 0.14732752 0.086574405 0.675287847 19.595790
## 123 0.4743697466 0.242674318 0.42347788 0.868947359 0.254893099 20.525566
## 124 0.2407878560 0.447328788 0.66467369 0.494879879 0.817248180 11.827082
## 125 0.1783671109 0.503948929 0.16230501 0.187285239 0.844466213 13.071909
## 126 0.4367017439 0.344732890 0.42201320 0.437095925 0.699608265 17.164010
## 127 0.3784207169 0.273177421 0.11701698 0.547305345 0.484885189 12.604661
## 128 0.1147928145 0.103627008 0.16504249 0.275940885 0.695680384 9.364654
## 129 0.3586573373 0.238100665 0.68896641 0.177130092 0.061236492 12.350974
## 130 0.2376520939 0.312197204 0.25109129 0.997579731 0.243075949 6.692139
## 131 0.7941833863 0.433608739 0.76234330 0.569325565 0.469693505 19.390364
## 132 0.5684747580 0.312200866 0.11102144 0.240327878 0.568050881 8.216058
## 133 0.9834440248 0.023838794 0.16816803 0.999992477 0.748974840 14.163226
## 134 0.8681481183 0.755061130 0.16099688 0.581953628 0.548410025 14.852324
## 135 0.2529283839 0.309956316 0.35376172 0.576154274 0.700938055 14.960020
## 136 0.2954634046 0.686869082 0.23401367 0.743752910 0.336445050 14.371226
## 137 0.7287589125 0.934555566 0.27740693 0.256602708 0.606629364 16.171388
## 138 0.5105628674 0.330980633 0.32516244 0.474497675 0.779564795 17.728141
## 139 0.4536720926 0.385358283 0.03655417 0.171900066 0.246131261 16.347169
## 140 0.0308236629 0.654293299 0.92551144 0.435859671 0.771114912 18.929738
## 141 0.3351621642 0.409007091 0.67315717 0.996981804 0.477791468 9.388698
## 142 0.6144252147 0.651714271 0.12889572 0.633149029 0.140143672 5.393462
## 143 0.1153656312 0.793603583 0.55421117 0.356097830 0.552415117 12.775396
## 144 0.7361220436 0.177242560 0.03421274 0.872309444 0.893721703 8.442596
## 145 0.9072946333 0.738731097 0.26822183 0.173052300 0.700903005 13.267265
## 146 0.8854910310 0.688096952 0.75856509 0.669689639 0.009838331 8.941159
## 147 0.0388078641 0.214172413 0.61253457 0.207942491 0.922058112 14.353866
## 148 0.3260785770 0.810973278 0.39199971 0.370241001 0.603486438 15.394612
## 149 0.7807700243 0.578197747 0.70276752 0.123103430 0.565563366 9.084654
## 150 0.7907638911 0.208587777 0.05438854 0.766739978 0.419681552 11.312659
## 151 0.7937673274 0.208766474 0.83636350 0.858343330 0.914600252 16.299293
## 152 0.1613148297 0.654811297 0.66729678 0.115404263 0.361249539 5.839912
## 153 0.7080952730 0.903838935 0.31193910 0.969527644 0.899927228 19.525552
## 154 0.5305830529 0.004698141 0.48546810 0.259277162 0.416967229 17.824782
## 155 0.1885056335 0.079913177 0.57972754 0.905628399 0.527650833 15.534928
## 156 0.5161641990 0.466810009 0.76300679 0.944087471 0.471966423 14.460986
## 157 0.6012678132 0.025244068 0.19821959 0.402928842 0.903076350 13.992105
## 158 0.6169876396 0.499346328 0.32760646 0.266050707 0.138669923 9.634654
## 159 0.7895973460 0.786763847 0.07832531 0.312945329 0.963474345 20.360593
## 160 0.0390002122 0.015907055 0.57958929 0.502512869 0.989371268 21.628769
## 161 0.4199729285 0.538111618 0.94932648 0.535985540 0.400288093 17.995487
## 162 0.5129533098 0.613649708 0.26589918 0.269859831 0.818192624 19.648813
## 163 0.6883663596 0.515120720 0.64359538 0.473454136 0.011713681 8.728757
## 164 0.2867906420 0.219839853 0.16326702 0.120969625 0.997281997 22.293667
## 165 0.9943477523 0.381418612 0.81146453 0.136825552 0.214764480 10.776480
## 166 0.2593658050 0.461603611 0.68922230 0.171518739 0.491015806 12.980947
## 167 0.5809806921 0.810821845 0.21677497 0.741042868 0.061967443 13.200163
## 168 0.9927047875 0.928290160 0.48741662 0.881588204 -0.017188929 11.617543
## 169 0.3948761285 0.914971805 0.04233756 0.987049844 0.173731229 15.072437
## 170 0.9569103546 0.694013482 0.97705820 0.012435718 0.670560155 13.042415
## 171 0.5889326367 0.509478116 0.64141950 0.365601074 0.978534460 21.870618
## 172 0.6114409810 0.830605455 0.52658278 0.065911923 0.041677654 15.131138
## 173 0.4287582068 0.366665906 0.86474573 0.016379327 0.166438212 14.669672
## 174 0.1562757776 0.463090256 0.02956841 0.971855537 0.112090683 9.609650
## 175 0.0453625068 0.177558171 0.10203368 0.505838658 0.486405824 14.428173
## 176 0.6969831374 0.631295626 0.58758911 0.247838673 0.461705225 21.871572
## 177 0.1762444021 0.080035930 0.84510174 0.700015211 0.064009605 6.124100
## 178 0.2357786680 0.385391619 0.62558152 0.954732809 0.842521698 19.906736
## 179 0.5439273247 0.627847850 0.88854501 0.855865543 0.922421515 14.038694
## 180 0.8102693288 0.839098028 0.15944836 0.379626432 0.283658638 6.595364
## 181 0.0133081947 0.168556706 0.10525675 0.771278932 0.245499291 12.188266
## 182 0.6584848959 0.287486323 0.12728033 0.041241815 0.170079018 11.029138
## 183 0.3847984066 0.117578465 0.96804658 0.902288517 0.838371378 20.917170
## 184 0.1876184577 0.798065790 0.92881170 0.884292413 0.560185228 18.056711
## 185 0.0729941991 0.472175947 0.07752809 0.744791487 0.699999725 11.085355
## 186 0.7420141906 0.437308198 0.66531113 0.045803222 0.793571445 17.402036
## 187 0.4334616780 0.849088030 0.46642330 0.779457425 0.078904778 11.244792
## 188 0.6745903494 0.986013835 0.50686606 0.312909630 0.176936743 9.334814
## 189 0.3680351812 0.496575716 0.49428027 0.447099152 0.163413295 15.629095
## 190 0.6922219021 0.011549961 0.57885152 0.406213945 0.458066907 12.631487
## 191 0.0971158685 0.412869229 0.97960020 0.136601998 0.753504823 13.381026
## 192 0.1838154087 0.210182422 0.04580357 0.427214286 0.264150947 16.619825
## 193 0.5494235111 0.720276414 0.29912111 0.994646956 1.084839050 11.294074
## 194 0.7455740881 0.886575559 0.25383887 0.521175744 0.284391700 10.942370
## 195 0.8809142739 0.322509774 0.66346270 0.930126207 0.771074098 15.337523
## 196 0.6664053195 0.267326644 0.24159338 0.606167757 0.658019357 17.171795
## 197 0.8829731958 0.123415505 0.99102161 0.073506513 0.697026935 10.496627
## 198 0.2567906741 0.309302658 0.05267484 0.698478227 0.027486745 14.793806
## 199 0.5021552520 0.334554489 0.03080467 0.395422508 0.495364600 17.333764
## 200 0.6627391470 0.959779277 0.09184009 0.219858172 0.146872390 17.153588
set.seed(100)
gbmTune <- train(simulated2[1:11], simulated2$y,
method = "gbm",
tuneGrid = gbmGrid,
verbose = FALSE)## Overall
## V4 100.0000000
## V2 88.1655792
## V1 69.8100063
## V5 40.2428779
## duplicate 39.1538947
## V3 34.0955154
## V7 4.3702618
## V6 3.6011033
## V10 0.7021740
## V8 0.5911246
## V9 0.0000000
gbmTune1_df <- as.data.frame(gbmTune1$importance)
gbmTune1_df['Predictors'] <- rownames(gbmTune1_df)
colnames(gbmTune1_df) <- c("Overall", "Predictors")
rownames(gbmTune1_df) <- 1:nrow(gbmTune1_df)gbmTune1_df %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "orange") +
theme_gray() +
coord_flip() +
labs(title="boosted Predictor Variable Importance",
y="boosted Importance", x="Predictors") +
scale_y_continuous()Cubist
library(mlbench)
set.seed(200)
simulated3 <- mlbench.friedman1(200, sd = 1)
simulated3 <- cbind(simulated3$x, simulated3$y)
simulated3 <- as.data.frame(simulated3)
colnames(simulated3)[ncol(simulated3)] <- "y"set.seed(100)
colnamesx <- c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10")
cubistTuned <- train(simulated3[, colnamesx], simulated3$y, method = "cubist")## Overall
## V1 100.00000
## V2 75.69444
## V4 68.05556
## V3 58.33333
## V5 55.55556
## V6 15.27778
## V7 0.00000
## V8 0.00000
## V9 0.00000
## V10 0.00000
cubistTuned1_df <- as.data.frame(cubistTuned1$importance)
cubistTuned1_df['Predictors'] <- rownames(cubistTuned1_df)
colnames(cubistTuned1_df) <- c("Overall", "Predictors")
rownames(cubistTuned1_df) <- 1:nrow(cubistTuned1_df)
cubistTuned1_df## Overall Predictors
## 1 100.00000 V1
## 2 58.33333 V3
## 3 75.69444 V2
## 4 68.05556 V4
## 5 55.55556 V5
## 6 15.27778 V6
## 7 0.00000 V7
## 8 0.00000 V8
## 9 0.00000 V9
## 10 0.00000 V10
cubistTuned1_df %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "seashell") +
theme_dark() +
coord_flip() +
labs(title="cubist Predictor Variable Importance",
y="cubist Importance", x="Predictors") +
scale_y_continuous()Now add an additional predictor that is highly correlated with one of the informative predictors as was done in Part A:
set.seed(100)
simulated3$corr_pred <- simulated3$V1 + rnorm(200) * .1
cor(simulated3$corr_pred, simulated3$V1)## [1] 0.9509187
col_order <- colnames(simulated3)
col_order <- c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10", "corr_pred", "y")
simulated3 <- simulated3[, col_order]
simulated3## V1 V2 V3 V4 V5 V6
## 1 0.533772448 0.6478064333 0.850785258 0.181599574 0.929039760 0.361790597
## 2 0.583765033 0.4381527551 0.672726594 0.669249143 0.163797838 0.453059313
## 3 0.589578298 0.5879064940 0.409671080 0.338127280 0.894093335 0.026819108
## 4 0.691039888 0.2259547510 0.033354474 0.066912736 0.637445191 0.525006367
## 5 0.667331498 0.8188985116 0.716760786 0.803242873 0.083068641 0.223441572
## 6 0.839293735 0.3862983445 0.646188573 0.861054306 0.630389472 0.437038906
## 7 0.711600085 0.1162793254 0.767706224 0.859962373 0.520582290 0.990291612
## 8 0.096501224 0.8445782231 0.153528016 0.412814007 0.746725963 0.662056439
## 9 0.523824728 0.2514584265 0.285196133 0.452202451 0.506808798 0.019370317
## 10 0.235350536 0.4317718598 0.780373945 0.072122673 0.100005680 0.294671116
## 11 0.454364888 0.1192040211 0.220170008 0.351687343 0.001755818 0.149134940
## 12 0.649252912 0.0973321993 0.598340076 0.734892188 0.669684836 0.668878612
## 13 0.153727122 0.0128550101 0.608990930 0.633952646 0.094662402 0.616397752
## 14 0.649288674 0.1866738056 0.365308329 0.045665963 0.806304601 0.476613421
## 15 0.383213673 0.4608722613 0.345225364 0.735293760 0.217474412 0.350192171
## 16 0.307298063 0.4219112301 0.979319583 0.144514926 0.489620249 0.516859321
## 17 0.566767377 0.7811157859 0.890115921 0.995679246 0.413354418 0.379292418
## 18 0.131787853 0.1998720246 0.379945722 0.570354241 0.932332295 0.175180161
## 19 0.922177571 0.4675492314 0.010254486 0.008189635 0.789955666 0.846729845
## 20 0.646329618 0.7929329765 0.053864328 0.652274119 0.226417012 0.510733424
## 21 0.460360692 0.0697931792 0.784207606 0.686981049 0.379707196 0.434224161
## 22 0.098747006 0.2313314399 0.520667098 0.298788559 0.058919030 0.321473247
## 23 0.206593813 0.6473270494 0.606014522 0.086910314 0.536598262 0.592455531
## 24 0.922339834 0.6342856146 0.888005181 0.503549783 0.504815002 0.519335387
## 25 0.319426806 0.0545100805 0.381021996 0.999287510 0.982473919 0.515890769
## 26 0.265324291 0.8564205186 0.050943109 0.395974373 0.937435226 0.983467527
## 27 0.717369557 0.2948283439 0.736812766 0.919277884 0.128039610 0.414260471
## 28 0.380335360 0.0004408562 0.733275530 0.345613460 0.443263867 0.558792540
## 29 0.030620939 0.2731315538 0.903001443 0.758067884 0.147233479 0.146207562
## 30 0.521419376 0.3537345366 0.830735998 0.393664814 0.671653698 0.573219036
## 31 0.263748623 0.5057117699 0.140882633 0.678475745 0.562049805 0.812396222
## 32 0.166053713 0.2998292497 0.377729565 0.270103104 0.711894969 0.103405041
## 33 0.483074695 0.5088484667 0.636458001 0.654003645 0.616297887 0.399691042
## 34 0.325727710 0.9247118952 0.817825248 0.371338245 0.382548874 0.441881776
## 35 0.925363897 0.2371832319 0.010075368 0.345586454 0.547638883 0.201830557
## 36 0.560558849 0.4270182950 0.313384585 0.610149687 0.802779849 0.815573796
## 37 0.178553036 0.4352612651 0.153328084 0.549069691 0.356350074 0.094069178
## 38 0.972322052 0.6359792664 0.445975145 0.899534479 0.268725364 0.903799011
## 39 0.493773325 0.3447996511 0.445896353 0.449058379 0.003265168 0.759522119
## 40 0.485940594 0.8554888491 0.813352563 0.045685444 0.880070203 0.513183234
## 41 0.586856649 0.2803302526 0.037726685 0.018251117 0.150030803 0.053033940
## 42 0.720570024 0.9092058453 0.210796098 0.875075159 0.094086062 0.585604633
## 43 0.691673029 0.5930176671 0.420771204 0.247303587 0.983297946 0.427623936
## 44 0.176150461 0.7141316915 0.741954805 0.197583070 0.836461429 0.296208750
## 45 0.952475880 0.8493538222 0.317191089 0.925082660 0.607305124 0.803849567
## 46 0.689011891 0.7483011317 0.807849665 0.877950979 0.967313918 0.574638351
## 47 0.157799606 0.6691785671 0.353649540 0.368825636 0.377917988 0.298162997
## 48 0.576220999 0.8380715831 0.609410121 0.191988432 0.172759505 0.113711787
## 49 0.653276739 0.9181834545 0.893769723 0.622584245 0.327600596 0.832185488
## 50 0.832807913 0.2265766494 0.355865418 0.047708418 0.547652281 0.939744496
## 51 0.067187183 0.1867572814 0.053412318 0.788249273 0.069746084 0.175875548
## 52 0.118626094 0.4984532818 0.081841033 0.847314714 0.095897603 0.953105583
## 53 0.892374709 0.9191673915 0.179852584 0.484247719 0.850093837 0.771444682
## 54 0.557935121 0.9555177600 0.070927210 0.284588894 0.860588939 0.018207328
## 55 0.515005544 0.6027795288 0.491738453 0.258037420 0.287011503 0.054381748
## 56 0.134100055 0.7252116359 0.862601955 0.610891974 0.280598821 0.785266264
## 57 0.149258960 0.1695368735 0.566346588 0.563854012 0.273068628 0.328188200
## 58 0.161343819 0.2199983387 0.222847626 0.136463749 0.596218371 0.105031757
## 59 0.561064044 0.7804879546 0.169082082 0.368560432 0.294977250 0.618674891
## 60 0.671786989 0.5629266184 0.306758978 0.797413421 0.402194366 0.169488368
## 61 0.147402651 0.9183623586 0.999923422 0.435399952 0.960000194 0.746313307
## 62 0.570647350 0.8898196355 0.359521539 0.807744707 0.942994522 0.850621036
## 63 0.758280237 0.4162223253 0.651333184 0.088788726 0.318467662 0.789343349
## 64 0.565787035 0.2931080312 0.935225714 0.254972817 0.682191425 0.116470202
## 65 0.775718143 0.2964265901 0.815802228 0.778016577 0.345414489 0.608970067
## 66 0.677378375 0.2773598756 0.627044755 0.937812351 0.439045849 0.796132486
## 67 0.218266052 0.7430458625 0.370964498 0.678309920 0.850654966 0.108555941
## 68 0.281448058 0.2555278649 0.540702318 0.102928993 0.499993075 0.200114859
## 69 0.094555768 0.6770530874 0.857065403 0.147499445 0.190941744 0.593200353
## 70 0.593106887 0.6049814720 0.829584161 0.068155296 0.812524924 0.272600746
## 71 0.355217626 0.9024892272 0.162602290 0.167165469 0.786120466 0.253500610
## 72 0.153351908 0.5403167598 0.522081524 0.131646728 0.303439272 0.406195677
## 73 0.466252540 0.2189726466 0.649081210 0.876677948 0.373312224 0.500154867
## 74 0.275116619 0.5810471375 0.328282601 0.821013230 0.365157783 0.574757167
## 75 0.397941506 0.0506482811 0.736786507 0.069037383 0.465576746 0.526418373
## 76 0.311401952 0.8876241017 0.829994129 0.273672034 0.822258464 0.576108309
## 77 0.586229856 0.6614987573 0.510906287 0.863162806 0.946865431 0.895700728
## 78 0.150715668 0.0240218288 0.293724078 0.763388061 0.337483510 0.572278405
## 79 0.644267766 0.5393897707 0.438592263 0.678769260 0.816074158 0.739229684
## 80 0.006409079 0.3240858268 0.081627410 0.388581997 0.143550989 0.586718400
## 81 0.816851889 0.8537856233 0.217289788 0.442311989 0.143528348 0.926974642
## 82 0.742108528 0.2384303520 0.580422256 0.720915187 0.629143175 0.597393914
## 83 0.654247520 0.5939083034 0.994853858 0.936799756 0.912532976 0.215555561
## 84 0.440734623 0.8666409499 0.564446902 0.379492091 0.822953047 0.368613384
## 85 0.442322013 0.2467340643 0.826851101 0.198192747 0.346601916 0.981209712
## 86 0.786464168 0.9204477360 0.150473845 0.543170314 0.512502319 0.773290500
## 87 0.459340288 0.2267787226 0.645397100 0.169832431 0.382568107 0.076924091
## 88 0.984272037 0.7370369236 0.306019300 0.648133427 0.114868225 0.384680568
## 89 0.371441818 0.1517067349 0.995130365 0.887727774 0.512004345 0.986306011
## 90 0.997792503 0.6529070695 0.098833617 0.917166736 0.471261014 0.157362159
## 91 0.474391870 0.6010630331 0.278657043 0.790569007 0.927579608 0.305082921
## 92 0.220132116 0.6547463359 0.537419467 0.345841283 0.043483641 0.429867428
## 93 0.031105185 0.6107613579 0.025156959 0.909916925 0.158163789 0.016845753
## 94 0.229582377 0.6054298035 0.639548430 0.572823923 0.743228543 0.887359502
## 95 0.609273809 0.9123187338 0.725720419 0.461442270 0.011241655 0.763862459
## 96 0.370745452 0.0759057687 0.361935701 0.433070669 0.090679155 0.101371452
## 97 0.307162299 0.6478466513 0.830584273 0.446856117 0.350730690 0.442842154
## 98 0.157705784 0.3871437064 0.703486373 0.566900127 0.685163247 0.440206385
## 99 0.448205397 0.8644333375 0.422698680 0.633362517 0.233479040 0.103215690
## 100 0.683045527 0.9840194189 0.611699514 0.531140843 0.797903161 0.597651707
## 101 0.686627647 0.6046307203 0.167846072 0.456818942 0.607740600 0.314174908
## 102 0.831901784 0.2939653466 0.672954567 0.803079295 0.280210467 0.998987383
## 103 0.113058501 0.2546948988 0.218817725 0.057622184 0.279840802 0.239368085
## 104 0.556645789 0.8126982844 0.692510723 0.966434979 0.351036289 0.281969752
## 105 0.192172982 0.3423131080 0.496556215 0.413942024 0.088539597 0.727522285
## 106 0.048556563 0.9640056610 0.605707243 0.566484744 0.508386431 0.614031048
## 107 0.636388587 0.4812663090 0.156460918 0.863360892 0.745412975 0.765995033
## 108 0.002806243 0.9363095718 0.649450997 0.242205442 0.870268838 0.335062859
## 109 0.501964895 0.7322653499 0.968477561 0.455123628 0.558531469 0.644129353
## 110 0.479473393 0.8101365152 0.371763220 0.896207781 0.851932624 0.277587108
## 111 0.904642434 0.7766639574 0.927888780 0.170289954 0.499319865 0.493327187
## 112 0.076446557 0.3885678530 0.869672049 0.631985184 0.508797599 0.512153390
## 113 0.171706995 0.6642553948 0.447441930 0.109595960 0.687226565 0.990115111
## 114 0.598192136 0.8803027971 0.934215342 0.184075910 0.930016244 0.015515274
## 115 0.494660591 0.5270667071 0.165982118 0.279556816 0.548412474 0.006808892
## 116 0.822326746 0.0874312406 0.339381942 0.624753956 0.139959793 0.881927748
## 117 0.884809928 0.2049752097 0.351055704 0.772163214 0.897429584 0.373503622
## 118 0.195553894 0.1479548330 0.547592697 0.426198894 0.233539708 0.459527157
## 119 0.463013117 0.4677024283 0.079132932 0.123636657 0.209901525 0.249119067
## 120 0.007715050 0.9759014850 0.647108061 0.623121100 0.489483954 0.913406589
## 121 0.623211886 0.7964882990 0.725319422 0.268862381 0.873370248 0.629094972
## 122 0.632887607 0.6062786465 0.027653304 0.215499579 0.437937672 0.412266847
## 123 0.313287797 0.6479254356 0.003295714 0.679255102 0.590496615 0.988463188
## 124 0.775744612 0.1102327388 0.168523920 0.228762099 0.965724084 0.842011251
## 125 0.998992379 0.8608238841 0.913439707 0.130730744 0.663723183 0.934387672
## 126 0.751483215 0.3711484901 0.757779663 0.436154100 0.914117961 0.487309208
## 127 0.512864344 0.4433466932 0.777240771 0.131851328 0.666940580 0.893005643
## 128 0.594934646 0.6147596298 0.629629193 0.029415055 0.156732836 0.675986912
## 129 0.108193488 0.0456732074 0.553760919 0.836029727 0.991577258 0.029231649
## 130 0.213286245 0.6094768783 0.343689348 0.090614796 0.383258829 0.830723291
## 131 0.511472948 0.8676087293 0.542017557 0.964182970 0.315437378 0.805567415
## 132 0.653088958 0.0627070705 0.925106390 0.035819308 0.250788742 0.872808259
## 133 0.680070220 0.4819761757 0.543910673 0.283038010 0.721935218 0.261010709
## 134 0.594429644 0.9517888685 0.487364555 0.429615057 0.077726093 0.396774478
## 135 0.566119617 0.7702909564 0.283901030 0.481008470 0.085473549 0.392161391
## 136 0.292137912 0.4600951856 0.031411853 0.355790904 0.714166709 0.646736944
## 137 0.621721983 0.8975026356 0.486688155 0.237542561 0.754609415 0.993754126
## 138 0.734009909 0.7064418797 0.685221680 0.159361927 0.678954404 0.522533498
## 139 0.250146729 0.2166299177 0.828084011 0.759835896 0.783513594 0.528184886
## 140 0.725502808 0.3214482346 0.801824650 0.683726188 0.785781410 0.368117954
## 141 0.518633971 0.1892801912 0.636985009 0.216002044 0.823852410 0.130777703
## 142 0.353793057 0.1187343048 0.771915119 0.228639466 0.026823693 0.470881379
## 143 0.536732926 0.5057627214 0.544558276 0.408174795 0.220592264 0.716128180
## 144 0.827716813 0.1134541789 0.151092910 0.249067954 0.167421041 0.812992523
## 145 0.799086446 0.2226722005 0.314966519 0.644402519 0.296044190 0.010295009
## 146 0.121202702 0.5125092892 0.736546513 0.173788953 0.987242828 0.128936096
## 147 0.965792880 0.2959974960 0.281766439 0.181185599 0.460291081 0.428525911
## 148 0.655097562 0.9138811582 0.685150367 0.203402501 0.556077081 0.384476536
## 149 0.523663767 0.3619226965 0.790130149 0.296799039 0.181327148 0.809934170
## 150 0.406266008 0.1738398047 0.437415589 0.528837076 0.650578036 0.017366972
## 151 0.811131607 0.4745276461 0.736739275 0.090695082 0.734380059 0.640642888
## 152 0.195899217 0.1883440749 0.036628024 0.037811573 0.361777857 0.891157788
## 153 0.901721909 0.7641276480 0.975725230 0.649152147 0.125422492 0.843844815
## 154 0.419387562 0.7132732121 0.537194521 0.663290517 0.813946252 0.346468189
## 155 0.502626143 0.1582271636 0.926717208 0.752402752 0.534871275 0.519248105
## 156 0.505678876 0.5922643617 0.249804128 0.229866606 0.489065639 0.002901212
## 157 0.914411720 0.3216436969 0.149495436 0.232416035 0.057981907 0.278796293
## 158 0.148558215 0.5582501232 0.832446445 0.294442032 0.117299439 0.885807658
## 159 0.937065663 0.7175001081 0.341711296 0.826616130 0.589513207 0.927866664
## 160 0.975472900 0.4723303919 0.144815880 0.495536016 0.437703832 0.338820112
## 161 0.424515043 0.6310416884 0.783094346 0.510714823 0.314462922 0.086185409
## 162 0.812289485 0.6547854072 0.352954853 0.395277522 0.834191832 0.642550439
## 163 0.029440868 0.7336349678 0.287532780 0.481363036 0.646652654 0.586816839
## 164 0.917813970 0.6703584662 0.014808858 0.308127946 0.908841855 0.511950091
## 165 0.214090701 0.3539453736 0.441450395 0.704947843 0.190465599 0.788839862
## 166 0.553994835 0.3797423861 0.426848450 0.406387825 0.583469785 0.982102466
## 167 0.087216421 0.0444812854 0.887981009 0.334847389 0.958314174 0.631051316
## 168 0.051853288 0.5381637057 0.287162258 0.544222318 0.580674538 0.138133082
## 169 0.153477015 0.7609185344 0.588195231 0.726811070 0.869440276 0.140277030
## 170 0.585922012 0.6343205774 0.114031907 0.054257943 0.132969180 0.262855512
## 171 0.915327054 0.6440016078 0.582549772 0.953309200 0.661264660 0.182328664
## 172 0.021536301 0.3673074185 0.137482502 0.985332304 0.359814066 0.504694133
## 173 0.175545276 0.5064939184 0.364339191 0.650103795 0.942291794 0.238556437
## 174 0.083142271 0.1788396279 0.373116091 0.705161238 0.367621270 0.640988169
## 175 0.491874318 0.4900236735 0.297881532 0.331352153 0.870221517 0.530976141
## 176 0.665890210 0.6166888489 0.978142474 0.226049843 0.988691468 0.411653516
## 177 0.028172681 0.3769877132 0.719316378 0.022271170 0.711718217 0.537131623
## 178 0.879781784 0.7322189799 0.869278736 0.649725121 0.669133191 0.397410648
## 179 0.795590631 0.2757800566 0.781217543 0.406130929 0.115849692 0.363247100
## 180 0.066798607 0.4353600563 0.641473262 0.070881601 0.725632793 0.845899404
## 181 0.369471576 0.2884542705 0.375342084 0.381129961 0.752541286 0.080834012
## 182 0.111091629 0.5124843172 0.743466425 0.401846189 0.632692037 0.334856320
## 183 0.825969449 0.7803220809 0.425994063 0.961734195 0.726619251 0.637834937
## 184 0.612556007 0.9145965697 0.257388497 0.629601910 0.375935599 0.271460483
## 185 0.637976925 0.1076111828 0.280669488 0.654566472 0.932735895 0.974294363
## 186 0.722749287 0.4142492083 0.976476628 0.461700869 0.261488323 0.760588499
## 187 0.088224613 0.3651040641 0.112417366 0.427385604 0.630677684 0.064398194
## 188 0.206456413 0.6789903478 0.269728941 0.026255392 0.533788505 0.339906024
## 189 0.271994818 0.4532893968 0.732908373 0.710368193 0.555094344 0.429670967
## 190 0.520548412 0.3144283574 0.803517855 0.349941988 0.498034912 0.495041399
## 191 0.776805477 0.9616133086 0.754222457 0.091987771 0.551281321 0.733340201
## 192 0.289232634 0.8427688032 0.202012851 0.496472600 0.546778636 0.428116115
## 193 0.989449516 0.2357514210 0.704040867 0.447436986 0.046436282 0.493715242
## 194 0.310988950 0.4760307493 0.771920531 0.274742047 0.416478656 0.183150188
## 195 0.581546503 0.0395606223 0.147069360 0.853941998 0.729293162 0.166967576
## 196 0.701018440 0.7045858139 0.531901518 0.318705286 0.510770075 0.799619116
## 197 0.539472235 0.1585750368 0.654213027 0.492335809 0.606566809 0.903776626
## 198 0.011292625 0.9602364919 0.776298914 0.773416284 0.594650894 0.984942808
## 199 0.603909890 0.9586990301 0.875057548 0.093729714 0.825522528 0.624501048
## 200 0.089178660 0.6006974212 0.113622466 0.825916705 0.558199830 0.084706127
## V7 V8 V9 V10 corr_pred y
## 1 0.8266608594 0.421408064 0.59111440 0.588621560 0.483553213 18.463980
## 2 0.6489600763 0.844623926 0.92819306 0.758400814 0.596918149 16.098360
## 3 0.1785614495 0.349590781 0.01759542 0.444118458 0.581686589 17.761647
## 4 0.5133613953 0.797025980 0.68986918 0.445071622 0.779718369 13.787300
## 5 0.6644906041 0.903891937 0.39696995 0.550080800 0.679028625 18.429836
## 6 0.3360117343 0.648917723 0.53116033 0.906618237 0.871156744 20.858166
## 7 0.0084998407 0.072795420 0.97395768 0.440172910 0.653421017 13.888401
## 8 0.4722572784 0.381633542 0.75877525 0.710887919 0.167954496 12.915431
## 9 0.3058403293 0.525661726 0.43136410 0.400128186 0.441298786 12.149448
## 10 0.3228343336 0.960311741 0.92426620 0.832559698 0.199364323 5.271123
## 11 0.1315679180 0.939230266 0.46228702 0.775593376 0.463353503 8.946052
## 12 0.7618696443 0.550847133 0.08637756 0.524860506 0.658880358 12.894078
## 13 0.4806034924 0.485595847 0.54158360 0.081258474 0.133563727 6.533292
## 14 0.4200604216 0.282479481 0.62596273 0.003172379 0.723272724 7.520004
## 15 0.6595693664 0.469818084 0.03909819 0.706367689 0.395551623 15.141730
## 16 0.6941591527 0.917750880 0.33898498 0.689810129 0.304366392 12.974733
## 17 0.1693497750 0.290054937 0.69159996 0.120331543 0.527881952 25.016165
## 18 0.1774999567 0.724190771 0.14320681 0.075203559 0.182873479 12.436690
## 19 0.6109301876 0.182253540 0.20626788 0.247241936 0.830796153 16.899482
## 20 0.1655056404 0.996789995 0.57239957 0.970613467 0.877359300 22.052472
## 21 0.8696455043 0.480284780 0.94174627 0.525216599 0.416551694 12.892896
## 22 0.2200369346 0.543487359 0.91963756 0.948926731 0.175153068 3.555960
## 23 0.6324701225 0.833171203 0.91811502 0.181142754 0.232789942 10.032559
## 24 0.6703429641 0.285668603 0.84918471 0.397776954 0.999680294 19.728886
## 25 0.0101521015 0.960430558 0.23506862 0.230721395 0.237988893 15.271168
## 26 0.2522400960 0.634320574 0.87522970 0.635452710 0.221479234 21.921927
## 27 0.6650384206 0.650785477 0.28744271 0.616526859 0.645347402 17.848795
## 28 0.0648198922 0.178094681 0.56876498 0.428627433 0.403429814 5.964147
## 29 0.6192647608 0.146737191 0.33908035 0.938806834 -0.085152007 13.254190
## 30 0.3292513283 0.042337252 0.86859891 0.880950373 0.546126975 15.181016
## 31 0.2824812313 0.332542812 0.95191869 0.763801782 0.254637267 18.021637
## 32 0.2051616914 0.785139066 0.04968553 0.968671421 0.341791275 8.385652
## 33 0.6479521065 0.175871460 0.67905283 0.730759681 0.469281733 17.967104
## 34 0.3500645757 0.635448656 0.89620270 0.575594178 0.314608361 14.097415
## 35 0.8686830916 0.324884567 0.03161212 0.849832683 0.856362465 17.352764
## 36 0.6281718945 0.651751797 0.69222388 0.442386812 0.538379426 17.608729
## 37 0.5401211150 0.802915463 0.51344968 0.959669129 0.196843804 13.136663
## 38 0.0954262505 0.271751555 0.91415621 0.535858047 1.014054381 21.879995
## 39 0.3189930974 0.487114596 0.38007261 0.068724414 0.600313558 9.980150
## 40 0.0987321541 0.398785473 0.70468780 0.814099950 0.582960796 18.002840
## 41 0.8256829928 0.274217872 0.24911536 0.363809015 0.576693725 9.489052
## 42 0.4254488801 0.543745558 0.56771488 0.586587886 0.860890373 19.991424
## 43 0.6002272039 0.303179812 0.30442762 0.996330470 0.513995466 17.766711
## 44 0.0993871398 0.726330749 0.51122937 0.574089565 0.238437201 13.299483
## 45 0.3573383761 0.659334866 0.82108557 0.880166529 0.900247544 18.828347
## 46 0.3369224169 0.171208087 0.58813299 0.298467441 0.821234986 26.945666
## 47 0.7216083466 0.347465995 0.45980972 0.522110901 0.121455573 9.358890
## 48 0.1637666794 0.465182498 0.67228512 0.549377529 0.708127573 12.133777
## 49 0.0661412831 0.662970975 0.67190601 0.712600555 0.657654646 22.132197
## 50 0.5044657106 0.684693513 0.23367805 0.853776497 0.644942325 8.886239
## 51 0.4450478635 0.954027392 0.87891811 0.228369326 0.022480965 13.343289
## 52 0.8620285194 0.258589442 0.96154879 0.437253388 -0.055233701 12.709052
## 53 0.0236228870 0.676012672 0.37005100 0.260396947 0.910261194 16.708610
## 54 0.1452215833 0.955375290 0.70495617 0.882332698 0.747681691 19.797593
## 55 0.3742820916 0.214503606 0.13091783 0.462896239 0.287812995 12.166608
## 56 0.5384509673 0.037968947 0.61604382 0.535041264 0.232146468 13.772781
## 57 0.2577628391 0.186539843 0.93924713 0.942935549 0.009376398 6.563014
## 58 0.2109247684 0.363152975 0.22155711 0.789319306 0.343831061 5.325261
## 59 0.4573113865 0.197379992 0.41096121 0.626259638 0.699193917 18.244465
## 60 0.2189239766 0.259368576 0.39850931 0.322176775 0.587901802 20.632950
## 61 0.9801436167 0.418736819 0.50638210 0.791115409 0.121203074 18.974731
## 62 0.2792056827 0.632583834 0.92330341 0.663045999 0.563762947 21.779238
## 63 0.6202754262 0.088279070 0.26778657 0.207211251 0.720391881 9.197490
## 64 0.6345477444 0.994484988 0.67288102 0.949158964 0.823982928 15.073224
## 65 0.1516102208 0.669617534 0.12557122 0.392013110 0.788701557 17.561914
## 66 0.0638373715 0.153521036 0.22166633 0.123506922 0.606075877 17.601765
## 67 0.3630222164 0.350279308 0.14200169 0.041529058 0.282065476 15.824533
## 68 0.0141349288 0.663475810 0.67553172 0.501539484 0.301617217 7.134264
## 69 0.5267603784 0.429941210 0.97828898 0.885561631 0.087564073 6.413136
## 70 0.6532241760 0.671208466 0.65576477 0.673768810 0.583857899 14.613611
## 71 0.2219880908 0.476079757 0.71183447 0.425648322 0.400107953 16.255757
## 72 0.1531321660 0.691954747 0.65801907 0.426056444 0.046916341 4.698295
## 73 0.5008657877 0.040073613 0.92800985 0.381413696 0.350010608 14.105578
## 74 0.9806543912 0.819187354 0.84159996 0.896280786 0.439968794 15.707841
## 75 0.9244000583 0.198013207 0.23337787 0.116631588 0.191731905 4.888355
## 76 0.0099979453 0.295807930 0.90356056 0.885416760 0.312676924 16.992321
## 77 0.2356902743 0.506900013 0.55981430 0.534760828 0.477477021 22.980799
## 78 0.3650656492 0.810620838 0.11388461 0.410755347 0.177769617 9.623636
## 79 0.7987873172 0.366785977 0.60186782 0.973480208 0.745112953 20.669432
## 80 0.5599248759 0.116578872 0.34580507 0.714962742 -0.201031396 7.096990
## 81 0.7522757188 0.026414874 0.34715430 0.836363711 0.906534116 13.593588
## 82 0.8865377689 0.061911004 0.97803556 0.612240904 0.737108952 15.468199
## 83 0.0590573207 0.684142034 0.71260502 0.255351776 0.519712589 28.381673
## 84 0.7768231640 0.850076108 0.17097505 0.408350330 0.247613470 17.977054
## 85 0.4138241454 0.755554634 0.92548457 0.945293089 0.513280171 10.694865
## 86 0.9818397635 0.945009324 0.68008657 0.510965007 0.770673665 17.640215
## 87 0.2916908523 0.702514261 0.85496045 0.604653787 0.480977075 7.138598
## 88 0.1587244619 0.582193831 0.05235641 0.486561552 1.066008245 15.656878
## 89 0.0014450864 0.128084549 0.47699398 0.679715703 0.544159394 18.363995
## 90 0.2105985023 0.884157248 0.18779775 0.402003791 0.987415473 23.572686
## 91 0.8245949268 0.793933963 0.53137582 0.756866812 0.418679640 21.330888
## 92 0.0445211111 0.460617797 0.58243842 0.944980194 0.362962259 8.631156
## 93 0.5918905353 0.485206415 0.77555244 0.542896184 -0.058190556 16.373575
## 94 0.0303562423 0.324637733 0.98245833 0.605254818 0.113825253 13.359596
## 95 0.6099704383 0.731502909 0.49410755 0.882788646 0.556244164 15.744177
## 96 0.0619420919 0.788262721 0.32567336 0.790985481 0.615313728 8.078082
## 97 0.6019777379 0.718690965 0.24367231 0.571871065 0.223912719 14.497672
## 98 0.7470110336 0.789140293 0.18306352 0.852484180 0.199057769 14.942224
## 99 0.5261754794 0.983355801 0.37887188 0.765290411 0.330337083 15.829082
## 100 0.4876051969 0.122928050 0.08177731 0.848134163 0.565642051 19.178018
## 101 0.9011508890 0.617960313 0.12460480 0.702702949 0.653335312 19.928981
## 102 0.0003387642 0.388927228 0.97821702 0.104494945 0.968213155 17.178817
## 103 0.9080805883 0.905519754 0.60285307 0.877587634 0.066143767 5.784234
## 104 0.4965877566 0.636728981 0.79705572 0.319453278 0.640933352 22.061638
## 105 0.8487957353 0.912640729 0.11477043 0.155581983 0.046373610 5.776771
## 106 0.0822484379 0.955071241 0.06021731 0.421584291 0.008525971 9.597466
## 107 0.1611803344 0.599529999 0.26890232 0.188167820 0.558746858 23.395596
## 108 0.1425062015 0.571244097 0.74935739 0.464775090 -0.034123408 7.444598
## 109 0.4653496440 0.651546226 0.95540449 0.564070737 0.625975040 19.434952
## 110 0.1981665948 0.999560626 0.57950670 0.127039001 0.468730012 21.911755
## 111 0.8408644302 0.437424371 0.93131402 0.133683814 0.921901785 16.718751
## 112 0.9164640335 0.395302785 0.63386223 0.888060797 0.101906684 10.227144
## 113 0.3355441941 0.030395976 0.20250656 0.053323140 0.110253612 8.500874
## 114 0.6774176396 0.696283764 0.75913311 0.809930917 0.455270626 20.114536
## 115 0.9650529190 0.449902425 0.57304399 0.753339031 0.461563047 13.443701
## 116 0.1141603340 0.863953833 0.95345440 0.380650506 0.835165353 8.789036
## 117 0.4158274462 0.713239111 0.60102539 0.635894833 0.986621928 18.291185
## 118 0.1791522284 0.834004079 0.20838605 0.592570851 0.169996525 5.901247
## 119 0.5624954123 0.710008362 0.18311621 0.394101708 0.432759016 12.337007
## 120 0.9726133470 0.842078145 0.93576851 0.956083941 0.169234118 8.710816
## 121 0.4887156698 0.887054311 0.31041901 0.510736341 0.545840551 18.395967
## 122 0.9838132532 0.585472636 0.14732752 0.086574405 0.675287847 19.595790
## 123 0.4743697466 0.242674318 0.42347788 0.868947359 0.254893099 20.525566
## 124 0.2407878560 0.447328788 0.66467369 0.494879879 0.817248180 11.827082
## 125 0.1783671109 0.503948929 0.16230501 0.187285239 0.844466213 13.071909
## 126 0.4367017439 0.344732890 0.42201320 0.437095925 0.699608265 17.164010
## 127 0.3784207169 0.273177421 0.11701698 0.547305345 0.484885189 12.604661
## 128 0.1147928145 0.103627008 0.16504249 0.275940885 0.695680384 9.364654
## 129 0.3586573373 0.238100665 0.68896641 0.177130092 0.061236492 12.350974
## 130 0.2376520939 0.312197204 0.25109129 0.997579731 0.243075949 6.692139
## 131 0.7941833863 0.433608739 0.76234330 0.569325565 0.469693505 19.390364
## 132 0.5684747580 0.312200866 0.11102144 0.240327878 0.568050881 8.216058
## 133 0.9834440248 0.023838794 0.16816803 0.999992477 0.748974840 14.163226
## 134 0.8681481183 0.755061130 0.16099688 0.581953628 0.548410025 14.852324
## 135 0.2529283839 0.309956316 0.35376172 0.576154274 0.700938055 14.960020
## 136 0.2954634046 0.686869082 0.23401367 0.743752910 0.336445050 14.371226
## 137 0.7287589125 0.934555566 0.27740693 0.256602708 0.606629364 16.171388
## 138 0.5105628674 0.330980633 0.32516244 0.474497675 0.779564795 17.728141
## 139 0.4536720926 0.385358283 0.03655417 0.171900066 0.246131261 16.347169
## 140 0.0308236629 0.654293299 0.92551144 0.435859671 0.771114912 18.929738
## 141 0.3351621642 0.409007091 0.67315717 0.996981804 0.477791468 9.388698
## 142 0.6144252147 0.651714271 0.12889572 0.633149029 0.140143672 5.393462
## 143 0.1153656312 0.793603583 0.55421117 0.356097830 0.552415117 12.775396
## 144 0.7361220436 0.177242560 0.03421274 0.872309444 0.893721703 8.442596
## 145 0.9072946333 0.738731097 0.26822183 0.173052300 0.700903005 13.267265
## 146 0.8854910310 0.688096952 0.75856509 0.669689639 0.009838331 8.941159
## 147 0.0388078641 0.214172413 0.61253457 0.207942491 0.922058112 14.353866
## 148 0.3260785770 0.810973278 0.39199971 0.370241001 0.603486438 15.394612
## 149 0.7807700243 0.578197747 0.70276752 0.123103430 0.565563366 9.084654
## 150 0.7907638911 0.208587777 0.05438854 0.766739978 0.419681552 11.312659
## 151 0.7937673274 0.208766474 0.83636350 0.858343330 0.914600252 16.299293
## 152 0.1613148297 0.654811297 0.66729678 0.115404263 0.361249539 5.839912
## 153 0.7080952730 0.903838935 0.31193910 0.969527644 0.899927228 19.525552
## 154 0.5305830529 0.004698141 0.48546810 0.259277162 0.416967229 17.824782
## 155 0.1885056335 0.079913177 0.57972754 0.905628399 0.527650833 15.534928
## 156 0.5161641990 0.466810009 0.76300679 0.944087471 0.471966423 14.460986
## 157 0.6012678132 0.025244068 0.19821959 0.402928842 0.903076350 13.992105
## 158 0.6169876396 0.499346328 0.32760646 0.266050707 0.138669923 9.634654
## 159 0.7895973460 0.786763847 0.07832531 0.312945329 0.963474345 20.360593
## 160 0.0390002122 0.015907055 0.57958929 0.502512869 0.989371268 21.628769
## 161 0.4199729285 0.538111618 0.94932648 0.535985540 0.400288093 17.995487
## 162 0.5129533098 0.613649708 0.26589918 0.269859831 0.818192624 19.648813
## 163 0.6883663596 0.515120720 0.64359538 0.473454136 0.011713681 8.728757
## 164 0.2867906420 0.219839853 0.16326702 0.120969625 0.997281997 22.293667
## 165 0.9943477523 0.381418612 0.81146453 0.136825552 0.214764480 10.776480
## 166 0.2593658050 0.461603611 0.68922230 0.171518739 0.491015806 12.980947
## 167 0.5809806921 0.810821845 0.21677497 0.741042868 0.061967443 13.200163
## 168 0.9927047875 0.928290160 0.48741662 0.881588204 -0.017188929 11.617543
## 169 0.3948761285 0.914971805 0.04233756 0.987049844 0.173731229 15.072437
## 170 0.9569103546 0.694013482 0.97705820 0.012435718 0.670560155 13.042415
## 171 0.5889326367 0.509478116 0.64141950 0.365601074 0.978534460 21.870618
## 172 0.6114409810 0.830605455 0.52658278 0.065911923 0.041677654 15.131138
## 173 0.4287582068 0.366665906 0.86474573 0.016379327 0.166438212 14.669672
## 174 0.1562757776 0.463090256 0.02956841 0.971855537 0.112090683 9.609650
## 175 0.0453625068 0.177558171 0.10203368 0.505838658 0.486405824 14.428173
## 176 0.6969831374 0.631295626 0.58758911 0.247838673 0.461705225 21.871572
## 177 0.1762444021 0.080035930 0.84510174 0.700015211 0.064009605 6.124100
## 178 0.2357786680 0.385391619 0.62558152 0.954732809 0.842521698 19.906736
## 179 0.5439273247 0.627847850 0.88854501 0.855865543 0.922421515 14.038694
## 180 0.8102693288 0.839098028 0.15944836 0.379626432 0.283658638 6.595364
## 181 0.0133081947 0.168556706 0.10525675 0.771278932 0.245499291 12.188266
## 182 0.6584848959 0.287486323 0.12728033 0.041241815 0.170079018 11.029138
## 183 0.3847984066 0.117578465 0.96804658 0.902288517 0.838371378 20.917170
## 184 0.1876184577 0.798065790 0.92881170 0.884292413 0.560185228 18.056711
## 185 0.0729941991 0.472175947 0.07752809 0.744791487 0.699999725 11.085355
## 186 0.7420141906 0.437308198 0.66531113 0.045803222 0.793571445 17.402036
## 187 0.4334616780 0.849088030 0.46642330 0.779457425 0.078904778 11.244792
## 188 0.6745903494 0.986013835 0.50686606 0.312909630 0.176936743 9.334814
## 189 0.3680351812 0.496575716 0.49428027 0.447099152 0.163413295 15.629095
## 190 0.6922219021 0.011549961 0.57885152 0.406213945 0.458066907 12.631487
## 191 0.0971158685 0.412869229 0.97960020 0.136601998 0.753504823 13.381026
## 192 0.1838154087 0.210182422 0.04580357 0.427214286 0.264150947 16.619825
## 193 0.5494235111 0.720276414 0.29912111 0.994646956 1.084839050 11.294074
## 194 0.7455740881 0.886575559 0.25383887 0.521175744 0.284391700 10.942370
## 195 0.8809142739 0.322509774 0.66346270 0.930126207 0.771074098 15.337523
## 196 0.6664053195 0.267326644 0.24159338 0.606167757 0.658019357 17.171795
## 197 0.8829731958 0.123415505 0.99102161 0.073506513 0.697026935 10.496627
## 198 0.2567906741 0.309302658 0.05267484 0.698478227 0.027486745 14.793806
## 199 0.5021552520 0.334554489 0.03080467 0.395422508 0.495364600 17.333764
## 200 0.6627391470 0.959779277 0.09184009 0.219858172 0.146872390 17.153588
set.seed(100)
colnamesx <- c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10", "corr_pred")
cubistTuned <- train(simulated3[, colnamesx], simulated3$y, method = "cubist")## V1 V2 V3 V4 V5 V6
## 1 0.533772448 0.6478064333 0.850785258 0.181599574 0.929039760 0.361790597
## 2 0.583765033 0.4381527551 0.672726594 0.669249143 0.163797838 0.453059313
## 3 0.589578298 0.5879064940 0.409671080 0.338127280 0.894093335 0.026819108
## 4 0.691039888 0.2259547510 0.033354474 0.066912736 0.637445191 0.525006367
## 5 0.667331498 0.8188985116 0.716760786 0.803242873 0.083068641 0.223441572
## 6 0.839293735 0.3862983445 0.646188573 0.861054306 0.630389472 0.437038906
## 7 0.711600085 0.1162793254 0.767706224 0.859962373 0.520582290 0.990291612
## 8 0.096501224 0.8445782231 0.153528016 0.412814007 0.746725963 0.662056439
## 9 0.523824728 0.2514584265 0.285196133 0.452202451 0.506808798 0.019370317
## 10 0.235350536 0.4317718598 0.780373945 0.072122673 0.100005680 0.294671116
## 11 0.454364888 0.1192040211 0.220170008 0.351687343 0.001755818 0.149134940
## 12 0.649252912 0.0973321993 0.598340076 0.734892188 0.669684836 0.668878612
## 13 0.153727122 0.0128550101 0.608990930 0.633952646 0.094662402 0.616397752
## 14 0.649288674 0.1866738056 0.365308329 0.045665963 0.806304601 0.476613421
## 15 0.383213673 0.4608722613 0.345225364 0.735293760 0.217474412 0.350192171
## 16 0.307298063 0.4219112301 0.979319583 0.144514926 0.489620249 0.516859321
## 17 0.566767377 0.7811157859 0.890115921 0.995679246 0.413354418 0.379292418
## 18 0.131787853 0.1998720246 0.379945722 0.570354241 0.932332295 0.175180161
## 19 0.922177571 0.4675492314 0.010254486 0.008189635 0.789955666 0.846729845
## 20 0.646329618 0.7929329765 0.053864328 0.652274119 0.226417012 0.510733424
## 21 0.460360692 0.0697931792 0.784207606 0.686981049 0.379707196 0.434224161
## 22 0.098747006 0.2313314399 0.520667098 0.298788559 0.058919030 0.321473247
## 23 0.206593813 0.6473270494 0.606014522 0.086910314 0.536598262 0.592455531
## 24 0.922339834 0.6342856146 0.888005181 0.503549783 0.504815002 0.519335387
## 25 0.319426806 0.0545100805 0.381021996 0.999287510 0.982473919 0.515890769
## 26 0.265324291 0.8564205186 0.050943109 0.395974373 0.937435226 0.983467527
## 27 0.717369557 0.2948283439 0.736812766 0.919277884 0.128039610 0.414260471
## 28 0.380335360 0.0004408562 0.733275530 0.345613460 0.443263867 0.558792540
## 29 0.030620939 0.2731315538 0.903001443 0.758067884 0.147233479 0.146207562
## 30 0.521419376 0.3537345366 0.830735998 0.393664814 0.671653698 0.573219036
## 31 0.263748623 0.5057117699 0.140882633 0.678475745 0.562049805 0.812396222
## 32 0.166053713 0.2998292497 0.377729565 0.270103104 0.711894969 0.103405041
## 33 0.483074695 0.5088484667 0.636458001 0.654003645 0.616297887 0.399691042
## 34 0.325727710 0.9247118952 0.817825248 0.371338245 0.382548874 0.441881776
## 35 0.925363897 0.2371832319 0.010075368 0.345586454 0.547638883 0.201830557
## 36 0.560558849 0.4270182950 0.313384585 0.610149687 0.802779849 0.815573796
## 37 0.178553036 0.4352612651 0.153328084 0.549069691 0.356350074 0.094069178
## 38 0.972322052 0.6359792664 0.445975145 0.899534479 0.268725364 0.903799011
## 39 0.493773325 0.3447996511 0.445896353 0.449058379 0.003265168 0.759522119
## 40 0.485940594 0.8554888491 0.813352563 0.045685444 0.880070203 0.513183234
## 41 0.586856649 0.2803302526 0.037726685 0.018251117 0.150030803 0.053033940
## 42 0.720570024 0.9092058453 0.210796098 0.875075159 0.094086062 0.585604633
## 43 0.691673029 0.5930176671 0.420771204 0.247303587 0.983297946 0.427623936
## 44 0.176150461 0.7141316915 0.741954805 0.197583070 0.836461429 0.296208750
## 45 0.952475880 0.8493538222 0.317191089 0.925082660 0.607305124 0.803849567
## 46 0.689011891 0.7483011317 0.807849665 0.877950979 0.967313918 0.574638351
## 47 0.157799606 0.6691785671 0.353649540 0.368825636 0.377917988 0.298162997
## 48 0.576220999 0.8380715831 0.609410121 0.191988432 0.172759505 0.113711787
## 49 0.653276739 0.9181834545 0.893769723 0.622584245 0.327600596 0.832185488
## 50 0.832807913 0.2265766494 0.355865418 0.047708418 0.547652281 0.939744496
## 51 0.067187183 0.1867572814 0.053412318 0.788249273 0.069746084 0.175875548
## 52 0.118626094 0.4984532818 0.081841033 0.847314714 0.095897603 0.953105583
## 53 0.892374709 0.9191673915 0.179852584 0.484247719 0.850093837 0.771444682
## 54 0.557935121 0.9555177600 0.070927210 0.284588894 0.860588939 0.018207328
## 55 0.515005544 0.6027795288 0.491738453 0.258037420 0.287011503 0.054381748
## 56 0.134100055 0.7252116359 0.862601955 0.610891974 0.280598821 0.785266264
## 57 0.149258960 0.1695368735 0.566346588 0.563854012 0.273068628 0.328188200
## 58 0.161343819 0.2199983387 0.222847626 0.136463749 0.596218371 0.105031757
## 59 0.561064044 0.7804879546 0.169082082 0.368560432 0.294977250 0.618674891
## 60 0.671786989 0.5629266184 0.306758978 0.797413421 0.402194366 0.169488368
## 61 0.147402651 0.9183623586 0.999923422 0.435399952 0.960000194 0.746313307
## 62 0.570647350 0.8898196355 0.359521539 0.807744707 0.942994522 0.850621036
## 63 0.758280237 0.4162223253 0.651333184 0.088788726 0.318467662 0.789343349
## 64 0.565787035 0.2931080312 0.935225714 0.254972817 0.682191425 0.116470202
## 65 0.775718143 0.2964265901 0.815802228 0.778016577 0.345414489 0.608970067
## 66 0.677378375 0.2773598756 0.627044755 0.937812351 0.439045849 0.796132486
## 67 0.218266052 0.7430458625 0.370964498 0.678309920 0.850654966 0.108555941
## 68 0.281448058 0.2555278649 0.540702318 0.102928993 0.499993075 0.200114859
## 69 0.094555768 0.6770530874 0.857065403 0.147499445 0.190941744 0.593200353
## 70 0.593106887 0.6049814720 0.829584161 0.068155296 0.812524924 0.272600746
## 71 0.355217626 0.9024892272 0.162602290 0.167165469 0.786120466 0.253500610
## 72 0.153351908 0.5403167598 0.522081524 0.131646728 0.303439272 0.406195677
## 73 0.466252540 0.2189726466 0.649081210 0.876677948 0.373312224 0.500154867
## 74 0.275116619 0.5810471375 0.328282601 0.821013230 0.365157783 0.574757167
## 75 0.397941506 0.0506482811 0.736786507 0.069037383 0.465576746 0.526418373
## 76 0.311401952 0.8876241017 0.829994129 0.273672034 0.822258464 0.576108309
## 77 0.586229856 0.6614987573 0.510906287 0.863162806 0.946865431 0.895700728
## 78 0.150715668 0.0240218288 0.293724078 0.763388061 0.337483510 0.572278405
## 79 0.644267766 0.5393897707 0.438592263 0.678769260 0.816074158 0.739229684
## 80 0.006409079 0.3240858268 0.081627410 0.388581997 0.143550989 0.586718400
## 81 0.816851889 0.8537856233 0.217289788 0.442311989 0.143528348 0.926974642
## 82 0.742108528 0.2384303520 0.580422256 0.720915187 0.629143175 0.597393914
## 83 0.654247520 0.5939083034 0.994853858 0.936799756 0.912532976 0.215555561
## 84 0.440734623 0.8666409499 0.564446902 0.379492091 0.822953047 0.368613384
## 85 0.442322013 0.2467340643 0.826851101 0.198192747 0.346601916 0.981209712
## 86 0.786464168 0.9204477360 0.150473845 0.543170314 0.512502319 0.773290500
## 87 0.459340288 0.2267787226 0.645397100 0.169832431 0.382568107 0.076924091
## 88 0.984272037 0.7370369236 0.306019300 0.648133427 0.114868225 0.384680568
## 89 0.371441818 0.1517067349 0.995130365 0.887727774 0.512004345 0.986306011
## 90 0.997792503 0.6529070695 0.098833617 0.917166736 0.471261014 0.157362159
## 91 0.474391870 0.6010630331 0.278657043 0.790569007 0.927579608 0.305082921
## 92 0.220132116 0.6547463359 0.537419467 0.345841283 0.043483641 0.429867428
## 93 0.031105185 0.6107613579 0.025156959 0.909916925 0.158163789 0.016845753
## 94 0.229582377 0.6054298035 0.639548430 0.572823923 0.743228543 0.887359502
## 95 0.609273809 0.9123187338 0.725720419 0.461442270 0.011241655 0.763862459
## 96 0.370745452 0.0759057687 0.361935701 0.433070669 0.090679155 0.101371452
## 97 0.307162299 0.6478466513 0.830584273 0.446856117 0.350730690 0.442842154
## 98 0.157705784 0.3871437064 0.703486373 0.566900127 0.685163247 0.440206385
## 99 0.448205397 0.8644333375 0.422698680 0.633362517 0.233479040 0.103215690
## 100 0.683045527 0.9840194189 0.611699514 0.531140843 0.797903161 0.597651707
## 101 0.686627647 0.6046307203 0.167846072 0.456818942 0.607740600 0.314174908
## 102 0.831901784 0.2939653466 0.672954567 0.803079295 0.280210467 0.998987383
## 103 0.113058501 0.2546948988 0.218817725 0.057622184 0.279840802 0.239368085
## 104 0.556645789 0.8126982844 0.692510723 0.966434979 0.351036289 0.281969752
## 105 0.192172982 0.3423131080 0.496556215 0.413942024 0.088539597 0.727522285
## 106 0.048556563 0.9640056610 0.605707243 0.566484744 0.508386431 0.614031048
## 107 0.636388587 0.4812663090 0.156460918 0.863360892 0.745412975 0.765995033
## 108 0.002806243 0.9363095718 0.649450997 0.242205442 0.870268838 0.335062859
## 109 0.501964895 0.7322653499 0.968477561 0.455123628 0.558531469 0.644129353
## 110 0.479473393 0.8101365152 0.371763220 0.896207781 0.851932624 0.277587108
## 111 0.904642434 0.7766639574 0.927888780 0.170289954 0.499319865 0.493327187
## 112 0.076446557 0.3885678530 0.869672049 0.631985184 0.508797599 0.512153390
## 113 0.171706995 0.6642553948 0.447441930 0.109595960 0.687226565 0.990115111
## 114 0.598192136 0.8803027971 0.934215342 0.184075910 0.930016244 0.015515274
## 115 0.494660591 0.5270667071 0.165982118 0.279556816 0.548412474 0.006808892
## 116 0.822326746 0.0874312406 0.339381942 0.624753956 0.139959793 0.881927748
## 117 0.884809928 0.2049752097 0.351055704 0.772163214 0.897429584 0.373503622
## 118 0.195553894 0.1479548330 0.547592697 0.426198894 0.233539708 0.459527157
## 119 0.463013117 0.4677024283 0.079132932 0.123636657 0.209901525 0.249119067
## 120 0.007715050 0.9759014850 0.647108061 0.623121100 0.489483954 0.913406589
## 121 0.623211886 0.7964882990 0.725319422 0.268862381 0.873370248 0.629094972
## 122 0.632887607 0.6062786465 0.027653304 0.215499579 0.437937672 0.412266847
## 123 0.313287797 0.6479254356 0.003295714 0.679255102 0.590496615 0.988463188
## 124 0.775744612 0.1102327388 0.168523920 0.228762099 0.965724084 0.842011251
## 125 0.998992379 0.8608238841 0.913439707 0.130730744 0.663723183 0.934387672
## 126 0.751483215 0.3711484901 0.757779663 0.436154100 0.914117961 0.487309208
## 127 0.512864344 0.4433466932 0.777240771 0.131851328 0.666940580 0.893005643
## 128 0.594934646 0.6147596298 0.629629193 0.029415055 0.156732836 0.675986912
## 129 0.108193488 0.0456732074 0.553760919 0.836029727 0.991577258 0.029231649
## 130 0.213286245 0.6094768783 0.343689348 0.090614796 0.383258829 0.830723291
## 131 0.511472948 0.8676087293 0.542017557 0.964182970 0.315437378 0.805567415
## 132 0.653088958 0.0627070705 0.925106390 0.035819308 0.250788742 0.872808259
## 133 0.680070220 0.4819761757 0.543910673 0.283038010 0.721935218 0.261010709
## 134 0.594429644 0.9517888685 0.487364555 0.429615057 0.077726093 0.396774478
## 135 0.566119617 0.7702909564 0.283901030 0.481008470 0.085473549 0.392161391
## 136 0.292137912 0.4600951856 0.031411853 0.355790904 0.714166709 0.646736944
## 137 0.621721983 0.8975026356 0.486688155 0.237542561 0.754609415 0.993754126
## 138 0.734009909 0.7064418797 0.685221680 0.159361927 0.678954404 0.522533498
## 139 0.250146729 0.2166299177 0.828084011 0.759835896 0.783513594 0.528184886
## 140 0.725502808 0.3214482346 0.801824650 0.683726188 0.785781410 0.368117954
## 141 0.518633971 0.1892801912 0.636985009 0.216002044 0.823852410 0.130777703
## 142 0.353793057 0.1187343048 0.771915119 0.228639466 0.026823693 0.470881379
## 143 0.536732926 0.5057627214 0.544558276 0.408174795 0.220592264 0.716128180
## 144 0.827716813 0.1134541789 0.151092910 0.249067954 0.167421041 0.812992523
## 145 0.799086446 0.2226722005 0.314966519 0.644402519 0.296044190 0.010295009
## 146 0.121202702 0.5125092892 0.736546513 0.173788953 0.987242828 0.128936096
## 147 0.965792880 0.2959974960 0.281766439 0.181185599 0.460291081 0.428525911
## 148 0.655097562 0.9138811582 0.685150367 0.203402501 0.556077081 0.384476536
## 149 0.523663767 0.3619226965 0.790130149 0.296799039 0.181327148 0.809934170
## 150 0.406266008 0.1738398047 0.437415589 0.528837076 0.650578036 0.017366972
## 151 0.811131607 0.4745276461 0.736739275 0.090695082 0.734380059 0.640642888
## 152 0.195899217 0.1883440749 0.036628024 0.037811573 0.361777857 0.891157788
## 153 0.901721909 0.7641276480 0.975725230 0.649152147 0.125422492 0.843844815
## 154 0.419387562 0.7132732121 0.537194521 0.663290517 0.813946252 0.346468189
## 155 0.502626143 0.1582271636 0.926717208 0.752402752 0.534871275 0.519248105
## 156 0.505678876 0.5922643617 0.249804128 0.229866606 0.489065639 0.002901212
## 157 0.914411720 0.3216436969 0.149495436 0.232416035 0.057981907 0.278796293
## 158 0.148558215 0.5582501232 0.832446445 0.294442032 0.117299439 0.885807658
## 159 0.937065663 0.7175001081 0.341711296 0.826616130 0.589513207 0.927866664
## 160 0.975472900 0.4723303919 0.144815880 0.495536016 0.437703832 0.338820112
## 161 0.424515043 0.6310416884 0.783094346 0.510714823 0.314462922 0.086185409
## 162 0.812289485 0.6547854072 0.352954853 0.395277522 0.834191832 0.642550439
## 163 0.029440868 0.7336349678 0.287532780 0.481363036 0.646652654 0.586816839
## 164 0.917813970 0.6703584662 0.014808858 0.308127946 0.908841855 0.511950091
## 165 0.214090701 0.3539453736 0.441450395 0.704947843 0.190465599 0.788839862
## 166 0.553994835 0.3797423861 0.426848450 0.406387825 0.583469785 0.982102466
## 167 0.087216421 0.0444812854 0.887981009 0.334847389 0.958314174 0.631051316
## 168 0.051853288 0.5381637057 0.287162258 0.544222318 0.580674538 0.138133082
## 169 0.153477015 0.7609185344 0.588195231 0.726811070 0.869440276 0.140277030
## 170 0.585922012 0.6343205774 0.114031907 0.054257943 0.132969180 0.262855512
## 171 0.915327054 0.6440016078 0.582549772 0.953309200 0.661264660 0.182328664
## 172 0.021536301 0.3673074185 0.137482502 0.985332304 0.359814066 0.504694133
## 173 0.175545276 0.5064939184 0.364339191 0.650103795 0.942291794 0.238556437
## 174 0.083142271 0.1788396279 0.373116091 0.705161238 0.367621270 0.640988169
## 175 0.491874318 0.4900236735 0.297881532 0.331352153 0.870221517 0.530976141
## 176 0.665890210 0.6166888489 0.978142474 0.226049843 0.988691468 0.411653516
## 177 0.028172681 0.3769877132 0.719316378 0.022271170 0.711718217 0.537131623
## 178 0.879781784 0.7322189799 0.869278736 0.649725121 0.669133191 0.397410648
## 179 0.795590631 0.2757800566 0.781217543 0.406130929 0.115849692 0.363247100
## 180 0.066798607 0.4353600563 0.641473262 0.070881601 0.725632793 0.845899404
## 181 0.369471576 0.2884542705 0.375342084 0.381129961 0.752541286 0.080834012
## 182 0.111091629 0.5124843172 0.743466425 0.401846189 0.632692037 0.334856320
## 183 0.825969449 0.7803220809 0.425994063 0.961734195 0.726619251 0.637834937
## 184 0.612556007 0.9145965697 0.257388497 0.629601910 0.375935599 0.271460483
## 185 0.637976925 0.1076111828 0.280669488 0.654566472 0.932735895 0.974294363
## 186 0.722749287 0.4142492083 0.976476628 0.461700869 0.261488323 0.760588499
## 187 0.088224613 0.3651040641 0.112417366 0.427385604 0.630677684 0.064398194
## 188 0.206456413 0.6789903478 0.269728941 0.026255392 0.533788505 0.339906024
## 189 0.271994818 0.4532893968 0.732908373 0.710368193 0.555094344 0.429670967
## 190 0.520548412 0.3144283574 0.803517855 0.349941988 0.498034912 0.495041399
## 191 0.776805477 0.9616133086 0.754222457 0.091987771 0.551281321 0.733340201
## 192 0.289232634 0.8427688032 0.202012851 0.496472600 0.546778636 0.428116115
## 193 0.989449516 0.2357514210 0.704040867 0.447436986 0.046436282 0.493715242
## 194 0.310988950 0.4760307493 0.771920531 0.274742047 0.416478656 0.183150188
## 195 0.581546503 0.0395606223 0.147069360 0.853941998 0.729293162 0.166967576
## 196 0.701018440 0.7045858139 0.531901518 0.318705286 0.510770075 0.799619116
## 197 0.539472235 0.1585750368 0.654213027 0.492335809 0.606566809 0.903776626
## 198 0.011292625 0.9602364919 0.776298914 0.773416284 0.594650894 0.984942808
## 199 0.603909890 0.9586990301 0.875057548 0.093729714 0.825522528 0.624501048
## 200 0.089178660 0.6006974212 0.113622466 0.825916705 0.558199830 0.084706127
## V7 V8 V9 V10 corr_pred
## 1 0.8266608594 0.421408064 0.59111440 0.588621560 0.483553213
## 2 0.6489600763 0.844623926 0.92819306 0.758400814 0.596918149
## 3 0.1785614495 0.349590781 0.01759542 0.444118458 0.581686589
## 4 0.5133613953 0.797025980 0.68986918 0.445071622 0.779718369
## 5 0.6644906041 0.903891937 0.39696995 0.550080800 0.679028625
## 6 0.3360117343 0.648917723 0.53116033 0.906618237 0.871156744
## 7 0.0084998407 0.072795420 0.97395768 0.440172910 0.653421017
## 8 0.4722572784 0.381633542 0.75877525 0.710887919 0.167954496
## 9 0.3058403293 0.525661726 0.43136410 0.400128186 0.441298786
## 10 0.3228343336 0.960311741 0.92426620 0.832559698 0.199364323
## 11 0.1315679180 0.939230266 0.46228702 0.775593376 0.463353503
## 12 0.7618696443 0.550847133 0.08637756 0.524860506 0.658880358
## 13 0.4806034924 0.485595847 0.54158360 0.081258474 0.133563727
## 14 0.4200604216 0.282479481 0.62596273 0.003172379 0.723272724
## 15 0.6595693664 0.469818084 0.03909819 0.706367689 0.395551623
## 16 0.6941591527 0.917750880 0.33898498 0.689810129 0.304366392
## 17 0.1693497750 0.290054937 0.69159996 0.120331543 0.527881952
## 18 0.1774999567 0.724190771 0.14320681 0.075203559 0.182873479
## 19 0.6109301876 0.182253540 0.20626788 0.247241936 0.830796153
## 20 0.1655056404 0.996789995 0.57239957 0.970613467 0.877359300
## 21 0.8696455043 0.480284780 0.94174627 0.525216599 0.416551694
## 22 0.2200369346 0.543487359 0.91963756 0.948926731 0.175153068
## 23 0.6324701225 0.833171203 0.91811502 0.181142754 0.232789942
## 24 0.6703429641 0.285668603 0.84918471 0.397776954 0.999680294
## 25 0.0101521015 0.960430558 0.23506862 0.230721395 0.237988893
## 26 0.2522400960 0.634320574 0.87522970 0.635452710 0.221479234
## 27 0.6650384206 0.650785477 0.28744271 0.616526859 0.645347402
## 28 0.0648198922 0.178094681 0.56876498 0.428627433 0.403429814
## 29 0.6192647608 0.146737191 0.33908035 0.938806834 -0.085152007
## 30 0.3292513283 0.042337252 0.86859891 0.880950373 0.546126975
## 31 0.2824812313 0.332542812 0.95191869 0.763801782 0.254637267
## 32 0.2051616914 0.785139066 0.04968553 0.968671421 0.341791275
## 33 0.6479521065 0.175871460 0.67905283 0.730759681 0.469281733
## 34 0.3500645757 0.635448656 0.89620270 0.575594178 0.314608361
## 35 0.8686830916 0.324884567 0.03161212 0.849832683 0.856362465
## 36 0.6281718945 0.651751797 0.69222388 0.442386812 0.538379426
## 37 0.5401211150 0.802915463 0.51344968 0.959669129 0.196843804
## 38 0.0954262505 0.271751555 0.91415621 0.535858047 1.014054381
## 39 0.3189930974 0.487114596 0.38007261 0.068724414 0.600313558
## 40 0.0987321541 0.398785473 0.70468780 0.814099950 0.582960796
## 41 0.8256829928 0.274217872 0.24911536 0.363809015 0.576693725
## 42 0.4254488801 0.543745558 0.56771488 0.586587886 0.860890373
## 43 0.6002272039 0.303179812 0.30442762 0.996330470 0.513995466
## 44 0.0993871398 0.726330749 0.51122937 0.574089565 0.238437201
## 45 0.3573383761 0.659334866 0.82108557 0.880166529 0.900247544
## 46 0.3369224169 0.171208087 0.58813299 0.298467441 0.821234986
## 47 0.7216083466 0.347465995 0.45980972 0.522110901 0.121455573
## 48 0.1637666794 0.465182498 0.67228512 0.549377529 0.708127573
## 49 0.0661412831 0.662970975 0.67190601 0.712600555 0.657654646
## 50 0.5044657106 0.684693513 0.23367805 0.853776497 0.644942325
## 51 0.4450478635 0.954027392 0.87891811 0.228369326 0.022480965
## 52 0.8620285194 0.258589442 0.96154879 0.437253388 -0.055233701
## 53 0.0236228870 0.676012672 0.37005100 0.260396947 0.910261194
## 54 0.1452215833 0.955375290 0.70495617 0.882332698 0.747681691
## 55 0.3742820916 0.214503606 0.13091783 0.462896239 0.287812995
## 56 0.5384509673 0.037968947 0.61604382 0.535041264 0.232146468
## 57 0.2577628391 0.186539843 0.93924713 0.942935549 0.009376398
## 58 0.2109247684 0.363152975 0.22155711 0.789319306 0.343831061
## 59 0.4573113865 0.197379992 0.41096121 0.626259638 0.699193917
## 60 0.2189239766 0.259368576 0.39850931 0.322176775 0.587901802
## 61 0.9801436167 0.418736819 0.50638210 0.791115409 0.121203074
## 62 0.2792056827 0.632583834 0.92330341 0.663045999 0.563762947
## 63 0.6202754262 0.088279070 0.26778657 0.207211251 0.720391881
## 64 0.6345477444 0.994484988 0.67288102 0.949158964 0.823982928
## 65 0.1516102208 0.669617534 0.12557122 0.392013110 0.788701557
## 66 0.0638373715 0.153521036 0.22166633 0.123506922 0.606075877
## 67 0.3630222164 0.350279308 0.14200169 0.041529058 0.282065476
## 68 0.0141349288 0.663475810 0.67553172 0.501539484 0.301617217
## 69 0.5267603784 0.429941210 0.97828898 0.885561631 0.087564073
## 70 0.6532241760 0.671208466 0.65576477 0.673768810 0.583857899
## 71 0.2219880908 0.476079757 0.71183447 0.425648322 0.400107953
## 72 0.1531321660 0.691954747 0.65801907 0.426056444 0.046916341
## 73 0.5008657877 0.040073613 0.92800985 0.381413696 0.350010608
## 74 0.9806543912 0.819187354 0.84159996 0.896280786 0.439968794
## 75 0.9244000583 0.198013207 0.23337787 0.116631588 0.191731905
## 76 0.0099979453 0.295807930 0.90356056 0.885416760 0.312676924
## 77 0.2356902743 0.506900013 0.55981430 0.534760828 0.477477021
## 78 0.3650656492 0.810620838 0.11388461 0.410755347 0.177769617
## 79 0.7987873172 0.366785977 0.60186782 0.973480208 0.745112953
## 80 0.5599248759 0.116578872 0.34580507 0.714962742 -0.201031396
## 81 0.7522757188 0.026414874 0.34715430 0.836363711 0.906534116
## 82 0.8865377689 0.061911004 0.97803556 0.612240904 0.737108952
## 83 0.0590573207 0.684142034 0.71260502 0.255351776 0.519712589
## 84 0.7768231640 0.850076108 0.17097505 0.408350330 0.247613470
## 85 0.4138241454 0.755554634 0.92548457 0.945293089 0.513280171
## 86 0.9818397635 0.945009324 0.68008657 0.510965007 0.770673665
## 87 0.2916908523 0.702514261 0.85496045 0.604653787 0.480977075
## 88 0.1587244619 0.582193831 0.05235641 0.486561552 1.066008245
## 89 0.0014450864 0.128084549 0.47699398 0.679715703 0.544159394
## 90 0.2105985023 0.884157248 0.18779775 0.402003791 0.987415473
## 91 0.8245949268 0.793933963 0.53137582 0.756866812 0.418679640
## 92 0.0445211111 0.460617797 0.58243842 0.944980194 0.362962259
## 93 0.5918905353 0.485206415 0.77555244 0.542896184 -0.058190556
## 94 0.0303562423 0.324637733 0.98245833 0.605254818 0.113825253
## 95 0.6099704383 0.731502909 0.49410755 0.882788646 0.556244164
## 96 0.0619420919 0.788262721 0.32567336 0.790985481 0.615313728
## 97 0.6019777379 0.718690965 0.24367231 0.571871065 0.223912719
## 98 0.7470110336 0.789140293 0.18306352 0.852484180 0.199057769
## 99 0.5261754794 0.983355801 0.37887188 0.765290411 0.330337083
## 100 0.4876051969 0.122928050 0.08177731 0.848134163 0.565642051
## 101 0.9011508890 0.617960313 0.12460480 0.702702949 0.653335312
## 102 0.0003387642 0.388927228 0.97821702 0.104494945 0.968213155
## 103 0.9080805883 0.905519754 0.60285307 0.877587634 0.066143767
## 104 0.4965877566 0.636728981 0.79705572 0.319453278 0.640933352
## 105 0.8487957353 0.912640729 0.11477043 0.155581983 0.046373610
## 106 0.0822484379 0.955071241 0.06021731 0.421584291 0.008525971
## 107 0.1611803344 0.599529999 0.26890232 0.188167820 0.558746858
## 108 0.1425062015 0.571244097 0.74935739 0.464775090 -0.034123408
## 109 0.4653496440 0.651546226 0.95540449 0.564070737 0.625975040
## 110 0.1981665948 0.999560626 0.57950670 0.127039001 0.468730012
## 111 0.8408644302 0.437424371 0.93131402 0.133683814 0.921901785
## 112 0.9164640335 0.395302785 0.63386223 0.888060797 0.101906684
## 113 0.3355441941 0.030395976 0.20250656 0.053323140 0.110253612
## 114 0.6774176396 0.696283764 0.75913311 0.809930917 0.455270626
## 115 0.9650529190 0.449902425 0.57304399 0.753339031 0.461563047
## 116 0.1141603340 0.863953833 0.95345440 0.380650506 0.835165353
## 117 0.4158274462 0.713239111 0.60102539 0.635894833 0.986621928
## 118 0.1791522284 0.834004079 0.20838605 0.592570851 0.169996525
## 119 0.5624954123 0.710008362 0.18311621 0.394101708 0.432759016
## 120 0.9726133470 0.842078145 0.93576851 0.956083941 0.169234118
## 121 0.4887156698 0.887054311 0.31041901 0.510736341 0.545840551
## 122 0.9838132532 0.585472636 0.14732752 0.086574405 0.675287847
## 123 0.4743697466 0.242674318 0.42347788 0.868947359 0.254893099
## 124 0.2407878560 0.447328788 0.66467369 0.494879879 0.817248180
## 125 0.1783671109 0.503948929 0.16230501 0.187285239 0.844466213
## 126 0.4367017439 0.344732890 0.42201320 0.437095925 0.699608265
## 127 0.3784207169 0.273177421 0.11701698 0.547305345 0.484885189
## 128 0.1147928145 0.103627008 0.16504249 0.275940885 0.695680384
## 129 0.3586573373 0.238100665 0.68896641 0.177130092 0.061236492
## 130 0.2376520939 0.312197204 0.25109129 0.997579731 0.243075949
## 131 0.7941833863 0.433608739 0.76234330 0.569325565 0.469693505
## 132 0.5684747580 0.312200866 0.11102144 0.240327878 0.568050881
## 133 0.9834440248 0.023838794 0.16816803 0.999992477 0.748974840
## 134 0.8681481183 0.755061130 0.16099688 0.581953628 0.548410025
## 135 0.2529283839 0.309956316 0.35376172 0.576154274 0.700938055
## 136 0.2954634046 0.686869082 0.23401367 0.743752910 0.336445050
## 137 0.7287589125 0.934555566 0.27740693 0.256602708 0.606629364
## 138 0.5105628674 0.330980633 0.32516244 0.474497675 0.779564795
## 139 0.4536720926 0.385358283 0.03655417 0.171900066 0.246131261
## 140 0.0308236629 0.654293299 0.92551144 0.435859671 0.771114912
## 141 0.3351621642 0.409007091 0.67315717 0.996981804 0.477791468
## 142 0.6144252147 0.651714271 0.12889572 0.633149029 0.140143672
## 143 0.1153656312 0.793603583 0.55421117 0.356097830 0.552415117
## 144 0.7361220436 0.177242560 0.03421274 0.872309444 0.893721703
## 145 0.9072946333 0.738731097 0.26822183 0.173052300 0.700903005
## 146 0.8854910310 0.688096952 0.75856509 0.669689639 0.009838331
## 147 0.0388078641 0.214172413 0.61253457 0.207942491 0.922058112
## 148 0.3260785770 0.810973278 0.39199971 0.370241001 0.603486438
## 149 0.7807700243 0.578197747 0.70276752 0.123103430 0.565563366
## 150 0.7907638911 0.208587777 0.05438854 0.766739978 0.419681552
## 151 0.7937673274 0.208766474 0.83636350 0.858343330 0.914600252
## 152 0.1613148297 0.654811297 0.66729678 0.115404263 0.361249539
## 153 0.7080952730 0.903838935 0.31193910 0.969527644 0.899927228
## 154 0.5305830529 0.004698141 0.48546810 0.259277162 0.416967229
## 155 0.1885056335 0.079913177 0.57972754 0.905628399 0.527650833
## 156 0.5161641990 0.466810009 0.76300679 0.944087471 0.471966423
## 157 0.6012678132 0.025244068 0.19821959 0.402928842 0.903076350
## 158 0.6169876396 0.499346328 0.32760646 0.266050707 0.138669923
## 159 0.7895973460 0.786763847 0.07832531 0.312945329 0.963474345
## 160 0.0390002122 0.015907055 0.57958929 0.502512869 0.989371268
## 161 0.4199729285 0.538111618 0.94932648 0.535985540 0.400288093
## 162 0.5129533098 0.613649708 0.26589918 0.269859831 0.818192624
## 163 0.6883663596 0.515120720 0.64359538 0.473454136 0.011713681
## 164 0.2867906420 0.219839853 0.16326702 0.120969625 0.997281997
## 165 0.9943477523 0.381418612 0.81146453 0.136825552 0.214764480
## 166 0.2593658050 0.461603611 0.68922230 0.171518739 0.491015806
## 167 0.5809806921 0.810821845 0.21677497 0.741042868 0.061967443
## 168 0.9927047875 0.928290160 0.48741662 0.881588204 -0.017188929
## 169 0.3948761285 0.914971805 0.04233756 0.987049844 0.173731229
## 170 0.9569103546 0.694013482 0.97705820 0.012435718 0.670560155
## 171 0.5889326367 0.509478116 0.64141950 0.365601074 0.978534460
## 172 0.6114409810 0.830605455 0.52658278 0.065911923 0.041677654
## 173 0.4287582068 0.366665906 0.86474573 0.016379327 0.166438212
## 174 0.1562757776 0.463090256 0.02956841 0.971855537 0.112090683
## 175 0.0453625068 0.177558171 0.10203368 0.505838658 0.486405824
## 176 0.6969831374 0.631295626 0.58758911 0.247838673 0.461705225
## 177 0.1762444021 0.080035930 0.84510174 0.700015211 0.064009605
## 178 0.2357786680 0.385391619 0.62558152 0.954732809 0.842521698
## 179 0.5439273247 0.627847850 0.88854501 0.855865543 0.922421515
## 180 0.8102693288 0.839098028 0.15944836 0.379626432 0.283658638
## 181 0.0133081947 0.168556706 0.10525675 0.771278932 0.245499291
## 182 0.6584848959 0.287486323 0.12728033 0.041241815 0.170079018
## 183 0.3847984066 0.117578465 0.96804658 0.902288517 0.838371378
## 184 0.1876184577 0.798065790 0.92881170 0.884292413 0.560185228
## 185 0.0729941991 0.472175947 0.07752809 0.744791487 0.699999725
## 186 0.7420141906 0.437308198 0.66531113 0.045803222 0.793571445
## 187 0.4334616780 0.849088030 0.46642330 0.779457425 0.078904778
## 188 0.6745903494 0.986013835 0.50686606 0.312909630 0.176936743
## 189 0.3680351812 0.496575716 0.49428027 0.447099152 0.163413295
## 190 0.6922219021 0.011549961 0.57885152 0.406213945 0.458066907
## 191 0.0971158685 0.412869229 0.97960020 0.136601998 0.753504823
## 192 0.1838154087 0.210182422 0.04580357 0.427214286 0.264150947
## 193 0.5494235111 0.720276414 0.29912111 0.994646956 1.084839050
## 194 0.7455740881 0.886575559 0.25383887 0.521175744 0.284391700
## 195 0.8809142739 0.322509774 0.66346270 0.930126207 0.771074098
## 196 0.6664053195 0.267326644 0.24159338 0.606167757 0.658019357
## 197 0.8829731958 0.123415505 0.99102161 0.073506513 0.697026935
## 198 0.2567906741 0.309302658 0.05267484 0.698478227 0.027486745
## 199 0.5021552520 0.334554489 0.03080467 0.395422508 0.495364600
## 200 0.6627391470 0.959779277 0.09184009 0.219858172 0.146872390
## Overall
## V1 100.000000
## V2 79.861111
## V4 68.055556
## V3 58.333333
## V5 51.388889
## V6 25.694444
## corr_pred 4.166667
## V7 0.000000
## V8 0.000000
## V9 0.000000
## V10 0.000000
cubistTuned1_df <- as.data.frame(cubistTuned1$importance)
cubistTuned1_df['Predictors'] <- rownames(cubistTuned1_df)
colnames(cubistTuned1_df) <- c("Overall", "Predictors")
rownames(cubistTuned1_df) <- 1:nrow(cubistTuned1_df)
cubistTuned1_df## Overall Predictors
## 1 100.000000 V1
## 2 58.333333 V3
## 3 79.861111 V2
## 4 4.166667 corr_pred
## 5 68.055556 V4
## 6 51.388889 V5
## 7 25.694444 V6
## 8 0.000000 V7
## 9 0.000000 V8
## 10 0.000000 V9
## 11 0.000000 V10
cubistTuned1_df %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "gold") +
theme_minimal() +
coord_flip() +
labs(title="cubist Predictor Variable Importance",
y="cubist Importance", x="Predictors") +
scale_y_continuous()Use a simulation to show tree bias with different granularities.
After creating a simulated dataset using 8 samples and a dependent variable that is the summation of all of the variables except for gran5. After appling the tree models, cforest and boost, I found that the variables with the most granularity, gran1 and gran2, were the most important to the model.
set.seed(100)
gran1 <- c(sample(1:100, 100, replace=TRUE))
gran2 <- c(sample(1:90, 100, replace=TRUE))
gran3 <- c(sample(1:80, 100, replace=TRUE))
gran4 <- c(sample(1:70, 100, replace=TRUE))
gran5 <- c(sample(1:30, 100, replace=TRUE))
gran6 <- c(sample(1:15, 100, replace=TRUE))
gran7 <- c(sample(1:8, 100, replace=TRUE))
gran8 <- c(sample(1:3, 100, replace=TRUE))
y <- gran1 + gran2 + gran3 + gran4 + gran6 + gran7 + gran8 + rnorm(100)*.1
custom_simulation <- as.data.frame(cbind(gran1, gran2, gran3, gran4, gran5, gran6, gran7, gran8, y))
head(custom_simulation)## gran1 gran2 gran3 gran4 gran5 gran6 gran7 gran8 y
## 1 74 58 28 40 28 8 6 2 216.0582
## 2 89 26 16 37 20 2 8 1 178.9297
## 3 78 48 69 16 9 14 3 2 229.9529
## 4 23 80 7 51 13 8 7 1 177.0412
## 5 86 37 56 21 24 4 2 1 206.9312
## 6 70 18 37 18 13 8 1 3 154.9305
cforest
custImp <- as.data.frame( varimp(custom_model, conditional = TRUE))
custImp ['Predictors'] <- rownames(custImp)
colnames(custImp ) <- c("Overall", "Predictors")
rownames(custImp ) <- 1:nrow(custImp)
custImp <- custImp %>%
arrange(desc(Overall))custImp %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "black") +
theme_minimal() +
coord_flip() +
labs(title="cforest Predictor Variable Importance",
y="cforest Importance", x="Predictors") +
scale_y_continuous()Boosted Trees
gbmGrid <- expand.grid(interaction.depth = seq(1, 7, by = 2),
n.trees = seq(100, 1000, by = 50),
shrinkage = c(0.01, 0.1),
n.minobsinnode = 5)set.seed(100)
gbmTune <- train(custom_simulation[1:8], custom_simulation$y,
method = "gbm",
tuneGrid = gbmGrid,
verbose = FALSE)## Overall
## gran2 100.000000
## gran1 62.861725
## gran3 49.452449
## gran4 42.352176
## gran6 2.967537
## gran7 1.326973
## gran5 1.208729
## gran8 0.000000
gbmTune1_df <- as.data.frame(gbmTune1$importance)
gbmTune1_df['Predictors'] <- rownames(gbmTune1_df)
colnames(gbmTune1_df) <- c("Overall", "Predictors")
rownames(gbmTune1_df) <- 1:nrow(gbmTune1_df)gbmTune1_df %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "purple") +
theme_minimal() +
coord_flip() +
labs(title="boostPredictor Variable Importance",
y="boost Importance", x="Predictors") +
scale_y_continuous()In stochastic gradient boosting the bagging fraction and learning rate will govern the construction of the trees as they are guided by the gradient. Although the optimal values of these parameters should be obtained through the tuning process, it is helpful to understand how the magnitudes of these parameters affect magnitudes of variable importance. Figure 8.24 provides the variable importance plots for boosting using two extreme values for the bagging fraction (0.1 and 0.9) and the learning rate (0.1 and 0.9) for the solubility data. The left-hand plot has both parameters set to 0.1, and the right-hand plot has both set to 0.9:
Fig. 8.24
Why does the model on the right focus its importance on just the first few of predictors, whereas the model on the left spreads importance across more predictors?
First, let’s define what a boosting algorithm does. Gradient boosting works by creating a combination of weak learners into an ensemble which is used to make predictions. Specifically:
“Given a loss function (e.g., squared error for regression) and a weak learner (e.g., regression trees), the algorithm seeks to find an additive model that minimizes the loss function. The algorithm is typically initialized with the best guess of the response (e.g., the mean of the response in regression). The gradient (e.g., residual) is calculated, and a model is then fit to the residuals to minimize the loss function. The current model is added to the previous model, and the procedure continues for a user-specified number of iteration”
Max Kuhn, Kjell Johnson, Applied Predictive Modeling, New York, NY:Springer Science+Business Media LLC New York, 2013, p. 204
Second, Trees-because they have the flexibility to be weak learners by restricting their depth, and they can be created easily and added together-are suitable for the additive modeling process. In boosting, Trees are dependent on past trees and unequally contribute to the model.
Third, the learner in gradient boosting is susceptible to over fitting since the learner is using the greedy strategy of choosing the optimal weak learner at each stage. To address this, the learner is constrained by regularization, or shrinkage, where a fraction of the current predicted value is added to the previous iteration’s predicted value. This fraction is known as the learning rate which is another parameter to tune in the model. The learning rate is set between 0 and 1.
Fourth, Stochastic Gradient Boosting involves fitting a base learner on a subsample of the training set drawn at random without replacement. This fraction is known as the bagging fraction.The suggested fraction is set to 0.5.
Given these four points, the reasons why the right hand diagram places more importance on the first few predictors is that the model is over fitting the data. The parameters, learning rate and bagging fraction, which are both set close to one at .9. In this instance the learning rate will not be constrained and the model is using the greedy strategy when choosing the optimal weak learner. Also, given the bagging fraction at .9, the model is using practically the entire training set instead of a subsample.
Which model do you think would be more predictive of other samples?
Since the right hand model overfits on training data, the left hand model would be more predicitive when generalizing to unseen data.
How would increasing interaction depth affect the slope of predictor importancefor either model in Fig. 8.24?
The interaction depth parameter is the number of splits it has to perform on a tree (starting from a single node).
I re-created the output using interaction.depth = 1 with the learning rate and bagging fractions set to .1 and then set at .9. Then I increased the interaction.depth=10 with the learning rate and bagging fractions set to .1 and then set at .9
The model with the interaction.depth = 1 with higher learning rate and bagging fractions over fit the data. When I increased the interaction.depth = 10, the model with the lower learning rate and bagging fractions had more predictive power because they did not over fit.
## Warning: package 'AppliedPredictiveModeling' was built under R version 3.6.3
data(solubility)
set.seed(100)
gbmTune1 <- gbm(solTrainY ~ ., data = solTrainXtrans,
distribution = "gaussian",
bag.fraction = 0.1,
n.trees = 100,
interaction.depth=1,
shrinkage = 0.1,
n.minobsinnode = 10)
gbmTune1A <- gbm(solTrainY ~ ., data = solTrainXtrans,
distribution = "gaussian",
bag.fraction = 0.9,
n.trees = 100,
interaction.depth=1,
shrinkage = 0.9,
n.minobsinnode = 10)interaction_depth_1 <- as.data.frame(varImp(gbmTune1, numTrees = 100))
interaction_depth_1 <- interaction_depth_1 %>%
arrange(desc(Overall))
top20A <-head(interaction_depth_1, 20)
top20A <- as.data.frame(top20A)
top20A['Predictors'] <- rownames(top20A)
colnames(top20A) <- c("Overall", "Predictors")
rownames(top20A) <- 1:nrow(top20A)
top20A <- top20A[, c("Predictors","Overall")]
top20A %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "orange") +
theme_minimal() +
coord_flip() +
labs(title="Interaction Depth = 1, learning rate= .1, bagging fraction=.1",
y="Importance", x="Predictors") +
scale_y_continuous()interaction_depth_1A <- as.data.frame(varImp(gbmTune1A, numTrees = 100))
interaction_depth_1A <- interaction_depth_1A %>%
arrange(desc(Overall))
top20A <-head(interaction_depth_1A, 20)
top20A <- as.data.frame(top20A)
top20A['Predictors'] <- rownames(top20A)
colnames(top20A) <- c("Overall", "Predictors")
rownames(top20A) <- 1:nrow(top20A)
top20A <- top20A[, c("Predictors","Overall")]
top20A %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "orange") +
theme_minimal() +
coord_flip() +
labs(title="Interaction Depth = 1, learning rate = .9, bagging fraction = .9",
y="Importance", x="Predictors") +
scale_y_continuous()Next, I set the interaction.depth = 10 with the learning rate and bagging fractions set to .9.
set.seed(100)
gbmTune2 <- gbm(solTrainY ~ ., data = solTrainXtrans,
distribution = "gaussian",
bag.fraction = 0.1,
n.trees = 100,
interaction.depth=10,
shrinkage = 0.1,
n.minobsinnode = 10)
gbmTune2A <- gbm(solTrainY ~ ., data = solTrainXtrans,
distribution = "gaussian",
bag.fraction = 0.9,
n.trees = 100,
interaction.depth=10,
shrinkage = 0.9,
n.minobsinnode = 10)
interaction_depth_2 <- as.data.frame(varImp(gbmTune2, numTrees = 100))
interaction_depth_2 <- interaction_depth_2 %>%
arrange(desc(Overall))
top20B <- head(interaction_depth_2, 20)
top20B <- as.data.frame(top20B)
top20B['Predictors'] <- rownames(top20B)
colnames(top20B) <- c("Overall", "Predictors")
rownames(top20B) <- 1:nrow(top20A)
top20B <- top20B[, c("Predictors","Overall")]
top20B %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "purple") +
theme_minimal() +
coord_flip() +
labs(title="Interaction Depth = 10, learning rate = .1, bagging fraction = .1",
y="Importance", x="Predictors") +
scale_y_continuous()interaction_depth_2 <- as.data.frame(varImp(gbmTune2A, numTrees = 100))
interaction_depth_2 <- interaction_depth_2 %>%
arrange(desc(Overall))
top20B <- head(interaction_depth_2, 20)
top20B <- as.data.frame(top20B)
top20B['Predictors'] <- rownames(top20B)
colnames(top20B) <- c("Overall", "Predictors")
rownames(top20B) <- 1:nrow(top20A)
top20B <- top20B[, c("Predictors","Overall")]
top20B %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "purple") +
theme_minimal() +
coord_flip() +
labs(title="Interaction Depth = 10, learning rate = .9, bagging fraction = .9",
y="Importance", x="Predictors") +
scale_y_continuous()The matrix processPredictors contains the 57 predictors (12 describing the input biological material and 45 describing the process predictors) for the 176 manufacturing runs. yield contains the percent yield for each run.
processPredictors <- ChemicalManufacturingProcess[2:ncol(ChemicalManufacturingProcess)]
print(paste0("The number of predictors is ", ncol(processPredictors), " and the number of observations is ", nrow(processPredictors)))## [1] "The number of predictors is 57 and the number of observations is 176"
## Created from 152 samples and 57 variables
##
## Pre-processing:
## - bagged tree imputation (57)
## - ignored (0)
processPredictors_imputed <- try(predict(processPredictors_imputed, processPredictors), silent = TRUE)
processPredictors_imputed## BiologicalMaterial01 BiologicalMaterial02 BiologicalMaterial03
## 1 6.25 49.58 56.97
## 2 8.01 60.97 67.48
## 3 8.01 60.97 67.48
## 4 8.01 60.97 67.48
## 5 7.47 63.33 72.25
## 6 6.12 58.36 65.31
## 7 7.48 64.47 72.41
## 8 6.94 63.60 72.06
## 9 6.94 63.60 72.06
## 10 6.94 63.60 72.06
## 11 7.17 61.23 70.01
## 12 7.17 61.23 70.01
## 13 7.17 61.23 70.01
## 14 7.63 60.51 69.24
## 15 6.23 62.93 69.74
## 16 7.13 60.30 68.18
## 17 7.85 58.22 66.95
## 18 7.64 59.44 67.22
## 19 7.51 59.74 67.28
## 20 7.51 59.74 67.28
## 21 7.51 59.74 67.28
## 22 7.08 61.83 70.69
## 23 6.58 58.38 67.17
## 24 6.27 56.23 64.98
## 25 8.17 63.66 73.44
## 26 6.60 55.74 66.25
## 27 6.90 54.26 60.99
## 28 6.86 55.66 63.43
## 29 6.67 63.44 76.94
## 30 6.53 61.68 77.15
## 31 6.89 61.54 76.07
## 32 7.13 61.39 74.10
## 33 6.84 61.46 73.91
## 34 5.17 61.17 76.39
## 35 7.01 61.30 72.71
## 36 6.30 57.04 70.03
## 37 5.32 59.14 71.05
## 38 5.32 59.14 71.05
## 39 5.32 59.14 71.05
## 40 5.71 57.68 69.37
## 41 6.60 58.80 71.17
## 42 6.76 55.42 69.80
## 43 6.76 55.42 69.80
## 44 6.76 55.42 69.80
## 45 6.77 58.76 72.74
## 46 6.95 60.31 73.97
## 47 6.95 60.31 73.97
## 48 6.95 60.31 73.97
## 49 7.97 64.75 74.10
## 50 6.94 57.02 69.51
## 51 6.94 57.02 69.51
## 52 6.94 57.02 69.51
## 53 7.56 61.62 72.17
## 54 6.87 57.33 71.52
## 55 6.87 57.33 71.52
## 56 6.87 57.33 71.52
## 57 6.65 55.61 68.93
## 58 6.65 55.61 68.93
## 59 6.65 55.61 68.93
## 60 6.72 57.24 71.27
## 61 6.57 55.93 69.48
## 62 6.16 54.67 66.95
## 63 6.16 54.67 66.95
## 64 6.16 54.67 66.95
## 65 6.37 52.67 64.34
## 66 6.37 52.67 64.34
## 67 6.37 52.67 64.34
## 68 6.31 54.42 66.13
## 69 6.27 53.51 66.52
## 70 6.27 53.51 66.52
## 71 6.27 53.51 66.52
## 72 6.58 52.50 63.29
## 73 6.45 53.18 64.98
## 74 6.39 58.85 73.45
## 75 6.39 58.85 73.45
## 76 6.39 58.85 73.45
## 77 6.35 56.93 70.87
## 78 6.17 53.80 65.53
## 79 6.97 58.18 71.85
## 80 6.97 58.18 71.85
## 81 6.97 58.18 71.85
## 82 8.81 63.99 78.25
## 83 6.80 57.21 70.34
## 84 6.80 57.21 70.34
## 85 6.80 57.21 70.34
## 86 6.30 51.96 64.07
## 87 6.30 51.96 64.07
## 88 6.30 51.96 64.07
## 89 6.45 55.09 69.18
## 90 6.45 55.09 69.18
## 91 6.45 55.09 69.18
## 92 6.28 54.33 68.30
## 93 7.33 56.87 70.17
## 94 7.22 57.32 71.02
## 95 6.19 53.59 66.40
## 96 5.98 54.10 66.50
## 97 5.98 54.10 66.50
## 98 5.98 54.10 66.50
## 99 5.85 51.75 64.02
## 100 5.85 51.75 64.02
## 101 5.85 51.75 64.02
## 102 6.01 51.83 63.80
## 103 5.89 51.28 64.04
## 104 5.90 51.44 63.61
## 105 5.90 51.44 63.61
## 106 5.90 51.44 63.61
## 107 5.79 53.96 66.53
## 108 5.79 53.96 66.53
## 109 5.79 53.96 66.53
## 110 5.94 51.27 63.54
## 111 6.40 58.73 71.51
## 112 6.40 58.73 71.51
## 113 6.40 58.73 71.51
## 114 6.10 56.36 69.52
## 115 5.78 53.70 67.22
## 116 6.15 53.06 70.29
## 117 6.40 52.62 72.39
## 118 5.60 51.45 63.44
## 119 5.60 51.45 63.44
## 120 5.60 51.45 63.44
## 121 5.43 49.10 62.08
## 122 6.02 50.01 60.82
## 123 6.03 52.58 65.05
## 124 6.08 52.89 66.72
## 125 5.76 52.73 63.88
## 126 5.79 52.70 64.33
## 127 6.23 52.95 66.71
## 128 6.23 52.95 66.71
## 129 6.23 52.95 66.71
## 130 6.26 55.94 69.22
## 131 6.26 55.94 69.22
## 132 6.26 55.94 69.22
## 133 6.36 53.18 66.57
## 134 6.72 53.85 67.10
## 135 5.18 48.60 61.04
## 136 5.18 48.60 61.04
## 137 5.18 48.60 61.04
## 138 6.29 50.64 63.92
## 139 6.10 50.60 63.37
## 140 5.30 46.87 57.56
## 141 5.83 50.17 63.11
## 142 6.25 54.57 67.56
## 143 6.25 54.57 67.56
## 144 6.25 54.57 67.56
## 145 6.00 53.29 65.50
## 146 6.00 53.29 65.50
## 147 6.00 53.29 65.50
## 148 5.49 48.03 58.99
## 149 5.30 46.87 57.56
## 150 5.54 52.48 64.98
## 151 5.54 52.29 64.61
## 152 6.25 52.68 65.12
## 153 6.25 52.68 65.12
## 154 6.25 52.68 65.12
## 155 6.22 52.76 65.13
## 156 5.90 51.37 63.65
## 157 5.90 51.37 63.65
## 158 5.90 51.37 63.65
## 159 5.70 52.77 66.25
## 160 5.70 52.77 66.25
## 161 5.70 52.77 66.25
## 162 5.97 53.13 66.58
## 163 6.39 53.72 67.13
## 164 5.36 53.39 65.30
## 165 5.27 52.45 64.09
## 166 4.58 49.56 61.08
## 167 4.58 49.56 61.08
## 168 4.58 49.56 61.08
## 169 7.70 62.92 75.91
## 170 6.39 59.10 71.04
## 171 6.63 59.81 71.94
## 172 6.71 56.32 66.19
## 173 6.87 56.74 66.61
## 174 7.50 58.41 68.30
## 175 7.53 58.36 69.25
## 176 7.53 58.36 69.25
## BiologicalMaterial04 BiologicalMaterial05 BiologicalMaterial06
## 1 12.74 19.51 43.73
## 2 14.65 19.36 53.14
## 3 14.65 19.36 53.14
## 4 14.65 19.36 53.14
## 5 14.02 17.91 54.66
## 6 15.17 21.79 51.23
## 7 13.82 17.71 54.45
## 8 15.70 19.42 54.72
## 9 15.70 19.42 54.72
## 10 15.70 19.42 54.72
## 11 13.36 18.67 52.83
## 12 13.36 18.67 52.83
## 13 13.36 18.67 52.83
## 14 17.59 20.67 52.83
## 15 11.80 20.54 54.57
## 16 13.80 20.72 52.49
## 17 15.38 20.86 50.84
## 18 15.67 21.50 52.02
## 19 15.72 21.80 52.30
## 20 15.72 21.80 52.30
## 21 15.72 21.80 52.30
## 22 13.43 17.72 53.27
## 23 12.22 18.46 51.45
## 24 11.47 18.93 50.31
## 25 18.37 23.76 56.64
## 26 11.83 22.52 48.95
## 27 12.22 20.16 47.23
## 28 12.53 20.39 48.94
## 29 14.28 21.67 58.42
## 30 11.81 21.12 59.38
## 31 12.41 21.14 57.89
## 32 13.27 20.96 55.95
## 33 13.18 20.77 56.39
## 34 12.51 20.32 58.17
## 35 13.23 24.85 54.89
## 36 11.70 18.04 50.50
## 37 13.02 21.17 52.58
## 38 13.02 21.17 52.58
## 39 13.02 21.17 52.58
## 40 12.26 21.32 50.79
## 41 12.40 22.14 52.24
## 42 11.25 18.15 49.89
## 43 11.25 18.15 49.89
## 44 11.25 18.15 49.89
## 45 12.12 20.65 53.17
## 46 12.42 19.05 52.31
## 47 12.42 19.05 52.31
## 48 12.42 19.05 52.31
## 49 15.11 22.66 56.22
## 50 13.45 18.44 50.16
## 51 13.45 18.44 50.16
## 52 13.45 18.44 50.16
## 53 14.46 21.02 53.78
## 54 13.22 15.62 50.85
## 55 13.22 15.62 50.85
## 56 13.22 15.62 50.85
## 57 12.72 15.91 48.64
## 58 12.72 15.91 48.64
## 59 12.72 15.91 48.64
## 60 12.25 16.58 50.88
## 61 11.95 18.00 50.50
## 62 11.15 17.25 48.12
## 63 11.15 17.25 48.12
## 64 11.15 17.25 48.12
## 65 12.02 17.40 46.52
## 66 12.02 17.40 46.52
## 67 12.02 17.40 46.52
## 68 11.97 18.40 48.01
## 69 11.83 16.95 46.62
## 70 11.83 16.95 46.62
## 71 11.83 16.95 46.62
## 72 12.24 18.28 46.04
## 73 12.11 18.77 46.80
## 74 12.69 16.92 51.25
## 75 12.69 16.92 51.25
## 76 12.69 16.92 51.25
## 77 12.27 18.06 49.92
## 78 12.70 18.65 47.67
## 79 14.25 17.08 50.06
## 80 14.25 17.08 50.06
## 81 14.25 17.08 50.06
## 82 23.09 19.96 53.87
## 83 13.98 16.81 48.46
## 84 13.98 16.81 48.46
## 85 13.98 16.81 48.46
## 86 12.65 19.23 44.66
## 87 12.65 19.23 44.66
## 88 12.65 19.23 44.66
## 89 11.98 17.22 47.12
## 90 11.98 17.22 47.12
## 91 11.98 17.22 47.12
## 92 12.37 15.46 46.72
## 93 14.20 20.16 49.06
## 94 14.05 19.16 49.21
## 95 11.99 18.73 47.41
## 96 11.73 18.80 47.98
## 97 11.73 18.80 47.98
## 98 11.73 18.80 47.98
## 99 10.41 20.40 44.30
## 100 10.41 20.40 44.30
## 101 10.41 20.40 44.30
## 102 11.22 19.69 44.57
## 103 9.99 16.90 44.74
## 104 10.49 18.04 44.73
## 105 10.49 18.04 44.73
## 106 10.49 18.04 44.73
## 107 10.40 18.26 47.57
## 108 10.40 18.26 47.57
## 109 10.40 18.26 47.57
## 110 10.48 17.72 44.43
## 111 12.29 17.09 50.62
## 112 12.29 17.09 50.62
## 113 12.29 17.09 50.62
## 114 11.71 16.35 49.10
## 115 11.17 15.44 47.33
## 116 11.87 16.59 49.97
## 117 12.34 17.38 51.77
## 118 10.50 19.17 45.06
## 119 10.50 19.17 45.06
## 120 10.50 19.17 45.06
## 121 10.11 19.09 44.45
## 122 11.79 19.43 43.24
## 123 11.45 19.11 46.06
## 124 11.23 19.06 47.29
## 125 10.59 20.49 47.29
## 126 10.70 20.09 47.21
## 127 12.75 16.31 45.84
## 128 12.75 16.31 45.84
## 129 12.75 16.31 45.84
## 130 12.07 18.08 48.92
## 131 12.07 18.08 48.92
## 132 12.07 18.08 48.92
## 133 12.07 16.22 46.51
## 134 12.50 16.15 46.87
## 135 9.38 16.30 43.78
## 136 9.38 16.30 43.78
## 137 9.38 16.30 43.78
## 138 11.46 13.24 43.50
## 139 10.90 19.05 44.18
## 140 9.93 18.07 40.60
## 141 10.32 17.24 44.31
## 142 12.10 17.66 47.80
## 143 12.10 17.66 47.80
## 144 12.10 17.66 47.80
## 145 11.71 18.80 46.34
## 146 11.71 18.80 46.34
## 147 11.71 18.80 46.34
## 148 10.24 18.30 41.50
## 149 9.93 18.07 40.60
## 150 10.30 18.24 45.86
## 151 10.32 18.52 45.76
## 152 11.64 18.11 45.42
## 153 11.64 18.11 45.42
## 154 11.64 18.11 45.42
## 155 11.50 18.55 45.48
## 156 10.76 19.90 45.07
## 157 10.76 19.90 45.07
## 158 10.76 19.90 45.07
## 159 10.50 15.18 47.07
## 160 10.50 15.18 47.07
## 161 10.50 15.18 47.07
## 162 11.00 16.55 46.77
## 163 11.75 18.61 46.32
## 164 12.05 18.57 46.91
## 165 10.84 18.10 46.02
## 166 9.84 18.68 43.53
## 167 9.84 18.68 43.53
## 168 9.84 18.68 43.53
## 169 13.49 16.10 55.29
## 170 11.52 21.82 53.53
## 171 11.89 20.76 53.86
## 172 12.35 20.02 50.26
## 173 12.55 20.18 50.80
## 174 13.33 20.81 52.96
## 175 14.35 20.57 51.31
## 176 14.35 20.57 51.31
## BiologicalMaterial07 BiologicalMaterial08 BiologicalMaterial09
## 1 100.00 16.66 11.44
## 2 100.00 19.04 12.55
## 3 100.00 19.04 12.55
## 4 100.00 19.04 12.55
## 5 100.00 18.22 12.80
## 6 100.00 18.30 12.13
## 7 100.00 18.72 12.95
## 8 100.00 18.85 13.13
## 9 100.00 18.85 13.13
## 10 100.00 18.85 13.13
## 11 100.00 17.88 12.62
## 12 100.00 17.88 12.62
## 13 100.00 17.88 12.62
## 14 100.00 18.74 13.21
## 15 100.00 18.89 12.82
## 16 100.00 18.68 12.75
## 17 100.00 18.51 12.70
## 18 100.00 18.72 12.86
## 19 100.00 18.81 12.98
## 20 100.00 18.81 12.98
## 21 100.00 18.81 12.98
## 22 100.00 19.14 13.38
## 23 100.00 18.22 12.83
## 24 100.00 17.64 12.48
## 25 100.00 17.94 12.18
## 26 100.00 16.67 12.11
## 27 100.00 16.57 11.73
## 28 100.00 16.71 11.94
## 29 100.00 17.47 13.12
## 30 100.00 17.31 12.83
## 31 100.00 17.42 12.79
## 32 100.00 17.58 12.63
## 33 100.00 17.56 12.55
## 34 100.00 17.79 13.05
## 35 100.00 17.38 12.47
## 36 100.00 17.27 12.79
## 37 100.00 16.94 12.32
## 38 100.00 16.94 12.32
## 39 100.00 16.94 12.32
## 40 100.00 17.01 12.44
## 41 100.00 17.21 12.77
## 42 100.00 17.61 13.40
## 43 100.00 17.61 13.40
## 44 100.00 17.61 13.40
## 45 100.00 17.59 13.31
## 46 100.00 17.64 13.28
## 47 100.00 17.64 13.28
## 48 100.00 17.64 13.28
## 49 100.00 18.82 12.76
## 50 100.00 17.55 12.83
## 51 100.00 17.55 12.83
## 52 100.00 17.55 12.83
## 53 100.00 18.33 12.82
## 54 100.00 17.74 13.16
## 55 100.00 17.74 13.16
## 56 100.00 17.74 13.16
## 57 100.00 17.87 13.31
## 58 100.00 17.87 13.31
## 59 100.00 17.87 13.31
## 60 100.00 18.18 13.60
## 61 100.00 17.92 13.23
## 62 100.83 17.97 13.12
## 63 100.83 17.97 13.12
## 64 100.83 17.97 13.12
## 65 100.00 17.38 12.48
## 66 100.00 17.38 12.48
## 67 100.00 17.38 12.48
## 68 100.00 17.81 12.75
## 69 100.00 17.76 13.31
## 70 100.00 17.76 13.31
## 71 100.00 17.76 13.31
## 72 100.00 17.67 12.47
## 73 100.00 17.58 12.69
## 74 100.00 17.92 13.50
## 75 100.00 17.92 13.50
## 76 100.00 17.92 13.50
## 77 100.00 17.76 13.29
## 78 100.00 16.82 12.11
## 79 100.00 18.02 13.51
## 80 100.00 18.02 13.51
## 81 100.00 18.02 13.51
## 82 100.00 18.84 14.08
## 83 100.00 17.91 13.34
## 84 100.00 17.91 13.34
## 85 100.00 17.91 13.34
## 86 100.00 17.16 12.71
## 87 100.00 17.16 12.71
## 88 100.00 17.16 12.71
## 89 100.00 17.74 13.47
## 90 100.00 17.74 13.47
## 91 100.00 17.74 13.47
## 92 100.00 17.41 13.28
## 93 100.00 18.01 13.34
## 94 100.00 18.02 13.43
## 95 100.00 17.04 12.58
## 96 100.00 17.35 12.75
## 97 100.00 17.35 12.75
## 98 100.00 17.35 12.75
## 99 100.00 16.96 12.68
## 100 100.00 16.96 12.68
## 101 100.00 16.96 12.68
## 102 100.00 17.09 12.57
## 103 100.00 16.79 13.04
## 104 100.00 17.18 12.95
## 105 100.00 17.18 12.95
## 106 100.00 17.18 12.95
## 107 100.00 17.24 12.99
## 108 100.00 17.24 12.99
## 109 100.00 17.24 12.99
## 110 100.00 17.13 13.00
## 111 100.00 17.44 13.10
## 112 100.00 17.44 13.10
## 113 100.00 17.44 13.10
## 114 100.00 17.15 12.99
## 115 100.00 16.76 12.81
## 116 100.00 16.78 12.63
## 117 100.00 16.80 12.51
## 118 100.00 16.83 12.53
## 119 100.00 16.83 12.53
## 120 100.00 16.83 12.53
## 121 100.00 16.54 12.21
## 122 100.00 17.54 12.61
## 123 100.00 17.23 12.84
## 124 100.00 17.03 12.96
## 125 100.00 17.70 12.48
## 126 100.00 17.54 12.55
## 127 100.00 16.70 12.75
## 128 100.00 16.70 12.75
## 129 100.00 16.70 12.75
## 130 100.00 17.56 13.14
## 131 100.00 17.56 13.14
## 132 100.00 17.56 13.14
## 133 100.00 17.19 12.97
## 134 100.00 17.61 13.15
## 135 100.00 15.88 12.16
## 136 100.00 15.88 12.16
## 137 100.00 15.88 12.16
## 138 100.00 16.58 12.88
## 139 100.00 17.37 13.10
## 140 100.00 16.34 12.12
## 141 100.00 16.86 12.88
## 142 100.00 17.32 12.89
## 143 100.00 17.32 12.89
## 144 100.00 17.32 12.89
## 145 100.00 17.32 12.75
## 146 100.00 17.32 12.75
## 147 100.00 17.32 12.75
## 148 100.00 16.61 12.34
## 149 100.00 16.34 12.12
## 150 100.00 17.07 12.90
## 151 100.00 17.05 12.82
## 152 100.00 17.51 13.01
## 153 100.00 17.51 13.01
## 154 100.00 17.51 13.01
## 155 100.00 17.57 13.08
## 156 100.00 17.06 12.78
## 157 100.00 17.06 12.78
## 158 100.00 17.06 12.78
## 159 100.00 16.67 12.84
## 160 100.00 16.67 12.84
## 161 100.00 16.67 12.84
## 162 100.00 16.97 13.00
## 163 100.00 17.44 13.25
## 164 100.00 16.42 12.32
## 165 100.00 16.35 12.22
## 166 100.00 16.16 12.14
## 167 100.00 16.16 12.14
## 168 100.00 16.16 12.14
## 169 100.00 18.28 13.83
## 170 100.00 17.93 12.92
## 171 100.00 17.99 13.09
## 172 100.00 17.54 12.50
## 173 100.00 17.48 12.41
## 174 100.00 17.23 12.04
## 175 100.00 17.87 12.77
## 176 100.00 17.87 12.77
## BiologicalMaterial10 BiologicalMaterial11 BiologicalMaterial12
## 1 3.46 138.09 18.83
## 2 3.46 153.67 21.05
## 3 3.46 153.67 21.05
## 4 3.46 153.67 21.05
## 5 3.05 147.61 21.05
## 6 3.78 151.88 20.76
## 7 3.04 147.11 20.75
## 8 3.85 154.20 21.45
## 9 3.85 154.20 21.45
## 10 3.85 154.20 21.45
## 11 2.90 143.28 20.21
## 12 2.90 143.28 20.21
## 13 2.90 143.28 20.21
## 14 4.94 158.42 21.77
## 15 2.30 152.83 22.18
## 16 3.25 152.82 21.35
## 17 4.01 152.82 20.70
## 18 4.16 156.51 21.47
## 19 4.24 158.36 21.82
## 20 4.24 158.36 21.82
## 21 4.24 158.36 21.82
## 22 3.02 153.10 21.90
## 23 2.69 148.49 21.23
## 24 2.49 145.61 20.81
## 25 4.15 151.54 20.27
## 26 2.75 140.84 19.07
## 27 3.06 139.52 18.62
## 28 3.07 142.45 19.12
## 29 3.10 158.66 21.88
## 30 2.14 154.56 22.18
## 31 2.35 153.00 21.58
## 32 2.61 151.00 20.80
## 33 2.53 151.48 20.99
## 34 2.50 157.45 22.21
## 35 2.76 149.46 20.42
## 36 2.41 145.62 20.18
## 37 2.46 144.80 20.03
## 38 2.46 144.80 20.03
## 39 2.46 144.80 20.03
## 40 2.46 143.94 19.78
## 41 2.58 148.28 20.33
## 42 2.57 151.50 20.88
## 43 2.57 151.50 20.88
## 44 2.57 151.50 20.88
## 45 2.61 154.06 21.31
## 46 2.75 151.21 20.75
## 47 2.75 151.21 20.75
## 48 2.75 151.21 20.75
## 49 3.18 157.34 21.33
## 50 3.09 149.60 20.25
## 51 3.09 149.60 20.25
## 52 3.09 149.60 20.25
## 53 3.18 154.71 20.95
## 54 2.91 148.45 20.44
## 55 2.91 148.45 20.44
## 56 2.91 148.45 20.44
## 57 2.98 146.08 20.33
## 58 2.98 146.08 20.33
## 59 2.98 146.08 20.33
## 60 2.75 151.23 21.30
## 61 2.63 151.67 21.29
## 62 2.48 149.03 20.88
## 63 2.48 149.03 20.88
## 64 2.48 149.03 20.88
## 65 2.75 144.50 19.82
## 66 2.75 144.50 19.82
## 67 2.75 144.50 19.82
## 68 2.76 147.17 20.41
## 69 2.87 143.65 20.35
## 70 2.87 143.65 20.35
## 71 2.87 143.65 20.35
## 72 2.85 144.40 19.85
## 73 2.79 145.90 19.96
## 74 2.62 151.25 20.89
## 75 2.62 151.25 20.89
## 76 2.62 151.25 20.89
## 77 2.61 150.06 20.65
## 78 2.58 142.66 19.64
## 79 3.37 148.92 20.33
## 80 3.37 148.92 20.33
## 81 3.37 148.92 20.33
## 82 6.87 158.73 20.57
## 83 3.37 146.67 19.95
## 84 3.37 146.67 19.95
## 85 3.37 146.67 19.95
## 86 3.15 142.11 19.13
## 87 3.15 142.11 19.13
## 88 3.15 142.11 19.13
## 89 2.86 148.00 20.04
## 90 2.86 148.00 20.04
## 91 2.86 148.00 20.04
## 92 2.96 143.47 19.85
## 93 3.62 147.63 19.77
## 94 3.52 148.07 19.87
## 95 2.45 146.20 19.83
## 96 2.51 147.95 20.25
## 97 2.51 147.95 20.25
## 98 2.51 147.95 20.25
## 99 2.34 143.33 19.63
## 100 2.34 143.33 19.63
## 101 2.34 143.33 19.63
## 102 2.55 143.07 19.47
## 103 2.33 142.66 19.67
## 104 2.46 143.84 19.85
## 105 2.46 143.84 19.85
## 106 2.46 143.84 19.85
## 107 2.16 146.64 20.57
## 108 2.16 146.64 20.57
## 109 2.16 146.64 20.57
## 110 2.52 143.19 19.69
## 111 2.58 147.66 20.25
## 112 2.58 147.66 20.25
## 113 2.58 147.66 20.25
## 114 2.44 146.29 20.16
## 115 2.30 144.34 19.95
## 116 2.31 144.75 19.94
## 117 2.32 145.03 19.93
## 118 2.27 142.90 19.64
## 119 2.27 142.90 19.64
## 120 2.27 142.90 19.64
## 121 2.11 141.49 19.46
## 122 3.08 142.33 19.17
## 123 2.67 145.08 19.74
## 124 2.49 147.33 20.04
## 125 2.23 150.39 20.62
## 126 2.27 149.52 20.48
## 127 2.98 140.93 19.10
## 128 2.98 140.93 19.10
## 129 2.98 140.93 19.10
## 130 2.60 148.53 20.45
## 131 2.60 148.53 20.45
## 132 2.60 148.53 20.45
## 133 2.80 144.38 19.51
## 134 3.02 145.80 19.56
## 135 1.87 138.14 19.20
## 136 1.87 138.14 19.20
## 137 1.87 138.14 19.20
## 138 2.90 136.35 18.35
## 139 2.67 146.66 19.73
## 140 2.43 135.81 18.57
## 141 2.38 143.75 19.59
## 142 2.73 145.57 19.76
## 143 2.73 145.57 19.76
## 144 2.73 145.57 19.76
## 145 2.63 145.37 19.75
## 146 2.63 145.37 19.75
## 147 2.63 145.37 19.75
## 148 2.55 137.49 18.77
## 149 2.43 135.81 18.57
## 150 2.18 145.88 20.08
## 151 2.19 145.59 20.02
## 152 2.88 145.07 19.56
## 153 2.88 145.07 19.56
## 154 2.88 145.07 19.56
## 155 2.88 145.10 19.64
## 156 2.46 144.98 19.73
## 157 2.46 144.98 19.73
## 158 2.46 144.98 19.73
## 159 2.17 144.39 19.93
## 160 2.17 144.39 19.93
## 161 2.17 144.39 19.93
## 162 2.40 145.03 19.88
## 163 2.75 145.96 19.80
## 164 2.31 144.29 19.71
## 165 1.77 143.59 19.66
## 166 1.99 139.64 18.80
## 167 1.99 139.64 18.80
## 168 1.99 139.64 18.80
## 169 3.20 149.91 21.23
## 170 2.38 155.77 20.76
## 171 2.53 154.68 20.85
## 172 2.82 143.45 20.32
## 173 2.82 143.10 20.24
## 174 2.83 141.72 19.92
## 175 3.55 145.56 20.04
## 176 3.55 145.56 20.04
## ManufacturingProcess01 ManufacturingProcess02 ManufacturingProcess03
## 1 10.9909 12.79439 1.508846
## 2 0.0000 0.00000 1.527970
## 3 0.0000 0.00000 1.530834
## 4 0.0000 0.00000 1.530834
## 5 10.7000 0.00000 1.531619
## 6 12.0000 0.00000 1.530527
## 7 11.5000 0.00000 1.560000
## 8 12.0000 0.00000 1.550000
## 9 12.0000 0.00000 1.560000
## 10 12.0000 0.00000 1.550000
## 11 10.3000 0.00000 1.550000
## 12 10.3000 0.00000 1.550000
## 13 10.3000 0.00000 1.550000
## 14 11.1000 0.00000 1.590000
## 15 11.3000 0.00000 1.546671
## 16 11.1000 0.00000 1.541506
## 17 11.1000 0.00000 1.546286
## 18 12.4000 0.00000 1.558276
## 19 12.7000 0.00000 1.561032
## 20 12.7000 0.00000 1.556032
## 21 12.7000 0.00000 1.560000
## 22 10.9000 0.00000 1.543572
## 23 11.1000 0.00000 1.548480
## 24 11.3000 0.00000 1.540136
## 25 9.0000 0.00000 1.540000
## 26 11.6000 0.00000 1.520000
## 27 9.2000 0.00000 1.530000
## 28 9.2000 0.00000 1.540000
## 29 9.2000 0.00000 1.520000
## 30 10.4000 0.00000 1.520000
## 31 10.3000 0.00000 1.540000
## 32 11.2000 0.00000 1.530000
## 33 11.6000 0.00000 1.520000
## 34 10.6000 0.00000 1.520000
## 35 11.6000 0.00000 1.530000
## 36 12.5000 0.00000 1.530000
## 37 11.9000 19.70000 1.530000
## 38 11.9000 19.90000 1.520000
## 39 11.9000 19.30000 1.540000
## 40 11.0000 19.50000 1.520000
## 41 11.3000 19.30000 1.520000
## 42 10.8000 22.50000 1.480000
## 43 10.8000 20.50000 1.530000
## 44 10.8000 21.50000 1.550000
## 45 11.4000 20.50000 1.560000
## 46 12.2000 20.50000 1.500000
## 47 12.2000 20.50000 1.500000
## 48 12.2000 20.00000 1.560000
## 49 11.7000 18.00000 1.520000
## 50 10.4000 19.00000 1.520000
## 51 10.4000 18.00000 1.530000
## 52 10.4000 19.50000 1.540000
## 53 11.1000 19.50000 1.540000
## 54 9.7000 19.50000 1.540000
## 55 9.7000 19.50000 1.540000
## 56 9.7000 19.50000 1.520000
## 57 10.7000 19.50000 1.500000
## 58 10.7000 19.50000 1.520000
## 59 10.7000 18.00000 1.580000
## 60 9.3000 20.00000 1.570000
## 61 8.7000 19.00000 1.600000
## 62 9.1000 20.00000 1.510000
## 63 9.1000 19.50000 1.510000
## 64 9.1000 19.50000 1.490000
## 65 11.0000 20.00000 1.500000
## 66 11.0000 19.50000 1.510000
## 67 11.0000 19.50000 1.500000
## 68 12.0000 19.50000 1.480000
## 69 10.0000 20.00000 1.490000
## 70 10.2000 19.00000 1.480000
## 71 10.2000 19.00000 1.480000
## 72 9.5000 19.00000 1.470000
## 73 10.9000 19.50000 1.510000
## 74 11.3000 21.50000 1.550000
## 75 11.3000 22.20000 1.540000
## 76 11.3000 22.00000 1.540000
## 77 11.5000 22.50000 1.550000
## 78 11.4000 21.50000 1.550000
## 79 11.0000 21.50000 1.550000
## 80 11.0000 22.00000 1.520000
## 81 11.0000 22.00000 1.530000
## 82 12.7000 22.00000 1.550000
## 83 11.2000 20.50000 1.550000
## 84 11.2000 21.00000 1.550000
## 85 11.2000 22.00000 1.540000
## 86 11.6000 21.00000 1.550000
## 87 11.6000 21.50000 1.550000
## 88 11.6000 21.50000 1.550000
## 89 10.8000 21.50000 1.540000
## 90 10.8000 21.50000 1.550000
## 91 10.8000 21.70000 1.550000
## 92 12.4000 22.00000 1.540000
## 93 9.9000 21.50000 1.540000
## 94 10.0000 21.50000 1.550000
## 95 9.1000 21.50000 1.530000
## 96 10.6000 22.00000 1.530000
## 97 10.6000 22.00000 1.540000
## 98 10.6000 20.90000 1.550000
## 99 11.5000 22.00000 1.540000
## 100 11.5000 21.00000 1.550000
## 101 11.5000 21.50000 1.530000
## 102 11.8000 21.90000 1.540000
## 103 12.3000 21.70000 1.550000
## 104 11.8000 21.60000 1.550000
## 105 11.8000 21.80000 1.550000
## 106 11.8000 20.80000 1.550000
## 107 9.8000 22.00000 1.540000
## 108 9.8000 21.90000 1.500000
## 109 9.8000 22.40000 1.480000
## 110 11.7000 22.00000 1.520000
## 111 11.4000 20.50000 1.570000
## 112 11.4000 22.20000 1.540000
## 113 11.4000 22.30000 1.530000
## 114 11.7000 22.00000 1.510000
## 115 12.0000 21.20000 1.550000
## 116 12.3000 21.10000 1.540000
## 117 12.5000 21.00000 1.550000
## 118 11.4000 21.00000 1.550000
## 119 11.4000 20.90000 1.540000
## 120 11.4000 21.10000 1.550000
## 121 12.0000 21.20000 1.550000
## 122 12.3000 21.50000 1.550000
## 123 11.3000 21.20000 1.550000
## 124 11.2000 20.80000 1.550000
## 125 12.1000 20.90000 1.540000
## 126 11.9000 21.20000 1.550000
## 127 11.4000 21.30000 1.540000
## 128 11.4000 21.30000 1.550000
## 129 11.4000 21.40000 1.540000
## 130 12.2000 21.50000 1.550000
## 131 12.2000 21.40000 1.550000
## 132 12.2000 21.50000 1.540000
## 133 10.8000 21.20000 1.550000
## 134 10.9000 21.40937 1.550000
## 135 11.3000 21.40000 1.540000
## 136 11.3000 21.30000 1.550000
## 137 11.3000 21.30000 1.550000
## 138 12.2000 21.60000 1.550000
## 139 10.0000 21.40937 1.550000
## 140 13.1000 21.30000 1.550000
## 141 10.2000 21.20000 1.540000
## 142 12.4000 21.20000 1.550000
## 143 12.4000 21.40000 1.540000
## 144 12.4000 21.40000 1.550000
## 145 12.7000 21.40000 1.550000
## 146 12.7000 21.60000 1.540000
## 147 12.7000 21.60000 1.550000
## 148 13.0000 21.40000 1.540000
## 149 13.3000 21.40000 1.540000
## 150 13.4000 21.40000 1.540000
## 151 13.3000 21.10000 1.540000
## 152 12.7000 21.50000 1.600000
## 153 12.7000 21.70000 1.590000
## 154 12.7000 21.30000 1.600000
## 155 12.7000 21.20000 1.600000
## 156 12.4000 21.30000 1.540000
## 157 12.4000 21.00000 1.550000
## 158 12.4000 21.20000 1.550000
## 159 12.1000 21.40000 1.550000
## 160 12.1000 21.30000 1.550000
## 161 12.1000 21.50000 1.540000
## 162 12.1000 21.10000 1.540000
## 163 12.4000 21.00000 1.550000
## 164 11.5000 21.20000 1.550000
## 165 11.4000 21.20000 1.550000
## 166 11.6000 21.20000 1.550000
## 167 11.6000 21.20000 1.550000
## 168 11.6000 20.00000 1.550000
## 169 11.3000 20.80000 1.550000
## 170 12.5000 19.90000 1.550000
## 171 14.1000 20.00000 1.540000
## 172 12.8000 21.50000 1.540000
## 173 12.8000 21.50000 1.560000
## 174 13.0000 20.40000 1.550000
## 175 14.1000 21.60000 1.550000
## 176 14.1000 20.80000 1.550000
## ManufacturingProcess04 ManufacturingProcess05 ManufacturingProcess06
## 1 927.0047 998.8306 205.8232
## 2 917.0000 1032.2000 210.0000
## 3 912.0000 1003.6000 207.1000
## 4 911.0000 1014.6000 213.3000
## 5 918.0000 1027.5000 205.7000
## 6 924.0000 1016.8000 208.9000
## 7 933.0000 988.9000 210.0000
## 8 929.0000 1010.9000 211.7000
## 9 928.0000 1003.5000 208.7000
## 10 938.0000 1003.8000 209.8000
## 11 932.0000 983.1000 209.4000
## 12 930.0000 992.0000 209.4000
## 13 934.0000 1004.1000 207.8000
## 14 934.0000 1036.8000 209.1000
## 15 930.0000 1120.7000 207.8000
## 16 928.0000 1073.6000 207.1000
## 17 928.0000 1027.5000 205.9000
## 18 930.0000 1021.4000 208.4000
## 19 929.0000 1092.2000 207.5000
## 20 929.0000 1175.3000 204.1000
## 21 925.0000 1102.8000 206.6000
## 22 936.0000 1024.4000 218.7000
## 23 937.0000 997.7000 209.6000
## 24 940.0000 1031.3000 215.1000
## 25 934.0000 1007.3000 209.4000
## 26 930.0000 950.7000 203.6000
## 27 926.0000 955.8000 203.0000
## 28 922.0000 975.8000 203.6000
## 29 924.0000 986.9000 206.4000
## 30 921.0000 1001.1000 205.5000
## 31 928.0000 1006.7000 206.2000
## 32 926.0000 1024.0000 208.2000
## 33 923.0000 1041.2000 207.3000
## 34 928.0000 999.5000 209.4000
## 35 925.0000 1010.3000 209.1000
## 36 930.0000 1002.4000 207.5000
## 37 926.0000 1019.6000 206.4000
## 38 924.0000 1008.6000 208.7000
## 39 926.0000 1014.3000 208.7000
## 40 924.0000 1027.0000 206.6000
## 41 925.0000 1015.0000 205.9000
## 42 936.0000 954.7000 211.2000
## 43 923.0000 954.0000 210.0000
## 44 930.0000 969.3000 208.7000
## 45 928.0000 980.3000 208.2000
## 46 926.0000 986.4000 208.7000
## 47 925.0000 977.8000 227.4000
## 48 927.0000 1006.4000 210.7000
## 49 921.0000 1002.4000 209.8000
## 50 923.0000 971.2000 207.8000
## 51 918.0000 977.6000 204.8000
## 52 926.0000 989.2000 206.4000
## 53 929.0000 989.6000 205.5000
## 54 923.0000 1003.8000 206.8000
## 55 925.0000 984.2000 205.2000
## 56 924.0000 992.5000 207.3000
## 57 924.0000 987.0000 206.2000
## 58 926.0000 991.5000 211.4000
## 59 920.0000 1003.2000 207.8000
## 60 928.0000 983.2000 208.0000
## 61 921.0000 980.8000 206.2000
## 62 925.0000 982.3000 205.9000
## 63 923.0000 983.4000 206.2000
## 64 928.0000 1004.5000 206.8000
## 65 927.0000 1016.1000 210.3000
## 66 922.0000 999.7000 213.3000
## 67 923.0000 1013.9000 209.6000
## 68 923.0000 994.0000 206.8000
## 69 929.0000 960.0000 210.7000
## 70 921.0000 961.3000 205.0000
## 71 921.0000 969.7000 207.8000
## 72 923.0000 989.7000 205.7000
## 73 923.0000 996.4000 206.2000
## 74 935.0000 976.4000 204.8000
## 75 933.0000 971.6000 208.0000
## 76 933.0000 974.0000 205.9000
## 77 932.0000 978.0000 209.4000
## 78 932.0000 980.2000 205.7000
## 79 937.0000 993.4000 205.5000
## 80 931.0000 990.5000 207.1000
## 81 935.0000 982.9000 206.6000
## 82 934.0000 1000.7000 205.5000
## 83 934.0000 1000.8000 205.2000
## 84 939.0000 1171.2000 206.4000
## 85 936.0000 979.2000 208.7000
## 86 932.0000 994.5000 207.8000
## 87 937.0000 989.2000 205.2000
## 88 939.0000 983.7000 206.4000
## 89 937.0000 960.4000 204.8000
## 90 935.0000 954.8000 205.1658
## 91 938.0000 975.8000 205.2000
## 92 941.0000 1009.1000 206.4000
## 93 933.0000 992.6000 205.9000
## 94 937.0000 1003.7000 205.0000
## 95 931.0000 1006.1000 206.8000
## 96 934.0000 1001.0000 204.8000
## 97 937.0000 994.9000 205.0000
## 98 933.0000 1001.3000 205.2000
## 99 934.0000 1004.3000 205.0000
## 100 934.0000 1008.1000 204.6000
## 101 937.0000 1004.8000 206.6000
## 102 937.0000 992.8000 204.6000
## 103 936.0000 974.0000 206.4000
## 104 937.0000 987.7000 206.6000
## 105 936.0000 987.9000 205.5000
## 106 933.0000 986.6000 205.5000
## 107 932.0000 992.3000 208.4000
## 108 934.0000 987.9000 208.9000
## 109 937.0000 994.3000 211.4000
## 110 940.0000 980.3000 205.2000
## 111 929.0000 976.0000 204.8000
## 112 937.0000 994.1000 208.9000
## 113 936.0000 983.2000 213.7000
## 114 935.0000 981.6000 204.3000
## 115 942.0000 992.0000 204.1000
## 116 934.0000 980.0000 206.4000
## 117 938.0000 997.8000 205.7000
## 118 934.0000 991.9000 205.0000
## 119 934.0000 986.1000 204.1000
## 120 935.0000 923.0000 204.8000
## 121 935.0000 1003.2000 206.8000
## 122 939.0000 995.2000 205.7000
## 123 936.0000 991.8000 208.2000
## 124 935.0000 994.7000 207.3000
## 125 934.0000 996.9000 207.3000
## 126 935.0000 996.5000 209.1000
## 127 939.0000 987.3000 211.4000
## 128 939.0000 981.9000 205.7000
## 129 941.0000 990.0000 207.1000
## 130 939.0000 1004.4000 206.4000
## 131 936.0000 990.8000 208.2000
## 132 939.0000 999.2000 206.4000
## 133 940.0000 998.9000 208.9000
## 134 934.0000 1000.1000 208.7000
## 135 936.0000 1001.2000 206.2000
## 136 936.0000 1011.9000 207.5000
## 137 936.0000 998.6000 206.2000
## 138 940.0000 1002.1000 207.5000
## 139 935.0000 986.1000 205.2000
## 140 936.0000 983.6000 207.5000
## 141 934.0000 989.8000 206.8000
## 142 935.0000 1008.1000 206.6000
## 143 934.0000 1000.6000 207.3000
## 144 939.0000 1011.6000 206.8000
## 145 937.0000 1005.1000 208.9000
## 146 938.0000 1014.4000 206.4000
## 147 941.0000 1012.5000 206.6000
## 148 939.0000 998.5000 209.8000
## 149 940.0000 1012.2000 209.4000
## 150 939.0000 1007.6000 208.9000
## 151 936.0000 1022.3000 206.4000
## 152 946.0000 1005.0000 210.5000
## 153 939.0000 998.0000 205.5000
## 154 934.0000 997.1000 206.2000
## 155 936.0000 1006.1000 207.3000
## 156 935.0000 990.5000 205.7000
## 157 934.0000 1002.4000 206.2000
## 158 940.0000 984.3000 204.3000
## 159 938.0000 1005.3000 207.1000
## 160 936.0000 1003.8000 206.2000
## 161 934.0000 1009.5000 205.7000
## 162 938.0000 1015.1000 207.5000
## 163 936.0000 1020.8000 206.6000
## 164 939.0000 1014.5000 206.6000
## 165 933.0000 1029.0000 205.9000
## 166 933.0000 1008.0000 205.5000
## 167 934.0000 999.9000 208.2000
## 168 928.0000 1003.2000 206.6000
## 169 934.0000 1014.6000 208.7000
## 170 933.0000 1005.1000 205.2000
## 171 936.0000 1029.7000 206.8000
## 172 935.0000 1027.0000 206.2000
## 173 933.0000 1032.0000 206.6000
## 174 930.0000 1040.0000 208.7000
## 175 935.0000 1044.8000 208.0000
## 176 932.0000 1053.8000 207.5000
## ManufacturingProcess07 ManufacturingProcess08 ManufacturingProcess09
## 1 177.4114 177.9193 43.00
## 2 177.0000 178.0000 46.57
## 3 178.0000 178.0000 45.07
## 4 177.0000 177.0000 44.92
## 5 178.0000 178.0000 44.96
## 6 178.0000 178.0000 45.32
## 7 177.0000 178.0000 49.36
## 8 178.0000 178.0000 48.68
## 9 177.0000 177.0000 47.20
## 10 177.0000 177.0000 47.11
## 11 177.0000 177.0000 46.24
## 12 178.0000 178.0000 46.10
## 13 177.0000 177.0000 47.53
## 14 178.0000 178.0000 45.28
## 15 177.0000 177.0000 46.44
## 16 177.0000 177.0000 45.40
## 17 177.0000 177.0000 45.54
## 18 177.0000 177.0000 45.73
## 19 178.0000 178.0000 44.46
## 20 177.0000 177.0000 45.02
## 21 178.0000 178.0000 45.22
## 22 178.0000 178.0000 47.04
## 23 177.0000 177.0000 46.43
## 24 177.0000 177.0000 47.09
## 25 178.0000 178.0000 47.28
## 26 178.0000 178.0000 38.89
## 27 177.0000 178.0000 39.02
## 28 178.0000 178.0000 40.46
## 29 177.0000 177.0000 42.67
## 30 178.0000 178.0000 44.95
## 31 177.0000 177.0000 46.27
## 32 178.0000 178.0000 47.08
## 33 177.0000 177.0000 48.77
## 34 178.0000 178.0000 45.78
## 35 177.0000 177.0000 44.77
## 36 177.0000 177.0000 46.65
## 37 178.0000 178.0000 46.17
## 38 177.0000 177.0000 46.38
## 39 178.0000 178.0000 45.92
## 40 177.0000 177.0000 46.77
## 41 178.0000 178.0000 46.69
## 42 177.0000 177.0000 45.95
## 43 178.0000 177.0000 46.66
## 44 177.0000 178.0000 47.33
## 45 178.0000 178.0000 46.78
## 46 177.0000 177.0000 46.48
## 47 178.0000 178.0000 46.03
## 48 177.0000 177.0000 48.11
## 49 177.0000 178.0000 47.45
## 50 178.0000 178.0000 44.65
## 51 177.0000 177.0000 46.47
## 52 178.0000 178.0000 47.33
## 53 177.0000 177.0000 46.34
## 54 178.0000 177.0000 48.84
## 55 177.0000 178.0000 46.32
## 56 178.0000 178.0000 47.03
## 57 177.0000 177.0000 45.66
## 58 178.0000 178.0000 47.09
## 59 177.0000 177.0000 49.04
## 60 177.0000 178.0000 46.30
## 61 178.0000 178.0000 46.37
## 62 177.0000 177.0000 46.32
## 63 178.0000 178.0000 46.02
## 64 177.0000 177.0000 48.17
## 65 178.0000 177.0000 47.44
## 66 177.0000 178.0000 47.30
## 67 178.0000 178.0000 48.11
## 68 178.0000 178.0000 46.00
## 69 177.0000 177.0000 45.05
## 70 178.0000 177.0000 43.83
## 71 177.0000 178.0000 43.86
## 72 177.0000 177.0000 47.40
## 73 178.0000 178.0000 47.52
## 74 177.0000 177.0000 45.88
## 75 178.0000 177.0000 45.52
## 76 177.0000 178.0000 45.11
## 77 178.0000 178.0000 45.57
## 78 177.0000 177.0000 44.92
## 79 177.0000 177.0000 46.11
## 80 178.0000 177.0000 46.12
## 81 177.0000 178.0000 44.55
## 82 178.0000 178.0000 45.10
## 83 178.0000 178.0000 44.99
## 84 177.0000 178.0000 45.64
## 85 178.0000 178.0000 44.62
## 86 177.0000 177.0000 45.45
## 87 178.0000 178.0000 45.52
## 88 177.0000 177.0000 46.10
## 89 177.0000 178.0000 43.52
## 90 178.0000 178.0000 43.52
## 91 177.0000 177.0000 44.11
## 92 178.0000 178.0000 46.33
## 93 177.0000 177.0000 45.69
## 94 178.0000 178.0000 44.22
## 95 178.0000 177.0000 45.49
## 96 177.0000 177.0000 44.09
## 97 178.0000 178.0000 44.56
## 98 177.0000 177.0000 45.14
## 99 177.0000 178.0000 43.73
## 100 178.0000 177.0000 44.35
## 101 177.0000 177.0000 44.13
## 102 178.0000 178.0000 43.49
## 103 177.0000 177.0000 42.66
## 104 178.0000 178.0000 43.58
## 105 177.0000 177.0000 44.70
## 106 178.0000 178.0000 44.23
## 107 177.0000 177.0000 45.61
## 108 178.0000 178.0000 45.99
## 109 177.0000 177.0000 46.01
## 110 178.0000 178.0000 43.75
## 111 178.0000 177.0000 43.75
## 112 177.0000 177.0000 44.64
## 113 178.0000 178.0000 43.84
## 114 177.0000 177.0000 43.37
## 115 177.0000 177.0000 44.94
## 116 178.0000 178.0000 43.12
## 117 177.0000 177.0000 45.23
## 118 178.0000 177.0000 44.10
## 119 177.0000 178.0000 43.92
## 120 178.0000 178.0000 43.26
## 121 177.0000 177.0000 45.63
## 122 178.0000 178.0000 46.51
## 123 177.0000 178.0000 45.85
## 124 178.0000 178.0000 46.95
## 125 177.0000 178.0000 47.21
## 126 178.0000 178.0000 46.23
## 127 177.0000 178.0000 45.71
## 128 178.0000 178.0000 44.99
## 129 177.0000 178.0000 45.62
## 130 178.0000 178.0000 46.67
## 131 177.0000 177.0000 45.23
## 132 178.0000 178.0000 45.73
## 133 178.0000 178.0000 46.36
## 134 177.0000 178.0000 47.06
## 135 178.0000 177.0000 46.95
## 136 177.0000 177.0000 47.47
## 137 178.0000 178.0000 46.06
## 138 178.0000 178.0000 46.58
## 139 177.0000 178.0000 46.06
## 140 178.0000 178.0000 45.30
## 141 177.0000 178.0000 46.53
## 142 178.0000 178.0000 46.12
## 143 177.0000 178.0000 46.39
## 144 178.0000 178.0000 46.50
## 145 177.0000 178.0000 44.78
## 146 178.0000 178.0000 44.52
## 147 177.0000 177.0000 46.46
## 148 177.0000 178.0000 45.23
## 149 178.0000 178.0000 46.74
## 150 177.0000 177.0000 45.54
## 151 178.0000 178.0000 46.26
## 152 178.0000 178.0000 45.76
## 153 177.0000 177.0000 44.90
## 154 178.0000 178.0000 45.30
## 155 177.0000 177.0000 45.28
## 156 177.0000 177.0000 44.38
## 157 178.0000 178.0000 44.25
## 158 177.0000 177.0000 44.38
## 159 178.0000 178.0000 44.86
## 160 177.0000 177.0000 44.09
## 161 178.0000 178.0000 44.62
## 162 178.0000 178.0000 45.51
## 163 177.0000 177.0000 46.22
## 164 177.0000 177.0000 45.87
## 165 178.0000 177.0000 47.70
## 166 177.0000 178.0000 45.51
## 167 178.0000 178.0000 45.13
## 168 177.0000 177.0000 45.73
## 169 177.0000 177.0000 46.04
## 170 178.0000 177.0000 45.31
## 171 177.0000 178.0000 44.77
## 172 178.0000 177.0000 46.78
## 173 177.0000 178.0000 46.51
## 174 178.0000 177.0000 48.05
## 175 177.0000 177.0000 48.11
## 176 178.0000 178.0000 48.13
## ManufacturingProcess10 ManufacturingProcess11 ManufacturingProcess12
## 1 8.636328 10.025683 262.5544
## 2 9.164042 10.025683 0.0000
## 3 9.138575 9.551027 0.0000
## 4 8.738187 9.551027 0.0000
## 5 8.468328 8.957722 0.0000
## 6 8.636328 10.115706 0.0000
## 7 11.600000 11.500000 0.0000
## 8 10.200000 11.300000 0.0000
## 9 9.700000 11.100000 0.0000
## 10 10.100000 10.200000 0.0000
## 11 9.000000 9.500000 0.0000
## 12 8.800000 9.700000 0.0000
## 13 9.300000 10.400000 0.0000
## 14 9.600000 9.800000 0.0000
## 15 9.400000 10.200000 0.0000
## 16 9.600000 10.200000 0.0000
## 17 9.000000 10.000000 0.0000
## 18 9.500000 10.600000 0.0000
## 19 8.900000 9.800000 0.0000
## 20 8.900000 9.900000 0.0000
## 21 9.000000 10.000000 0.0000
## 22 9.773592 9.146609 0.0000
## 23 10.635233 8.900656 0.0000
## 24 9.069647 9.551027 0.0000
## 25 11.100000 9.000000 0.0000
## 26 9.200000 7.600000 0.0000
## 27 8.400000 7.500000 0.0000
## 28 7.800000 7.500000 0.0000
## 29 7.500000 7.700000 0.0000
## 30 9.400000 9.000000 0.0000
## 31 9.000000 9.100000 0.0000
## 32 10.700000 9.500000 0.0000
## 33 10.100000 10.500000 0.0000
## 34 9.800000 9.700000 0.0000
## 35 9.400000 9.300000 0.0000
## 36 9.700000 10.000000 4549.0000
## 37 9.400000 10.200000 4549.0000
## 38 9.700000 10.000000 4549.0000
## 39 9.500000 10.000000 4549.0000
## 40 10.200000 9.800000 4549.0000
## 41 9.800000 10.000000 4549.0000
## 42 11.100000 10.500000 4549.0000
## 43 8.100000 8.900000 4549.0000
## 44 9.300000 9.300000 4549.0000
## 45 9.000000 8.800000 4549.0000
## 46 8.500000 9.200000 4549.0000
## 47 9.400000 9.100000 4549.0000
## 48 8.900000 9.900000 4549.0000
## 49 9.500000 9.600000 4549.0000
## 50 8.900000 9.100000 4549.0000
## 51 8.900000 9.400000 4549.0000
## 52 8.700000 11.000000 4549.0000
## 53 9.000000 9.500000 4549.0000
## 54 8.700000 10.800000 4549.0000
## 55 8.400000 8.600000 4549.0000
## 56 8.200000 9.400000 4549.0000
## 57 10.300000 9.400000 4549.0000
## 58 10.300000 9.800000 4549.0000
## 59 11.100000 10.200000 4549.0000
## 60 9.400000 9.100000 4549.0000
## 61 9.600000 9.100000 4549.0000
## 62 10.400000 9.000000 4549.0000
## 63 10.200000 8.700000 4549.0000
## 64 9.600000 10.200000 4549.0000
## 65 11.200000 9.900000 4549.0000
## 66 10.900000 10.100000 4549.0000
## 67 11.000000 10.400000 4549.0000
## 68 9.700000 9.600000 4549.0000
## 69 9.400000 9.000000 0.0000
## 70 8.900000 8.400000 0.0000
## 71 8.400000 8.300000 0.0000
## 72 9.700000 9.500000 0.0000
## 73 10.200000 9.900000 0.0000
## 74 8.500000 9.100000 0.0000
## 75 8.200000 8.700000 0.0000
## 76 8.700000 8.600000 0.0000
## 77 9.800000 9.300000 0.0000
## 78 8.700000 9.100000 0.0000
## 79 9.300000 9.400000 0.0000
## 80 8.400000 9.300000 0.0000
## 81 8.200000 8.400000 0.0000
## 82 8.600000 8.800000 0.0000
## 83 9.100000 8.500000 0.0000
## 84 8.900000 9.100000 0.0000
## 85 8.600000 8.400000 0.0000
## 86 9.400000 9.400000 0.0000
## 87 9.300000 9.500000 0.0000
## 88 9.400000 9.600000 0.0000
## 89 8.100000 8.300000 0.0000
## 90 8.400000 8.300000 0.0000
## 91 8.400000 8.300000 0.0000
## 92 8.700000 9.200000 0.0000
## 93 8.400000 9.100000 0.0000
## 94 8.600000 8.900000 0.0000
## 95 9.100000 8.900000 0.0000
## 96 8.800000 8.700000 0.0000
## 97 9.300000 9.000000 0.0000
## 98 9.100000 9.035977 0.0000
## 99 11.400000 8.700000 0.0000
## 100 8.700000 9.200000 0.0000
## 101 8.900000 9.300000 0.0000
## 102 8.800000 9.000000 0.0000
## 103 8.900000 8.700000 0.0000
## 104 8.700000 9.100000 0.0000
## 105 9.300000 9.100000 0.0000
## 106 8.700000 9.000000 0.0000
## 107 9.000000 8.900000 0.0000
## 108 9.400000 9.300000 0.0000
## 109 9.000000 8.900000 0.0000
## 110 9.600000 9.400000 0.0000
## 111 9.500000 7.900000 0.0000
## 112 7.800000 8.700000 0.0000
## 113 8.100000 8.700000 0.0000
## 114 7.800000 8.100000 0.0000
## 115 9.100000 9.000000 0.0000
## 116 8.300000 8.300000 0.0000
## 117 8.500000 9.100000 0.0000
## 118 8.800000 9.200000 0.0000
## 119 9.000000 9.100000 0.0000
## 120 8.700000 8.600000 0.0000
## 121 9.000000 9.600000 0.0000
## 122 9.800000 10.100000 0.0000
## 123 8.800000 9.700000 0.0000
## 124 8.900000 9.800000 0.0000
## 125 10.000000 10.200000 0.0000
## 126 9.300000 10.000000 0.0000
## 127 8.100000 9.100000 0.0000
## 128 8.300000 8.800000 0.0000
## 129 8.200000 9.400000 0.0000
## 130 9.100000 10.100000 0.0000
## 131 8.900000 8.200000 0.0000
## 132 7.900000 8.800000 0.0000
## 133 8.200000 9.200000 0.0000
## 134 8.700000 9.400000 0.0000
## 135 9.300000 9.600000 0.0000
## 136 8.500000 10.000000 0.0000
## 137 9.300000 9.300000 0.0000
## 138 9.700000 9.300000 0.0000
## 139 9.500000 9.500000 0.0000
## 140 10.400000 9.800000 0.0000
## 141 8.600000 9.300000 0.0000
## 142 8.700000 9.500000 0.0000
## 143 8.900000 9.600000 0.0000
## 144 9.000000 10.000000 0.0000
## 145 9.300000 9.700000 0.0000
## 146 9.300000 9.400000 0.0000
## 147 9.100000 9.600000 0.0000
## 148 9.900000 10.100000 0.0000
## 149 9.400000 10.600000 0.0000
## 150 9.000000 9.400000 0.0000
## 151 9.300000 10.100000 0.0000
## 152 8.300000 9.800000 0.0000
## 153 9.500000 9.500000 0.0000
## 154 9.500000 9.400000 0.0000
## 155 8.700000 9.500000 0.0000
## 156 9.100000 9.100000 0.0000
## 157 9.100000 9.300000 0.0000
## 158 9.000000 9.700000 0.0000
## 159 8.500000 8.800000 0.0000
## 160 7.700000 8.100000 0.0000
## 161 7.800000 8.600000 0.0000
## 162 8.800000 9.200000 0.0000
## 163 8.800000 9.200000 0.0000
## 164 9.300000 9.900000 0.0000
## 165 10.500000 10.300000 0.0000
## 166 9.300000 10.100000 0.0000
## 167 9.400000 9.600000 0.0000
## 168 9.700000 10.000000 0.0000
## 169 8.200000 8.200000 0.0000
## 170 8.800000 9.100000 0.0000
## 171 9.000000 9.400000 0.0000
## 172 9.600000 9.600000 0.0000
## 173 9.500000 9.900000 0.0000
## 174 10.100000 10.400000 0.0000
## 175 10.200000 10.300000 0.0000
## 176 9.900000 10.300000 0.0000
## ManufacturingProcess13 ManufacturingProcess14 ManufacturingProcess15
## 1 35.5 4898.000 6108
## 2 34.0 4869.000 6095
## 3 34.8 4878.000 6087
## 4 34.8 4897.000 6102
## 5 34.6 4992.000 6233
## 6 34.0 4985.000 6222
## 7 32.4 4745.000 5999
## 8 33.6 4854.000 6105
## 9 33.9 4893.000 6144
## 10 34.3 4846.000 6077
## 11 35.8 4944.000 6156
## 12 35.6 4959.000 6178
## 13 35.1 4917.000 6158
## 14 34.9 4882.000 6108
## 15 35.3 4918.000 6156
## 16 35.4 4805.000 6124
## 17 35.8 4942.000 6177
## 18 35.5 4899.000 6123
## 19 35.5 4957.000 6181
## 20 35.6 4961.000 6180
## 21 35.2 4949.000 6161
## 22 33.2 4791.000 6026
## 23 32.9 4751.293 6002
## 24 33.6 4864.000 6085
## 25 33.3 4750.000 5994
## 26 37.3 4840.000 5988
## 27 38.0 4894.000 6022
## 28 38.1 4942.000 6081
## 29 38.6 5055.000 6213
## 30 35.3 4831.000 6017
## 31 35.4 4872.000 6050
## 32 33.5 4756.000 5972
## 33 33.4 4815.000 6033
## 34 34.5 4811.000 5992
## 35 34.6 4852.000 6047
## 36 33.9 4844.000 6057
## 37 33.4 4854.000 6051
## 38 33.1 4825.000 6028
## 39 33.0 4838.000 6029
## 40 32.8 4806.000 6002
## 41 33.0 4828.000 6020
## 42 32.8 4713.000 5904
## 43 33.3 4934.000 6110
## 44 32.5 4836.000 6014
## 45 32.8 4869.000 6061
## 46 33.2 4914.000 6108
## 47 32.6 4833.000 6009
## 48 32.6 4883.000 6146
## 49 32.1 4855.000 6077
## 50 33.9 4852.000 6013
## 51 33.4 4869.000 6043
## 52 33.8 4874.000 6049
## 53 33.1 4867.000 6061
## 54 33.6 4867.000 6039
## 55 33.7 4891.000 6059
## 56 33.9 4901.000 6055
## 57 33.8 4747.000 5918
## 58 33.5 4765.000 5946
## 59 32.5 4724.000 5926
## 60 34.6 4813.000 5957
## 61 34.6 4803.000 5958
## 62 34.0 4756.000 5917
## 63 34.1 4772.000 5957
## 64 33.9 4828.000 6010
## 65 32.7 4716.000 5937
## 66 33.3 4742.000 5963
## 67 32.9 4737.000 5967
## 68 34.2 4818.000 6019
## 69 34.8 4824.000 5974
## 70 35.5 4862.000 6023
## 71 35.5 4897.000 6043
## 72 34.2 4836.000 6047
## 73 33.5 4810.000 6039
## 74 34.8 4879.000 6044
## 75 35.2 4899.000 6059
## 76 35.0 4857.000 6028
## 77 34.2 4795.000 5991
## 78 35.1 4889.000 6089
## 79 34.5 4835.000 6014
## 80 35.2 4899.000 6061
## 81 35.2 4897.000 6048
## 82 34.9 4844.000 5990
## 83 34.7 4829.000 5998
## 84 35.1 4853.000 6022
## 85 35.0 4864.000 6030
## 86 34.8 4841.000 6048
## 87 34.5 4841.000 6052
## 88 34.6 4832.000 6035
## 89 35.8 4893.000 6028
## 90 35.6 4866.000 6005
## 91 35.4 4874.000 6012
## 92 34.2 4867.000 6034
## 93 35.3 4896.000 6062
## 94 35.6 4848.000 6005
## 95 35.2 4839.000 6020
## 96 35.3 4853.000 6021
## 97 35.2 4815.000 5991
## 98 35.1 4834.000 6022
## 99 34.3 4701.000 5914
## 100 35.3 4895.000 6079
## 101 35.3 4865.000 6037
## 102 35.4 4864.000 6025
## 103 35.5 4838.000 5997
## 104 35.3 4861.000 6020
## 105 35.2 4816.000 5983
## 106 35.2 4873.000 6031
## 107 35.1 4843.000 6016
## 108 34.7 4807.000 5967
## 109 35.0 4839.000 6013
## 110 35.1 4793.000 5953
## 111 35.2 4783.000 5932
## 112 35.9 4937.000 6098
## 113 35.7 4896.000 6050
## 114 36.2 4936.000 6076
## 115 34.7 4808.000 5941
## 116 35.2 4880.000 6031
## 117 34.9 4879.000 6047
## 118 35.1 4869.000 6037
## 119 35.1 4849.000 6011
## 120 35.6 4876.000 6040
## 121 34.7 4872.000 6060
## 122 33.9 4839.000 6053
## 123 34.9 4882.000 6056
## 124 34.3 4878.000 6072
## 125 33.7 4812.000 6032
## 126 34.4 4859.000 6063
## 127 35.0 4905.000 6061
## 128 34.8 4883.000 6030
## 129 35.2 4903.000 6056
## 130 33.8 4853.000 6027
## 131 34.4 4865.000 6034
## 132 34.6 4950.000 6143
## 133 34.9 4912.000 6091
## 134 34.5 4875.000 6056
## 135 34.3 4830.000 6001
## 136 34.4 4893.000 6061
## 137 34.4 4833.000 6004
## 138 33.4 4792.000 5964
## 139 34.7 4823.000 6003
## 140 33.7 4772.000 5962
## 141 34.9 4883.000 6042
## 142 34.4 4877.000 6059
## 143 34.3 4864.000 6044
## 144 33.9 4858.000 6035
## 145 34.2 4846.000 6027
## 146 34.2 4847.000 6029
## 147 34.4 4858.000 6046
## 148 34.2 4802.000 5990
## 149 34.0 4858.000 6067
## 150 34.4 4862.000 6036
## 151 34.2 4843.000 6021
## 152 34.6 4920.000 6093
## 153 34.3 4831.000 6017
## 154 34.4 4824.000 6003
## 155 34.7 4887.000 6076
## 156 35.0 4850.000 6015
## 157 34.9 4854.000 6014
## 158 35.3 4861.000 6025
## 159 34.8 4868.000 6012
## 160 35.3 4924.000 6050
## 161 35.2 4925.000 6058
## 162 34.5 4856.000 6022
## 163 34.7 4866.000 6040
## 164 34.4 4833.000 6020
## 165 33.5 4750.000 5952
## 166 34.4 4795.000 5982
## 167 34.8 4832.000 6024
## 168 34.4 4815.000 6010
## 169 34.8 4882.000 6022
## 170 34.9 4878.000 6058
## 171 34.7 4860.000 6041
## 172 33.9 4829.000 6026
## 173 34.0 4833.000 6029
## 174 33.1 4795.000 6000
## 175 32.9 4793.000 6029
## 176 32.9 4824.000 6068
## ManufacturingProcess16 ManufacturingProcess17 ManufacturingProcess18
## 1 4682 35.5 4865
## 2 4617 34.0 4867
## 3 4617 34.8 4877
## 4 4635 34.8 4872
## 5 4733 33.9 4886
## 6 4786 33.4 4862
## 7 4486 33.8 4758
## 8 4626 33.6 4766
## 9 4658 33.9 4769
## 10 4614 35.3 4840
## 11 4690 35.8 4900
## 12 4708 35.2 4878
## 13 4704 35.1 4835
## 14 4655 35.8 4858
## 15 4690 35.3 4849
## 16 4666 35.5 4842
## 17 4725 35.8 4858
## 18 4692 35.5 4811
## 19 4751 35.5 4887
## 20 4775 35.6 4869
## 21 4766 35.2 4871
## 22 4482 35.7 0
## 23 0 36.5 4902
## 24 4615 35.1 4847
## 25 4517 36.3 4887
## 26 4577 40.0 4971
## 27 4590 40.0 4971
## 28 4645 39.3 4967
## 29 4714 37.7 4960
## 30 4556 35.3 4866
## 31 4585 35.0 4857
## 32 4515 34.0 4854
## 33 4569 33.4 4773
## 34 4578 34.5 4823
## 35 4852 34.4 4861
## 36 4562 33.1 4821
## 37 4595 32.2 4794
## 38 4571 32.6 4798
## 39 4593 32.6 4800
## 40 4591 32.8 4831
## 41 4587 32.6 4815
## 42 4467 32.8 4750
## 43 4635 32.5 4873
## 44 4564 32.3 4844
## 45 4583 32.3 4905
## 46 4594 32.4 4850
## 47 4521 32.6 4853
## 48 4533 31.3 4812
## 49 4563 31.5 4836
## 50 4518 33.6 4849
## 51 4547 32.8 4827
## 52 4551 33.1 4701
## 53 4567 32.5 4836
## 54 4539 33.1 4718
## 55 4563 33.1 4880
## 56 4571 34.8 4816
## 57 4447 34.5 4829
## 58 4471 33.9 4808
## 59 4441 33.5 4792
## 60 4491 35.2 4834
## 61 4506 35.0 4846
## 62 4484 35.3 4858
## 63 4494 35.4 4885
## 64 4550 33.9 4763
## 65 4476 34.1 4818
## 66 4505 33.9 4800
## 67 4499 33.5 4785
## 68 4583 34.2 4830
## 69 4534 35.4 4862
## 70 4568 35.5 4905
## 71 4584 35.5 4907
## 72 4588 33.9 4854
## 73 4568 33.5 4827
## 74 4574 34.4 4841
## 75 4609 34.5 4867
## 76 4569 34.6 4870
## 77 4520 34.2 4844
## 78 4619 34.5 4857
## 79 4527 34.5 4827
## 80 4572 33.8 4813
## 81 4572 34.8 4881
## 82 4524 34.9 4825
## 83 4550 34.7 4879
## 84 4582 34.8 4826
## 85 4577 34.8 4887
## 86 4631 34.1 4839
## 87 4635 33.9 4830
## 88 4624 34.3 4822
## 89 4564 35.5 4879
## 90 4550 35.6 4893
## 91 4561 35.3 4885
## 92 4588 33.8 4835
## 93 4614 34.5 4844
## 94 4559 35.6 4866
## 95 4559 35.2 4849
## 96 4566 35.3 4864
## 97 4541 35.2 4834
## 98 4560 34.8 4859
## 99 4579 35.7 4911
## 100 4670 34.3 4850
## 101 4651 34.8 4839
## 102 4607 35.0 4847
## 103 4571 35.5 4855
## 104 4611 34.9 4837
## 105 4579 35.2 4834
## 106 4606 34.8 4846
## 107 4564 35.1 4850
## 108 4536 34.7 4819
## 109 4561 35.0 4856
## 110 4550 35.4 4808
## 111 4485 35.7 4935
## 112 4602 34.7 4845
## 113 4559 35.0 4849
## 114 4602 35.3 4887
## 115 4504 35.1 4822
## 116 4567 35.2 4877
## 117 4564 34.4 4827
## 118 4622 34.7 4835
## 119 4584 35.0 4844
## 120 4598 35.2 4880
## 121 4633 34.1 4828
## 122 4654 33.1 4806
## 123 4600 33.9 4814
## 124 4614 33.2 4811
## 125 4626 33.2 4797
## 126 4635 33.3 4804
## 127 4595 33.8 4820
## 128 4577 34.2 4855
## 129 4550 34.1 4805
## 130 4544 33.4 4777
## 131 4562 34.4 4926
## 132 4665 33.6 4884
## 133 4625 33.5 4842
## 134 4596 33.4 4821
## 135 4581 33.6 4809
## 136 4635 32.6 4780
## 137 4589 34.0 4831
## 138 4540 33.8 4822
## 139 4617 34.4 4831
## 140 4606 34.4 4812
## 141 4623 33.9 4826
## 142 4604 33.4 4821
## 143 4589 33.4 4820
## 144 4577 33.1 4790
## 145 4608 33.7 4612
## 146 4610 33.7 4831
## 147 4619 33.5 4813
## 148 4620 34.0 4786
## 149 4677 32.8 4768
## 150 4601 33.5 4832
## 151 4597 33.2 4780
## 152 4648 33.3 4797
## 153 4591 34.2 4821
## 154 4586 34.3 4832
## 155 4637 33.9 4829
## 156 4611 34.9 4856
## 157 4617 34.6 4834
## 158 4611 34.8 4805
## 159 4561 34.5 4844
## 160 4597 34.8 4897
## 161 4601 34.6 4863
## 162 4579 34.1 4820
## 163 4571 34.0 4844
## 164 4569 34.1 4789
## 165 4516 33.5 4765
## 166 4600 34.4 4785
## 167 4625 34.7 4816
## 168 4618 34.4 4786
## 169 4606 34.8 4884
## 170 4641 34.6 4853
## 171 4617 34.0 4822
## 172 4621 33.5 4815
## 173 4608 33.5 4807
## 174 4557 32.8 4764
## 175 4600 32.4 4787
## 176 4630 32.0 4795
## ManufacturingProcess19 ManufacturingProcess20 ManufacturingProcess21
## 1 6049 4665 0.0
## 2 6097 4621 0.0
## 3 6078 4621 0.0
## 4 6073 4611 0.0
## 5 6102 4659 -0.7
## 6 6115 4696 -0.6
## 7 6013 4522 1.4
## 8 6022 4552 0.0
## 9 6033 4556 0.0
## 10 6091 4614 1.0
## 11 6126 4665 0.0
## 12 6134 4673 -0.4
## 13 6090 4651 0.0
## 14 6070 4628 0.9
## 15 6093 4646 0.0
## 16 6091 4641 0.1
## 17 6100 4656 0.0
## 18 6041 4636 0.0
## 19 6124 4710 0.0
## 20 6094 4690 0.0
## 21 6108 4705 0.0
## 22 6111 0 2.5
## 23 6120 4621 3.6
## 24 6072 4607 1.5
## 25 6146 4653 3.0
## 26 6114 4657 2.7
## 27 6107 4675 2.0
## 28 6117 4664 1.2
## 29 6123 4639 -0.9
## 30 6028 4573 0.0
## 31 6036 4579 -0.4
## 32 6069 4600 0.5
## 33 5991 4521 0.0
## 34 6010 4579 0.0
## 35 6073 4759 -0.2
## 36 6033 4547 -0.8
## 37 5992 4552 -1.2
## 38 5986 4552 -0.5
## 39 5991 4562 -0.4
## 40 6027 4603 0.0
## 41 6005 4582 -0.4
## 42 5927 4497 0.0
## 43 6058 4598 -0.8
## 44 6032 4577 -0.2
## 45 6117 4635 -0.5
## 46 6025 4535 -0.8
## 47 6027 4538 0.0
## 48 6082 4484 -1.3
## 49 6055 4551 -0.6
## 50 6015 4525 -0.3
## 51 6014 4526 -0.6
## 52 5890 4392 -0.7
## 53 6033 4541 -0.6
## 54 5898 4404 -0.5
## 55 6048 4555 -0.6
## 56 5992 4493 0.9
## 57 6006 4531 0.7
## 58 5991 4509 0.4
## 59 6002 4506 1.0
## 60 5983 4514 0.6
## 61 6009 4535 0.4
## 62 6039 4557 1.3
## 63 6065 4571 1.3
## 64 5949 4510 0.0
## 65 6043 4586 1.4
## 66 6038 4578 0.6
## 67 6025 4558 0.6
## 68 6031 4603 0.0
## 69 6021 4567 0.6
## 70 6066 4597 0.0
## 71 6064 4596 0.0
## 72 6072 4603 -0.3
## 73 6057 4580 0.0
## 74 6018 4565 -0.4
## 75 6037 4583 -0.7
## 76 6051 4582 -0.4
## 77 6031 4579 0.0
## 78 6063 4594 -0.6
## 79 5994 4525 0.0
## 80 5977 4515 -1.4
## 81 6059 4584 -0.4
## 82 5981 4517 0.0
## 83 6040 4573 0.0
## 84 5996 4564 -0.3
## 85 6068 4599 -0.2
## 86 6062 4631 -0.7
## 87 6038 4618 -0.6
## 88 6039 4617 -0.3
## 89 6026 4556 -0.3
## 90 6046 4569 0.0
## 91 6046 4571 -0.1
## 92 6015 4569 -0.4
## 93 6021 4583 -0.8
## 94 6028 4579 0.0
## 95 6024 4576 0.0
## 96 6043 4582 0.0
## 97 6008 4555 0.0
## 98 6030 4568 -0.3
## 99 6124 4705 1.4
## 100 6022 4634 -1.0
## 101 6003 4619 -0.5
## 102 6024 4614 -0.4
## 103 6021 4584 0.0
## 104 6007 4593 -0.4
## 105 5997 4583 0.0
## 106 6014 4595 -0.4
## 107 6016 4569 0.0
## 108 5997 4544 0.0
## 109 6032 4571 0.0
## 110 5972 4551 0.3
## 111 6105 4602 0.5
## 112 6014 4533 -1.2
## 113 6010 4536 -0.7
## 114 6033 4567 -0.9
## 115 5959 4526 0.4
## 116 6035 4570 0.0
## 117 6000 4535 -0.5
## 118 5999 4585 -0.4
## 119 6013 4589 -0.1
## 120 6037 4611 -0.4
## 121 6015 4592 -0.6
## 122 6022 4623 -0.8
## 123 6004 4580 -1.0
## 124 6018 4567 -1.1
## 125 6019 4611 -0.5
## 126 6024 4601 -1.1
## 127 5982 4529 -1.2
## 128 6024 4558 -0.6
## 129 5955 4496 -1.1
## 130 5962 4509 -0.4
## 131 6122 4643 0.0
## 132 6084 4615 -1.0
## 133 6027 4575 -1.4
## 134 6003 4550 -1.1
## 135 5977 4569 -0.7
## 136 5952 4559 -1.8
## 137 6005 4601 -0.4
## 138 5985 4562 0.4
## 139 6015 4609 -0.3
## 140 5995 4621 0.7
## 141 5997 4590 -1.0
## 142 6008 4568 -1.0
## 143 6008 4550 -0.9
## 144 5980 4531 -0.8
## 145 5999 4581 -0.5
## 146 6012 4605 -0.5
## 147 6004 4590 -0.9
## 148 5983 4614 -0.2
## 149 5964 4596 -1.2
## 150 6003 4578 -0.9
## 151 5971 4553 -1.0
## 152 5977 4570 -1.3
## 153 6009 4586 -0.1
## 154 6012 4589 -0.1
## 155 6012 4599 -0.8
## 156 6027 4618 -0.1
## 157 6009 4601 -0.3
## 158 5975 4570 -0.5
## 159 5982 4542 -0.3
## 160 6022 4586 -0.5
## 161 6016 4594 -0.6
## 162 5989 4544 -0.4
## 163 6028 4553 -0.7
## 164 5973 4532 -0.3
## 165 5956 4520 0.0
## 166 5984 4587 0.0
## 167 6001 4601 -0.1
## 168 5986 4590 0.0
## 169 6026 4613 0.0
## 170 6047 4630 -0.3
## 171 6000 4588 -0.7
## 172 6011 4612 -0.4
## 173 6001 4584 -0.5
## 174 5977 4538 -0.3
## 175 6030 4592 -0.5
## 176 6050 4607 -0.9
## ManufacturingProcess22 ManufacturingProcess23 ManufacturingProcess24
## 1 4.249653 3.502078 14.92497
## 2 3.000000 0.000000 3.00000
## 3 4.000000 1.000000 4.00000
## 4 5.000000 2.000000 5.00000
## 5 8.000000 4.000000 18.00000
## 6 9.000000 1.000000 1.00000
## 7 1.000000 1.000000 1.00000
## 8 2.000000 2.000000 2.00000
## 9 3.000000 3.000000 3.00000
## 10 4.000000 1.000000 4.00000
## 11 6.000000 3.000000 6.00000
## 12 7.000000 4.000000 7.00000
## 13 8.000000 1.000000 8.00000
## 14 10.000000 2.000000 2.00000
## 15 11.000000 3.000000 15.00000
## 16 12.000000 4.000000 16.00000
## 17 1.000000 1.000000 1.00000
## 18 2.000000 1.000000 2.00000
## 19 3.000000 2.000000 3.00000
## 20 4.000000 3.000000 4.00000
## 21 5.000000 4.000000 5.00000
## 22 6.000000 2.000000 16.00000
## 23 7.000000 3.000000 17.00000
## 24 1.000000 1.000000 1.00000
## 25 5.000000 5.000000 12.00000
## 26 1.000000 1.000000 6.00000
## 27 2.000000 2.000000 7.00000
## 28 3.000000 3.000000 8.00000
## 29 4.000000 4.000000 9.00000
## 30 6.000000 4.000000 4.00000
## 31 7.000000 1.000000 5.00000
## 32 8.000000 2.000000 6.00000
## 33 9.000000 3.000000 7.00000
## 34 5.000000 5.000000 12.00000
## 35 3.000000 3.000000 16.00000
## 36 1.000000 1.000000 13.00000
## 37 3.000000 2.000000 2.00000
## 38 4.000000 3.000000 3.00000
## 39 5.000000 4.000000 4.00000
## 40 7.000000 2.000000 6.00000
## 41 8.000000 3.000000 7.00000
## 42 1.000000 1.000000 1.00000
## 43 2.000000 2.000000 2.00000
## 44 3.000000 3.000000 3.00000
## 45 4.000000 4.000000 4.00000
## 46 5.000000 5.000000 5.00000
## 47 6.000000 6.000000 6.00000
## 48 7.000000 1.000000 7.00000
## 49 9.000000 3.000000 9.00000
## 50 10.000000 4.000000 10.00000
## 51 11.000000 5.000000 11.00000
## 52 12.000000 6.000000 12.00000
## 53 1.000000 1.000000 13.00000
## 54 2.000000 2.000000 14.00000
## 55 3.000000 3.000000 15.00000
## 56 4.000000 4.000000 16.00000
## 57 5.000000 5.000000 17.00000
## 58 6.000000 6.000000 18.00000
## 59 7.000000 1.000000 1.00000
## 60 9.000000 3.000000 3.00000
## 61 10.000000 4.000000 4.00000
## 62 11.000000 5.000000 5.00000
## 63 12.000000 6.000000 6.00000
## 64 1.000000 1.000000 7.00000
## 65 2.000000 2.000000 8.00000
## 66 3.000000 3.000000 9.00000
## 67 4.000000 4.000000 10.00000
## 68 6.000000 6.000000 12.00000
## 69 1.000000 1.000000 13.00000
## 70 2.000000 2.000000 14.00000
## 71 3.000000 3.000000 15.00000
## 72 5.000000 5.000000 17.00000
## 73 6.000000 6.000000 18.00000
## 74 7.000000 1.000000 1.00000
## 75 8.000000 2.000000 2.00000
## 76 9.000000 3.000000 3.00000
## 77 10.000000 4.000000 4.00000
## 78 11.000000 5.000000 5.00000
## 79 1.000000 1.000000 7.00000
## 80 2.000000 2.000000 8.00000
## 81 3.000000 3.000000 9.00000
## 82 4.000000 4.000000 10.00000
## 83 6.000000 6.000000 12.00000
## 84 1.000000 1.000000 13.00000
## 85 2.000000 2.000000 14.00000
## 86 3.000000 3.000000 15.00000
## 87 4.000000 4.000000 16.00000
## 88 5.000000 5.000000 17.00000
## 89 7.000000 2.000000 2.00000
## 90 8.000000 3.000000 3.00000
## 91 9.000000 4.000000 4.00000
## 92 10.000000 5.000000 5.00000
## 93 11.000000 6.000000 6.00000
## 94 1.000000 1.000000 7.00000
## 95 3.000000 3.000000 9.00000
## 96 4.000000 4.000000 10.00000
## 97 5.000000 5.000000 11.00000
## 98 6.000000 6.000000 12.00000
## 99 2.000000 2.000000 14.00000
## 100 3.000000 3.000000 15.00000
## 101 4.000000 4.000000 16.00000
## 102 5.000000 5.000000 17.00000
## 103 6.000000 6.000000 18.00000
## 104 7.000000 1.000000 1.00000
## 105 8.000000 2.000000 2.00000
## 106 9.000000 3.000000 3.00000
## 107 10.000000 4.000000 4.00000
## 108 11.000000 5.000000 5.00000
## 109 12.000000 6.000000 6.00000
## 110 1.000000 1.000000 7.00000
## 111 3.000000 3.000000 9.00000
## 112 4.000000 4.000000 10.00000
## 113 5.000000 5.000000 11.00000
## 114 6.000000 6.000000 12.00000
## 115 7.000000 1.000000 13.00000
## 116 8.000000 2.000000 14.00000
## 117 1.000000 1.000000 15.00000
## 118 2.000000 2.000000 16.00000
## 119 3.000000 3.000000 17.00000
## 120 4.000000 4.000000 18.00000
## 121 5.000000 5.000000 19.00000
## 122 6.000000 6.000000 20.00000
## 123 7.000000 1.000000 1.00000
## 124 8.000000 2.000000 2.00000
## 125 9.000000 3.000000 3.00000
## 126 10.000000 4.000000 4.00000
## 127 11.000000 5.000000 5.00000
## 128 12.000000 6.000000 6.00000
## 129 1.000000 1.000000 7.00000
## 130 2.000000 2.000000 8.00000
## 131 3.000000 3.000000 9.00000
## 132 4.000000 4.000000 10.00000
## 133 1.000000 1.000000 12.00000
## 134 2.000000 2.000000 13.00000
## 135 3.000000 3.000000 14.00000
## 136 4.000000 4.000000 15.00000
## 137 5.000000 5.000000 16.00000
## 138 7.000000 1.000000 1.00000
## 139 8.000000 2.000000 2.00000
## 140 9.000000 3.000000 3.00000
## 141 10.000000 4.000000 4.00000
## 142 11.000000 5.000000 5.00000
## 143 12.000000 6.000000 6.00000
## 144 1.000000 1.000000 7.00000
## 145 2.000000 2.000000 8.00000
## 146 3.000000 3.000000 9.00000
## 147 4.000000 1.000000 10.00000
## 148 6.000000 3.000000 12.00000
## 149 7.000000 4.000000 13.00000
## 150 8.000000 5.000000 14.00000
## 151 9.000000 6.000000 15.00000
## 152 1.000000 1.000000 16.00000
## 153 2.000000 2.000000 17.00000
## 154 3.000000 3.000000 18.00000
## 155 4.000000 4.000000 19.00000
## 156 7.000000 3.000000 3.00000
## 157 8.000000 4.000000 4.00000
## 158 9.000000 5.000000 5.00000
## 159 10.000000 1.000000 6.00000
## 160 11.000000 2.000000 7.00000
## 161 12.000000 3.000000 8.00000
## 162 2.000000 1.000000 10.00000
## 163 9.000000 5.000000 17.00000
## 164 1.000000 1.000000 19.00000
## 165 2.000000 2.000000 20.00000
## 166 3.000000 3.000000 21.00000
## 167 4.000000 4.000000 22.00000
## 168 5.000000 5.000000 23.00000
## 169 7.000000 1.000000 1.00000
## 170 8.000000 2.000000 2.00000
## 171 9.000000 3.000000 3.00000
## 172 2.000000 2.000000 8.00000
## 173 0.000000 0.000000 0.00000
## 174 0.000000 0.000000 0.00000
## 175 0.000000 0.000000 0.00000
## 176 0.000000 0.000000 0.00000
## ManufacturingProcess25 ManufacturingProcess26 ManufacturingProcess27
## 1 4873.000 6074.000 4685.000
## 2 4869.000 6107.000 4630.000
## 3 4897.000 6116.000 4637.000
## 4 4892.000 6111.000 4630.000
## 5 4930.000 6151.000 4684.000
## 6 4871.000 6128.000 4687.000
## 7 4795.000 6057.000 4572.000
## 8 4806.000 6059.000 4586.000
## 9 4842.000 6103.000 4609.000
## 10 4893.000 6135.000 4650.000
## 11 4925.000 6161.000 4687.000
## 12 4924.000 6161.000 4692.000
## 13 4888.000 6129.000 4653.000
## 14 4911.000 6124.000 4684.000
## 15 4874.000 6125.000 4659.000
## 16 4848.000 6095.000 4630.000
## 17 4860.000 6100.000 4659.000
## 18 4815.000 6055.000 4631.000
## 19 4876.000 6109.000 4696.000
## 20 4850.000 6094.000 4665.000
## 21 4879.000 6117.000 4696.000
## 22 4918.000 6152.000 4618.000
## 23 4906.000 6134.000 4626.000
## 24 4875.000 6095.000 4606.000
## 25 4907.000 6150.000 4631.000
## 26 4990.000 6160.000 4693.000
## 27 4966.000 6112.000 4660.000
## 28 4961.000 6112.000 4649.000
## 29 4966.000 6137.000 4641.000
## 30 4863.000 6039.000 4564.000
## 31 4872.000 6060.000 4583.000
## 32 4842.000 6057.000 4574.000
## 33 4820.000 6042.000 4563.000
## 34 4829.000 6020.000 4590.000
## 35 4854.000 6061.000 4654.000
## 36 4818.000 6041.000 4537.000
## 37 4798.000 5982.000 4534.000
## 38 4820.000 6006.000 4552.000
## 39 4820.000 6013.000 4554.000
## 40 4847.000 6053.000 4607.000
## 41 4837.000 6050.000 4598.000
## 42 4784.000 5974.000 4543.000
## 43 4900.000 6089.000 4617.000
## 44 4869.000 6061.000 4603.000
## 45 4885.000 6098.000 4611.000
## 46 4854.000 6034.000 4547.000
## 47 4864.000 6056.000 4556.000
## 48 4816.000 6086.000 4481.000
## 49 4850.000 6099.000 4548.000
## 50 4866.000 6045.000 4531.000
## 51 4846.000 6032.000 4521.000
## 52 4721.000 5901.000 4416.000
## 53 4861.000 6071.000 4550.000
## 54 4747.000 5929.000 4423.000
## 55 4890.000 6069.000 4552.000
## 56 4847.000 6021.000 4518.000
## 57 4853.000 6033.000 4545.000
## 58 4820.000 6016.000 4524.000
## 59 4811.000 6016.000 4519.000
## 60 4863.000 6019.000 4541.000
## 61 4867.000 6041.000 4554.000
## 62 4877.000 6051.000 4587.000
## 63 4889.000 6069.000 4590.000
## 64 4814.000 6010.000 4545.000
## 65 4835.000 6074.000 4592.000
## 66 4841.000 6084.000 4593.000
## 67 4819.000 6065.000 4575.000
## 68 4857.000 6065.000 4613.000
## 69 4877.000 6036.000 4569.000
## 70 4901.000 6063.000 4588.000
## 71 4916.000 6075.000 4595.000
## 72 4876.000 6106.000 4609.000
## 73 4825.000 6063.000 4582.000
## 74 4849.000 6041.000 4557.000
## 75 4883.000 6045.000 4583.000
## 76 4890.000 6058.000 4587.000
## 77 4859.000 6058.000 4581.000
## 78 4876.000 6087.000 4601.000
## 79 4835.000 6015.000 4537.000
## 80 4834.000 6015.000 4526.000
## 81 4898.000 6073.000 4573.000
## 82 4878.000 6049.000 4546.000
## 83 4881.000 6060.000 4576.000
## 84 4866.000 6051.000 4567.000
## 85 4907.000 6087.000 4602.000
## 86 4867.000 6082.000 4642.000
## 87 4844.000 6067.000 4632.000
## 88 4838.000 6053.000 4622.000
## 89 4873.000 6023.000 4546.000
## 90 4897.000 6047.000 4572.000
## 91 4885.000 6042.000 4546.000
## 92 4846.000 6019.000 4572.000
## 93 4870.000 6054.000 4595.000
## 94 4887.000 6056.000 4575.000
## 95 4872.000 6054.000 4566.000
## 96 4889.000 6070.000 4590.000
## 97 4862.000 6040.000 4562.000
## 98 4869.000 6050.000 4574.000
## 99 4923.000 6137.000 4710.000
## 100 4855.000 6046.000 4644.000
## 101 4856.000 6041.000 4634.000
## 102 4865.000 6041.000 4606.000
## 103 4886.000 6051.000 4594.000
## 104 4845.000 6019.000 4590.000
## 105 4841.000 6010.000 4583.000
## 106 4853.000 6027.000 4605.000
## 107 4857.000 6036.000 4577.000
## 108 0.000 0.000 0.000
## 109 4859.000 6037.000 4590.000
## 110 4854.000 6013.000 4594.000
## 111 4912.000 6080.000 4572.000
## 112 4859.000 6011.000 4535.000
## 113 4871.000 6027.000 4544.000
## 114 4884.000 6037.000 4563.000
## 115 4848.000 5976.000 4524.000
## 116 4902.000 6060.000 4566.000
## 117 4858.000 6029.000 4546.000
## 118 4857.000 6032.000 4598.000
## 119 4863.000 6036.000 4608.000
## 120 4873.000 6043.000 4601.000
## 121 4844.000 6055.000 4617.000
## 122 4825.000 6053.000 4657.000
## 123 4820.000 6022.000 4585.000
## 124 4824.000 6045.000 4578.000
## 125 4809.000 6057.000 4623.000
## 126 4820.000 6050.000 4606.000
## 127 4829.000 6009.000 4534.000
## 128 4862.000 6035.000 4564.000
## 129 4832.000 5990.000 4533.000
## 130 4856.000 6058.000 4580.000
## 131 4935.000 6145.000 4651.000
## 132 4895.000 6120.000 4632.000
## 133 4846.000 6040.000 4574.000
## 134 4816.000 6037.000 4568.000
## 135 4817.000 6012.000 4584.000
## 136 4785.000 5973.000 4557.000
## 137 4843.000 6014.000 4599.000
## 138 4841.000 5996.000 4569.000
## 139 4822.000 6018.000 4606.000
## 140 4806.000 6000.000 4612.000
## 141 4840.000 6001.000 4588.000
## 142 4829.000 6026.000 4572.000
## 143 4823.000 6022.000 4558.000
## 144 4802.000 5993.000 4533.000
## 145 4851.000 6049.000 4596.000
## 146 4844.000 6035.000 4588.000
## 147 4827.000 6011.000 4581.000
## 148 4783.000 5983.000 4597.000
## 149 4776.000 5995.000 4607.000
## 150 4841.000 6023.000 4581.000
## 151 4781.000 5983.000 4551.000
## 152 4812.000 6008.000 4567.000
## 153 4864.000 6056.000 4600.000
## 154 4839.000 6019.000 4585.000
## 155 4844.000 6025.000 4594.000
## 156 4852.000 6031.000 4606.000
## 157 4839.000 6015.000 4594.000
## 158 4862.000 6060.000 4609.000
## 159 4852.000 6009.000 4556.000
## 160 4906.000 6040.000 4586.000
## 161 4906.000 6047.000 4585.000
## 162 4846.000 6015.000 4541.000
## 163 4855.000 6055.000 4581.000
## 164 4809.000 5990.000 4536.000
## 165 4790.000 5993.000 4541.000
## 166 4815.000 5991.000 4597.000
## 167 4837.000 6024.000 4608.000
## 168 4815.000 6011.000 4594.000
## 169 4903.000 6034.000 4606.000
## 170 4872.000 6058.000 4629.000
## 171 4832.000 6013.000 4585.000
## 172 4857.701 6050.775 4599.108
## 173 4856.330 6047.751 4588.018
## 174 4856.330 6043.161 4579.733
## 175 4856.330 6050.775 4588.018
## 176 4856.330 6051.906 4589.596
## ManufacturingProcess28 ManufacturingProcess29 ManufacturingProcess30
## 1 10.700000 21.00000 9.900000
## 2 11.200000 21.40000 9.900000
## 3 11.100000 21.30000 9.400000
## 4 11.100000 21.30000 9.400000
## 5 11.300000 21.60000 9.000000
## 6 11.400000 21.70000 10.100000
## 7 11.200000 21.20000 11.200000
## 8 11.100000 21.20000 10.900000
## 9 11.300000 21.50000 10.500000
## 10 11.400000 21.70000 9.800000
## 11 11.500000 21.90000 9.400000
## 12 11.500000 22.00000 9.400000
## 13 11.400000 21.70000 9.900000
## 14 11.100000 21.50000 9.400000
## 15 11.300000 21.60000 9.900000
## 16 11.100000 21.20000 10.300000
## 17 11.100000 21.30000 10.000000
## 18 10.800000 20.90000 10.600000
## 19 11.100000 21.40000 9.800000
## 20 11.000000 21.20000 10.100000
## 21 11.100000 21.50000 9.900000
## 22 11.400000 21.10000 8.800000
## 23 11.200000 21.00000 8.900000
## 24 11.200000 20.90000 9.500000
## 25 11.500000 21.30000 9.200000
## 26 11.000000 21.00000 7.500000
## 27 10.700000 20.60000 7.600000
## 28 10.700000 20.50000 7.600000
## 29 10.800000 20.70000 7.600000
## 30 10.600000 20.10000 9.000000
## 31 10.700000 20.40000 9.100000
## 32 10.900000 20.40000 9.700000
## 33 10.900000 20.40000 10.000000
## 34 10.600000 20.10000 9.700000
## 35 10.700000 20.40000 9.500000
## 36 10.900000 20.40000 10.100000
## 37 10.400000 19.80000 10.100000
## 38 10.500000 20.00000 9.800000
## 39 10.600000 20.10000 9.800000
## 40 10.900000 20.50000 9.700000
## 41 10.900000 20.40000 9.800000
## 42 10.300000 19.60000 10.100000
## 43 10.800000 20.50000 8.600000
## 44 10.700000 20.30000 9.000000
## 45 11.000000 20.60000 8.900000
## 46 10.600000 20.00000 9.100000
## 47 10.700000 20.20000 9.000000
## 48 11.000000 20.20000 9.900000
## 49 11.200000 20.70000 9.600000
## 50 10.600000 20.00000 8.800000
## 51 10.600000 20.00000 9.200000
## 52 10.000000 18.90000 10.800000
## 53 10.900000 20.50000 9.300000
## 54 10.100000 19.20000 10.500000
## 55 10.700000 20.30000 8.600000
## 56 10.500000 19.90000 9.100000
## 57 10.600000 20.10000 9.200000
## 58 10.600000 20.00000 9.700000
## 59 10.700000 20.10000 10.000000
## 60 10.400000 19.90000 8.800000
## 61 10.600000 20.10000 8.900000
## 62 10.700000 20.30000 8.900000
## 63 10.800000 20.40000 8.800000
## 64 10.400000 19.80000 9.700000
## 65 10.900000 20.40000 9.700000
## 66 11.000000 20.50000 9.700000
## 67 10.900000 20.40000 10.000000
## 68 10.700000 20.30000 9.300000
## 69 10.400000 20.00000 8.700000
## 70 10.600000 20.20000 8.400000
## 71 10.600000 20.30000 8.200000
## 72 11.100000 20.80000 9.300000
## 73 11.000000 20.50000 9.900000
## 74 10.300000 19.60000 8.900000
## 75 10.200000 19.60000 8.300000
## 76 10.300000 19.70000 8.300000
## 77 10.500000 19.80000 8.900000
## 78 10.600000 20.00000 8.800000
## 79 10.300000 19.50000 9.100000
## 80 10.300000 19.50000 9.100000
## 81 10.500000 19.90000 8.300000
## 82 10.300000 19.60000 8.400000
## 83 10.500000 19.90000 8.600000
## 84 10.400000 19.70000 8.700000
## 85 10.500000 20.00000 8.200000
## 86 10.700000 20.20000 9.100000
## 87 10.700000 20.10000 9.400000
## 88 10.600000 20.00000 9.400000
## 89 10.200000 19.50000 8.400000
## 90 10.300000 19.70000 8.100000
## 91 10.300000 19.70000 8.300000
## 92 10.300000 19.60000 9.100000
## 93 10.500000 19.90000 8.800000
## 94 10.400000 19.80000 8.400000
## 95 10.500000 19.90000 8.800000
## 96 10.500000 20.00000 8.500000
## 97 10.400000 19.70000 8.800000
## 98 10.500000 19.90000 8.800000
## 99 11.000000 20.70000 8.600000
## 100 10.500000 19.90000 9.200000
## 101 10.400000 19.90000 9.100000
## 102 10.400000 19.70000 8.800000
## 103 10.300000 19.70000 8.300000
## 104 10.200000 19.60000 9.000000
## 105 10.200000 19.50000 9.100000
## 106 0.000000 19.70000 9.000000
## 107 0.000000 19.70000 8.900000
## 108 0.000000 0.00000 0.000000
## 109 0.000000 19.70000 8.800000
## 110 0.000000 19.50000 8.900000
## 111 0.000000 19.90000 8.000000
## 112 0.000000 19.30000 8.600000
## 113 0.000000 19.50000 8.400000
## 114 0.000000 19.50000 8.200000
## 115 0.000000 19.20000 8.700000
## 116 0.000000 19.90000 8.100000
## 117 0.000000 19.60000 8.800000
## 118 0.000000 19.70000 9.000000
## 119 0.000000 19.70000 8.900000
## 120 0.000000 19.80000 8.700000
## 121 0.000000 20.00000 9.400000
## 122 0.000000 20.20000 10.000000
## 123 0.000000 19.80000 9.600000
## 124 0.000000 20.00000 9.700000
## 125 0.000000 20.20000 10.100000
## 126 0.000000 20.10000 9.900000
## 127 0.000000 19.50000 9.100000
## 128 0.000000 19.70000 8.800000
## 129 0.000000 19.30000 9.100000
## 130 0.000000 20.00000 9.100000
## 131 0.000000 20.70000 8.100000
## 132 0.000000 20.50000 8.600000
## 133 0.000000 19.80000 9.100000
## 134 0.000000 19.80000 9.600000
## 135 0.000000 19.60000 9.600000
## 136 0.000000 19.30000 10.000000
## 137 0.000000 19.60000 9.200000
## 138 0.000000 19.40000 9.100000
## 139 0.000000 19.80000 9.600000
## 140 0.000000 19.70000 9.900000
## 141 0.000000 19.60000 9.200000
## 142 0.000000 19.80000 9.400000
## 143 0.000000 19.70000 9.500000
## 144 0.000000 19.50000 9.800000
## 145 0.000000 20.00000 9.300000
## 146 0.000000 19.90000 9.400000
## 147 0.000000 19.70000 9.600000
## 148 0.000000 19.50000 10.200000
## 149 0.000000 19.70000 10.500000
## 150 0.000000 19.80000 9.300000
## 151 0.000000 19.50000 10.100000
## 152 0.000000 19.70000 9.700000
## 153 0.000000 20.00000 9.000000
## 154 0.000000 19.70000 9.300000
## 155 0.000000 19.80000 9.300000
## 156 0.000000 19.80000 9.100000
## 157 0.000000 19.70000 9.300000
## 158 0.000000 20.10000 9.100000
## 159 0.000000 19.40000 8.800000
## 160 0.000000 19.70000 8.000000
## 161 0.000000 19.70000 8.100000
## 162 0.000000 19.60000 9.000000
## 163 0.000000 19.90000 9.100000
## 164 0.000000 19.50000 9.600000
## 165 0.000000 19.50000 10.100000
## 166 0.000000 19.60000 9.700000
## 167 0.000000 19.80000 9.400000
## 168 0.000000 19.70000 9.700000
## 169 0.000000 19.50000 8.000000
## 170 0.000000 20.10000 8.900000
## 171 0.000000 19.70000 9.400000
## 172 7.983070 19.99408 9.421201
## 173 8.983070 19.85771 9.651628
## 174 8.613903 19.83353 9.779629
## 175 6.153698 19.95070 9.651628
## 176 8.983070 19.95070 9.709397
## ManufacturingProcess31 ManufacturingProcess32 ManufacturingProcess33
## 1 69.10000 156 66.00000
## 2 68.70000 169 66.00000
## 3 69.30000 173 66.00000
## 4 69.30000 171 68.00000
## 5 69.40000 171 70.00000
## 6 68.20000 173 70.00000
## 7 67.60000 159 65.00000
## 8 67.90000 161 65.00000
## 9 68.00000 160 65.00000
## 10 68.50000 164 66.00000
## 11 68.70000 166 67.00000
## 12 68.60000 169 67.00000
## 13 68.40000 166 68.00000
## 14 69.10000 161 66.00000
## 15 68.50000 160 64.00000
## 16 68.50000 166 66.00000
## 17 68.70000 167 68.00000
## 18 69.00000 157 64.00000
## 19 68.80000 156 64.00000
## 20 68.70000 155 62.00000
## 21 68.70000 157 63.00000
## 22 70.10000 162 68.00000
## 23 70.10000 160 66.00000
## 24 69.70000 161 65.00000
## 25 69.50000 167 66.00000
## 26 71.50000 161 65.00000
## 27 71.90000 159 65.00000
## 28 71.80000 157 64.00000
## 29 71.70000 158 63.00000
## 30 70.90000 157 64.00000
## 31 70.60000 160 63.00000
## 32 69.90000 163 66.00000
## 33 69.60000 161 64.00000
## 34 70.30000 156 61.00000
## 35 70.10000 155 61.00000
## 36 69.50000 153 63.00000
## 37 70.10000 166 65.00000
## 38 70.20000 166 65.00000
## 39 70.10000 166 68.00000
## 40 69.90000 160 65.00000
## 41 59.80000 159 64.00000
## 42 70.30000 157 61.00000
## 43 70.80000 163 64.00000
## 44 70.70000 160 63.00000
## 45 70.40000 162 64.00000
## 46 70.90000 165 65.00000
## 47 70.70000 168 65.00000
## 48 69.90000 164 69.00000
## 49 69.70000 167 68.00000
## 50 71.20000 170 68.00000
## 51 70.80000 169 67.00000
## 52 70.20000 162 65.00000
## 53 70.30000 165 66.00000
## 54 70.30000 157 63.00000
## 55 71.20000 164 67.00000
## 56 71.00000 160 66.00000
## 57 70.70000 156 63.00000
## 58 70.30000 156 64.00000
## 59 69.90000 157 63.00000
## 60 71.30000 160 63.00000
## 61 71.00000 161 64.00000
## 62 70.80000 153 61.00000
## 63 70.80000 156 62.00000
## 64 70.50000 150 60.00000
## 65 69.80000 162 63.00000
## 66 69.80000 163 63.00000
## 67 69.60000 160 62.00000
## 68 70.40000 162 64.00000
## 69 71.30000 156 62.00000
## 70 71.40000 159 63.00000
## 71 70.50000 158 62.00000
## 72 69.90000 162 65.00000
## 73 69.60000 160 63.00000
## 74 71.60000 158 64.00000
## 75 72.10000 156 62.00000
## 76 72.00000 159 64.00000
## 77 71.20000 157 61.00000
## 78 71.20000 163 65.00000
## 79 71.30000 156 63.00000
## 80 71.40000 154 61.00000
## 81 71.80000 159 65.00000
## 82 72.10000 167 65.00000
## 83 71.50000 164 65.00000
## 84 71.60000 164 66.00000
## 85 71.80000 165 68.00000
## 86 70.70000 160 64.00000
## 87 70.50000 159 64.00000
## 88 70.60000 159 62.00000
## 89 72.10000 163 65.00000
## 90 72.20000 157 64.00000
## 91 72.00000 158 63.00000
## 92 71.30000 156 62.00000
## 93 71.30000 154 60.00000
## 94 71.80000 158 63.00000
## 95 71.40000 164 66.00000
## 96 71.60000 160 64.00000
## 97 71.50000 159 64.00000
## 98 71.30000 160 64.00000
## 99 70.70000 154 63.00000
## 100 70.90000 151 60.00000
## 101 71.10000 150 60.00000
## 102 71.40000 154 62.00000
## 103 72.00000 157 63.00000
## 104 71.40000 156 62.00000
## 105 71.40000 155 62.00000
## 106 71.40000 156 62.00000
## 107 71.50000 156 63.00000
## 108 0.00000 156 62.00000
## 109 71.50000 155 62.00000
## 110 71.60000 155 63.00000
## 111 72.10000 162 65.00000
## 112 72.10000 158 63.00000
## 113 72.10000 160 64.00000
## 114 72.30000 161 65.00000
## 115 72.10000 163 65.00000
## 116 72.00000 167 68.00000
## 117 71.60000 163 65.00000
## 118 71.30000 153 61.00000
## 119 71.40000 156 61.00000
## 120 71.50000 157 61.00000
## 121 70.60000 149 59.00000
## 122 69.90000 146 56.00000
## 123 70.60000 159 64.00000
## 124 70.30000 160 64.00000
## 125 69.70000 151 58.00000
## 126 70.10000 154 60.00000
## 127 71.40000 160 63.00000
## 128 71.60000 160 66.00000
## 129 71.60000 162 65.00000
## 130 70.90000 158 64.00000
## 131 71.20000 160 65.00000
## 132 70.90000 158 65.00000
## 133 71.10000 158 65.00000
## 134 70.60000 152 62.00000
## 135 70.80000 150 62.00000
## 136 70.60000 149 60.00000
## 137 71.20000 151 61.00000
## 138 71.50000 153 64.00000
## 139 70.60000 152 60.00000
## 140 70.40000 151 59.00000
## 141 71.30000 152 60.00000
## 142 70.70000 156 61.00000
## 143 70.80000 156 61.00000
## 144 70.70000 156 64.00000
## 145 70.70000 153 62.00000
## 146 70.70000 152 63.00000
## 147 70.70000 153 61.00000
## 148 70.30000 149 59.00000
## 149 69.80000 143 56.00000
## 150 70.90000 151 60.00000
## 151 70.40000 148 59.00000
## 152 70.60000 154 63.00000
## 153 71.00000 155 63.00000
## 154 70.90000 154 61.00000
## 155 70.90000 152 61.00000
## 156 71.00000 152 65.00000
## 157 71.00000 154 64.00000
## 158 70.80000 156 63.00000
## 159 71.80000 156 64.00000
## 160 72.30000 158 65.00000
## 161 72.20000 158 63.00000
## 162 71.40000 158 64.00000
## 163 71.00000 158 65.00000
## 164 70.90000 155 61.00000
## 165 70.40000 149 59.00000
## 166 70.70000 151 61.00000
## 167 70.80000 151 60.00000
## 168 70.50000 150 60.00000
## 169 72.50000 158 66.00000
## 170 71.00000 160 66.00000
## 171 71.00000 160 63.00000
## 172 70.69354 156 62.38444
## 173 70.64208 158 63.94486
## 174 70.64208 167 66.62356
## 175 70.64208 156 63.10210
## 176 70.64208 160 63.94486
## ManufacturingProcess34 ManufacturingProcess35 ManufacturingProcess36
## 1 2.400000 486.0000 0.01900000
## 2 2.600000 508.0000 0.01900000
## 3 2.600000 509.0000 0.01800000
## 4 2.500000 496.0000 0.01800000
## 5 2.500000 468.0000 0.01700000
## 6 2.500000 490.0000 0.01800000
## 7 2.500000 475.0000 0.01900000
## 8 2.500000 478.0000 0.01900000
## 9 2.500000 491.0000 0.01900000
## 10 2.500000 488.0000 0.01900000
## 11 2.500000 493.0000 0.01900000
## 12 2.500000 498.0000 0.01800000
## 13 2.400000 490.0000 0.01800000
## 14 2.400000 490.0000 0.01900000
## 15 2.500000 490.0000 0.01900000
## 16 2.500000 493.0000 0.01900000
## 17 2.500000 495.0000 0.01900000
## 18 2.500000 497.0000 0.02000000
## 19 2.400000 514.0000 0.02100000
## 20 2.500000 490.0000 0.02000000
## 21 2.500000 495.0000 0.02000000
## 22 2.400000 479.0000 0.01800000
## 23 2.400000 492.0000 0.01900000
## 24 2.500000 468.0000 0.01800000
## 25 2.500000 505.0000 0.01900000
## 26 2.500000 500.0000 0.01900000
## 27 2.400000 492.0000 0.01900000
## 28 2.500000 522.0000 0.02100000
## 29 2.500000 499.0000 0.02000000
## 30 2.500000 504.0000 0.02000000
## 31 2.500000 486.0000 0.01900000
## 32 2.500000 486.0000 0.01900000
## 33 2.500000 476.0000 0.01800000
## 34 2.500000 496.0000 0.02000000
## 35 2.500000 507.0000 0.02000000
## 36 2.400000 481.0000 0.02000000
## 37 2.600000 495.0000 0.01900000
## 38 2.500000 484.0000 0.01800000
## 39 2.400000 506.0000 0.01900000
## 40 2.500000 488.0000 0.01900000
## 41 2.500000 493.0000 0.01900000
## 42 2.600000 509.0000 0.02000000
## 43 2.500000 498.0000 0.01900000
## 44 2.500000 501.0000 0.02000000
## 45 2.500000 490.0000 0.01900000
## 46 2.500000 490.0000 0.01900000
## 47 2.600000 492.0000 0.01800000
## 48 2.400000 493.0000 0.01900000
## 49 2.400000 490.0000 0.01800000
## 50 2.500000 490.0000 0.01800000
## 51 2.500000 504.0000 0.01900000
## 52 2.500000 496.0000 0.01900000
## 53 2.500000 495.0000 0.01900000
## 54 2.500000 501.0000 0.02000000
## 55 2.500000 483.0000 0.01800000
## 56 2.400000 509.0000 0.02000000
## 57 2.500000 463.0000 0.01900000
## 58 2.400000 488.0000 0.02000000
## 59 2.500000 512.0000 0.02000000
## 60 2.500000 499.0000 0.01900000
## 61 2.500000 513.0000 0.02000000
## 62 2.500000 484.0000 0.02000000
## 63 2.500000 502.0000 0.02000000
## 64 2.500000 492.0000 0.02100000
## 65 2.600000 492.0000 0.01900000
## 66 2.600000 498.0000 0.01900000
## 67 2.600000 504.0000 0.02000000
## 68 2.500000 494.0000 0.01900000
## 69 2.500000 500.0000 0.02000000
## 70 2.500000 487.0000 0.01900000
## 71 2.600000 484.0000 0.01900000
## 72 2.500000 494.0000 0.01900000
## 73 2.600000 500.0000 0.02000000
## 74 2.500000 495.0000 0.02000000
## 75 2.500000 497.0000 0.02000000
## 76 2.500000 497.0000 0.02000000
## 77 2.600000 507.0000 0.02000000
## 78 2.500000 498.0000 0.01900000
## 79 2.500000 494.0000 0.02000000
## 80 2.500000 517.0000 0.02100000
## 81 2.400000 495.0000 0.01900000
## 82 2.600000 507.0000 0.01900000
## 83 2.500000 492.0000 0.01900000
## 84 2.500000 506.0000 0.01900000
## 85 2.400000 493.0000 0.01900000
## 86 2.500000 499.0000 0.01900000
## 87 2.500000 513.0000 0.02000000
## 88 2.500000 498.0000 0.02000000
## 89 2.500000 486.0000 0.01900000
## 90 2.500000 493.0000 0.02000000
## 91 2.500000 478.0000 0.01900000
## 92 2.500000 522.0000 0.02100000
## 93 2.500000 492.0000 0.02000000
## 94 2.500000 491.0000 0.01900000
## 95 2.500000 490.0000 0.01900000
## 96 2.500000 482.0000 0.01900000
## 97 2.500000 499.0000 0.02000000
## 98 2.500000 493.0000 0.01900000
## 99 2.400000 490.0000 0.02000000
## 100 2.500000 491.0000 0.02000000
## 101 2.500000 486.0000 0.02000000
## 102 2.500000 507.0000 0.02100000
## 103 2.500000 498.0000 0.02000000
## 104 2.500000 496.0000 0.02000000
## 105 2.500000 481.0000 0.01900000
## 106 2.500000 493.0000 0.02000000
## 107 2.500000 495.0000 0.02000000
## 108 2.500000 485.0000 0.01900000
## 109 2.500000 491.0000 0.02000000
## 110 2.500000 510.0000 0.02100000
## 111 2.500000 494.0000 0.01900000
## 112 2.500000 488.0000 0.01900000
## 113 2.500000 497.0000 0.01900000
## 114 2.500000 500.0000 0.01900000
## 115 2.500000 492.0000 0.01900000
## 116 2.500000 501.0000 0.01900000
## 117 2.500000 495.0000 0.01900000
## 118 2.500000 500.0000 0.02000000
## 119 2.600000 501.0000 0.02000000
## 120 2.600000 497.0000 0.02000000
## 121 2.600000 486.0000 0.02000000
## 122 2.600000 499.0000 0.02100000
## 123 2.500000 489.0000 0.01900000
## 124 2.600000 481.0000 0.01900000
## 125 2.500000 498.0000 0.02100000
## 126 2.500000 505.0000 0.02000000
## 127 2.500000 507.0000 0.02000000
## 128 2.400000 502.0000 0.02000000
## 129 2.500000 500.0000 0.01900000
## 130 2.500000 516.0000 0.02000000
## 131 2.500000 490.0000 0.01900000
## 132 2.400000 501.0000 0.02000000
## 133 2.500000 499.0000 0.02000000
## 134 2.500000 495.0000 0.02000000
## 135 2.400000 502.0000 0.02100000
## 136 2.500000 500.0000 0.02100000
## 137 2.500000 495.0000 0.02000000
## 138 2.400000 502.0000 0.02100000
## 139 2.600000 497.0000 0.02000000
## 140 2.600000 509.0000 0.02100000
## 141 2.500000 494.0000 0.02000000
## 142 2.500000 497.0000 0.02000000
## 143 2.500000 509.0000 0.02000000
## 144 2.400000 493.0000 0.02000000
## 145 2.500000 485.0000 0.02000000
## 146 2.400000 517.0000 0.02100000
## 147 2.500000 472.0000 0.01900000
## 148 2.500000 490.0000 0.02100000
## 149 2.500000 496.0000 0.02200000
## 150 2.500000 470.0000 0.01900000
## 151 2.500000 507.0000 0.02100000
## 152 2.500000 500.0000 0.02000000
## 153 2.400000 493.0000 0.02000000
## 154 2.500000 501.0000 0.02000000
## 155 2.500000 470.0000 0.01900000
## 156 2.300000 505.0000 0.02100000
## 157 2.400000 517.0000 0.02100000
## 158 2.500000 502.0000 0.02000000
## 159 2.500000 502.0000 0.02000000
## 160 2.400000 481.0000 0.01900000
## 161 2.500000 506.0000 0.02000000
## 162 2.500000 520.0000 0.02100000
## 163 2.400000 482.0000 0.01900000
## 164 2.500000 488.0000 0.02000000
## 165 2.500000 512.0000 0.02100000
## 166 2.500000 511.0000 0.02100000
## 167 2.500000 507.0000 0.02100000
## 168 2.500000 518.0000 0.02200000
## 169 2.400000 475.0000 0.01900000
## 170 2.400000 496.0000 0.01900000
## 171 2.500000 496.0000 0.01900000
## 172 2.479683 498.3441 0.02000228
## 173 2.492512 486.4670 0.01917610
## 174 2.474715 493.4833 0.01838520
## 175 2.486006 498.3441 0.02004514
## 176 2.473177 489.8636 0.01898716
## ManufacturingProcess37 ManufacturingProcess38 ManufacturingProcess39
## 1 0.5 3 7.2
## 2 2.0 2 7.2
## 3 0.7 2 7.2
## 4 1.2 2 7.2
## 5 0.2 2 7.3
## 6 0.4 2 7.2
## 7 0.8 2 7.3
## 8 1.0 2 7.3
## 9 1.2 3 7.4
## 10 1.8 3 7.1
## 11 1.5 2 7.0
## 12 0.3 3 7.0
## 13 1.1 3 7.1
## 14 0.6 3 7.4
## 15 1.6 3 7.2
## 16 1.2 3 7.3
## 17 1.3 3 7.4
## 18 1.1 3 7.4
## 19 0.7 3 7.3
## 20 1.2 2 7.3
## 21 0.9 3 7.3
## 22 0.9 2 7.4
## 23 1.5 3 7.4
## 24 1.3 2 7.2
## 25 1.0 2 7.2
## 26 0.9 3 6.9
## 27 0.9 3 7.1
## 28 0.9 3 7.4
## 29 1.9 3 7.3
## 30 0.7 3 6.8
## 31 1.6 2 7.1
## 32 0.7 2 7.1
## 33 1.6 2 7.2
## 34 1.1 2 7.5
## 35 1.7 3 7.3
## 36 1.0 2 7.4
## 37 0.9 3 7.1
## 38 1.7 2 7.1
## 39 0.0 2 7.1
## 40 0.0 2 7.2
## 41 0.0 2 7.2
## 42 1.1 3 7.4
## 43 0.9 3 7.3
## 44 1.0 3 7.1
## 45 0.3 2 7.1
## 46 1.2 3 7.0
## 47 0.7 3 7.4
## 48 1.8 3 6.7
## 49 0.6 3 7.3
## 50 0.8 3 7.3
## 51 1.3 3 7.1
## 52 0.4 3 7.1
## 53 1.9 3 7.4
## 54 1.4 3 7.3
## 55 0.9 3 7.2
## 56 0.6 3 7.3
## 57 1.1 2 7.3
## 58 0.5 3 7.3
## 59 1.4 3 7.1
## 60 0.8 3 7.0
## 61 0.7 3 7.1
## 62 1.3 2 7.1
## 63 0.5 3 7.1
## 64 1.1 2 7.1
## 65 1.0 2 7.0
## 66 1.0 3 6.9
## 67 0.5 3 6.8
## 68 0.4 3 7.0
## 69 1.1 3 7.3
## 70 0.9 3 7.1
## 71 0.7 3 7.0
## 72 1.3 3 7.1
## 73 0.6 2 7.0
## 74 1.1 3 7.4
## 75 1.9 2 7.1
## 76 0.7 2 7.0
## 77 0.8 3 7.1
## 78 1.7 3 7.0
## 79 1.0 3 7.1
## 80 1.2 3 7.1
## 81 0.3 2 7.1
## 82 0.2 3 7.1
## 83 0.3 3 7.1
## 84 0.9 2 7.2
## 85 0.9 2 7.1
## 86 1.4 3 7.2
## 87 0.9 2 7.1
## 88 1.2 2 7.2
## 89 0.8 2 7.2
## 90 1.2 2 7.2
## 91 1.0 2 7.2
## 92 0.8 3 7.2
## 93 1.1 2 7.2
## 94 0.9 2 7.2
## 95 1.0 2 7.2
## 96 1.0 2 7.2
## 97 0.7 2 7.2
## 98 0.9 2 7.3
## 99 0.8 3 7.2
## 100 1.3 2 7.2
## 101 1.6 2 7.2
## 102 0.8 3 7.2
## 103 1.3 3 7.2
## 104 0.7 3 7.3
## 105 1.0 2 6.9
## 106 0.5 3 7.1
## 107 1.4 3 7.0
## 108 0.7 3 7.0
## 109 1.5 2 7.1
## 110 0.6 3 7.3
## 111 0.7 2 7.0
## 112 0.7 3 7.0
## 113 0.9 2 7.0
## 114 0.7 3 7.1
## 115 1.3 3 7.1
## 116 0.4 3 7.2
## 117 1.0 3 6.9
## 118 0.9 3 7.0
## 119 0.7 2 7.1
## 120 0.5 3 6.9
## 121 1.1 3 6.9
## 122 0.5 2 7.0
## 123 0.9 2 7.1
## 124 0.7 2 7.1
## 125 1.1 3 7.1
## 126 0.7 3 7.0
## 127 1.0 3 7.2
## 128 0.7 2 7.2
## 129 0.4 2 7.0
## 130 0.8 3 7.0
## 131 1.0 2 7.2
## 132 0.4 3 7.2
## 133 0.6 2 7.2
## 134 1.3 2 7.3
## 135 1.1 3 7.2
## 136 1.1 2 7.2
## 137 1.1 3 7.3
## 138 1.1 3 7.3
## 139 1.1 3 7.2
## 140 1.3 3 7.3
## 141 1.0 3 7.2
## 142 1.0 3 7.2
## 143 1.0 3 7.2
## 144 1.1 2 7.3
## 145 1.8 2 7.3
## 146 1.0 3 7.3
## 147 2.0 2 7.1
## 148 0.7 2 7.2
## 149 1.0 3 7.1
## 150 1.3 2 7.2
## 151 0.6 3 7.2
## 152 0.8 3 7.4
## 153 1.8 2 7.3
## 154 0.7 3 7.3
## 155 1.7 2 7.3
## 156 1.5 3 7.3
## 157 0.4 3 7.3
## 158 1.7 3 7.3
## 159 0.9 3 7.3
## 160 1.3 2 7.2
## 161 0.9 3 7.3
## 162 0.5 3 7.4
## 163 1.6 3 7.3
## 164 1.0 3 7.3
## 165 1.8 3 7.3
## 166 1.1 3 7.2
## 167 1.9 3 7.3
## 168 1.6 3 7.3
## 169 1.6 3 0.0
## 170 1.4 3 0.0
## 171 0.6 3 0.0
## 172 2.3 0 0.0
## 173 1.0 0 0.0
## 174 1.3 0 0.0
## 175 2.3 0 0.0
## 176 0.9 0 0.0
## ManufacturingProcess40 ManufacturingProcess41 ManufacturingProcess42
## 1 0.0 0.0004980465 11.6
## 2 0.1 0.1500000000 11.1
## 3 0.0 0.0000000000 12.0
## 4 0.0 0.0000000000 10.6
## 5 0.0 0.0000000000 11.0
## 6 0.0 0.0000000000 11.5
## 7 0.0 0.0000000000 11.7
## 8 0.0 0.0000000000 11.4
## 9 0.0 0.0000000000 11.4
## 10 0.0 0.0000000000 11.3
## 11 0.0 0.0000000000 11.0
## 12 0.0 0.0000000000 11.2
## 13 0.0 0.0000000000 11.1
## 14 0.0 0.0000000000 11.7
## 15 0.0 0.0000000000 11.6
## 16 0.1 0.2000000000 11.6
## 17 0.0 0.0000000000 11.5
## 18 0.0 0.0000000000 11.7
## 19 0.0 0.0000000000 11.6
## 20 0.0 0.0000000000 11.4
## 21 0.1 0.2000000000 11.4
## 22 0.0 0.0000000000 11.9
## 23 0.0 0.0000000000 11.6
## 24 0.0 0.0000000000 11.4
## 25 0.0 0.0000000000 11.5
## 26 0.0 0.0000000000 11.8
## 27 0.0 0.0000000000 11.7
## 28 0.0 0.0000000000 11.6
## 29 0.1 0.2000000000 11.7
## 30 0.0 0.0000000000 11.6
## 31 0.0 0.0000000000 11.7
## 32 0.0 0.0000000000 11.6
## 33 0.1 0.1000000000 11.6
## 34 0.1 0.1000000000 11.6
## 35 0.0 0.0000000000 11.7
## 36 0.1 0.2000000000 11.0
## 37 0.0 0.0000000000 11.2
## 38 0.0 0.0000000000 11.1
## 39 0.1 0.2000000000 11.0
## 40 0.0 0.0000000000 11.4
## 41 0.0 0.0000000000 10.9
## 42 0.0 0.0000000000 11.4
## 43 0.1 0.1000000000 11.4
## 44 0.0 0.0000000000 11.0
## 45 0.0 0.0000000000 10.5
## 46 0.0 0.0000000000 10.7
## 47 0.0 0.0000000000 11.1
## 48 0.1 0.1000000000 11.6
## 49 0.0 0.0000000000 11.6
## 50 0.0 0.0000000000 11.6
## 51 0.0 0.0000000000 11.4
## 52 0.1 0.2000000000 11.4
## 53 0.0 0.0000000000 11.4
## 54 0.0 0.0000000000 11.6
## 55 0.0 0.0000000000 11.2
## 56 0.0 0.0000000000 11.0
## 57 0.1 0.2000000000 11.0
## 58 0.0 0.0000000000 11.3
## 59 0.0 0.0000000000 11.8
## 60 0.0 0.0000000000 11.5
## 61 0.1 0.1000000000 11.6
## 62 0.0 0.0000000000 11.7
## 63 0.0 0.0000000000 11.6
## 64 0.0 0.0000000000 11.5
## 65 0.0 0.0000000000 11.6
## 66 0.0 0.0000000000 11.7
## 67 0.0 0.0000000000 11.7
## 68 0.0 0.0000000000 11.2
## 69 0.0 0.0000000000 11.9
## 70 0.1 0.1000000000 11.9
## 71 0.0 0.0000000000 11.5
## 72 0.0 0.0000000000 11.7
## 73 0.0 0.0000000000 11.5
## 74 0.1 0.1000000000 11.7
## 75 0.0 0.0000000000 11.8
## 76 0.0 0.0000000000 11.6
## 77 0.0 0.0000000000 11.6
## 78 0.0 0.0000000000 11.4
## 79 0.0 0.0000000000 11.4
## 80 0.0 0.0000000000 11.3
## 81 0.0 0.0000000000 11.3
## 82 0.0 0.0000000000 11.6
## 83 0.0 0.0000000000 11.5
## 84 0.0 0.0000000000 11.5
## 85 0.0 0.0000000000 11.6
## 86 0.0 0.0000000000 11.5
## 87 0.1 0.1000000000 11.7
## 88 0.0 0.0000000000 11.7
## 89 0.0 0.0000000000 11.5
## 90 0.0 0.0000000000 11.3
## 91 0.1 0.1000000000 11.6
## 92 0.0 0.0000000000 11.6
## 93 0.0 0.0000000000 11.5
## 94 0.0 0.0000000000 11.9
## 95 0.1 0.1000000000 11.8
## 96 0.0 0.0000000000 11.6
## 97 0.0 0.0000000000 11.6
## 98 0.0 0.0000000000 11.5
## 99 0.1 0.1000000000 11.7
## 100 0.0 0.0000000000 11.5
## 101 0.0 0.0000000000 11.5
## 102 0.0 0.0000000000 11.6
## 103 0.0 0.0000000000 11.4
## 104 0.1 0.1000000000 11.8
## 105 0.0 0.0000000000 11.7
## 106 0.0 0.0000000000 11.9
## 107 0.0 0.0000000000 11.7
## 108 0.0 0.0000000000 11.6
## 109 0.0 0.1000000000 11.7
## 110 0.0 0.0000000000 11.5
## 111 0.0 0.0000000000 11.6
## 112 0.0 0.0000000000 11.3
## 113 0.1 0.1000000000 11.3
## 114 0.0 0.0000000000 11.4
## 115 0.0 0.0000000000 11.8
## 116 0.0 0.0000000000 11.8
## 117 0.0 0.0000000000 11.8
## 118 0.1 0.1000000000 11.7
## 119 0.0 0.0000000000 11.6
## 120 0.0 0.0000000000 11.9
## 121 0.0 0.0000000000 11.6
## 122 0.0 0.0000000000 11.8
## 123 0.1 0.2000000000 11.5
## 124 0.0 0.0000000000 11.6
## 125 0.0 0.0000000000 11.5
## 126 0.0 0.0000000000 11.5
## 127 0.0 0.0000000000 11.4
## 128 0.1 0.1000000000 11.4
## 129 0.0 0.0000000000 11.7
## 130 0.0 0.0000000000 11.4
## 131 0.0 0.0000000000 11.4
## 132 0.0 0.0000000000 11.6
## 133 0.0 0.0000000000 11.9
## 134 0.0 0.0000000000 11.8
## 135 0.0 0.0000000000 11.8
## 136 0.0 0.0000000000 11.7
## 137 0.1 0.1000000000 11.7
## 138 0.0 0.0000000000 11.8
## 139 0.0 0.0000000000 11.7
## 140 0.0 0.0000000000 11.8
## 141 0.1 0.1000000000 11.7
## 142 0.0 0.0000000000 11.7
## 143 0.0 0.0000000000 11.7
## 144 0.0 0.0000000000 11.8
## 145 0.1 0.1000000000 11.5
## 146 0.0 0.0000000000 11.8
## 147 0.0 0.0000000000 11.7
## 148 0.0 0.0000000000 11.9
## 149 0.1 0.1000000000 11.9
## 150 0.0 0.0000000000 12.0
## 151 0.0 0.0000000000 11.7
## 152 0.0 0.0000000000 11.6
## 153 0.0 0.0000000000 11.3
## 154 0.1 0.1000000000 10.7
## 155 0.0 0.0000000000 11.3
## 156 0.0 0.0000000000 11.0
## 157 0.1 0.2000000000 10.9
## 158 0.0 0.0000000000 12.0
## 159 0.0 0.0000000000 12.1
## 160 0.0 0.0000000000 12.1
## 161 0.0 0.0000000000 12.0
## 162 0.0 0.0000000000 11.7
## 163 0.0 0.0000000000 11.5
## 164 0.1 0.1000000000 11.8
## 165 0.0 0.0000000000 11.6
## 166 0.0 0.0000000000 11.4
## 167 0.0 0.0000000000 11.4
## 168 0.0 0.0000000000 11.3
## 169 0.0 0.0000000000 11.8
## 170 0.0 0.0000000000 11.6
## 171 0.0 0.0000000000 11.7
## 172 0.0 0.0000000000 0.0
## 173 0.0 0.0000000000 0.0
## 174 0.0 0.0000000000 0.0
## 175 0.0 0.0000000000 0.0
## 176 0.0 0.0000000000 0.0
## ManufacturingProcess43 ManufacturingProcess44 ManufacturingProcess45
## 1 3.0 1.8 2.4
## 2 0.9 1.9 2.2
## 3 1.0 1.8 2.3
## 4 1.1 1.8 2.1
## 5 1.1 1.7 2.1
## 6 2.2 1.8 2.0
## 7 0.7 2.0 2.2
## 8 0.8 2.0 2.2
## 9 0.9 1.9 2.1
## 10 0.8 1.9 2.4
## 11 1.0 1.9 1.8
## 12 0.8 2.0 1.8
## 13 0.8 1.9 2.4
## 14 0.6 1.7 1.9
## 15 0.8 1.9 2.0
## 16 1.0 1.9 2.5
## 17 1.1 1.9 2.3
## 18 1.7 1.8 2.2
## 19 1.8 1.7 2.3
## 20 1.5 1.5 2.0
## 21 2.0 1.6 2.0
## 22 0.8 1.9 2.1
## 23 0.8 1.9 2.4
## 24 1.1 2.0 1.8
## 25 0.7 1.7 2.4
## 26 0.8 1.7 2.2
## 27 0.7 1.7 2.0
## 28 1.3 1.7 2.2
## 29 0.8 1.7 2.2
## 30 0.5 1.9 2.2
## 31 0.6 2.0 2.4
## 32 0.6 2.0 2.1
## 33 0.7 1.9 2.4
## 34 0.5 1.8 2.3
## 35 0.6 1.9 2.6
## 36 0.9 2.0 2.1
## 37 1.1 1.9 2.4
## 38 1.2 1.8 2.4
## 39 1.5 1.8 2.4
## 40 1.0 1.9 2.3
## 41 1.0 1.9 2.2
## 42 0.7 1.8 2.4
## 43 0.7 2.0 2.4
## 44 0.7 1.8 2.4
## 45 0.9 1.8 2.1
## 46 0.7 1.8 2.3
## 47 1.1 1.8 2.1
## 48 1.4 1.8 2.4
## 49 1.3 1.8 2.1
## 50 0.9 1.8 2.0
## 51 2.5 1.8 2.1
## 52 1.0 1.8 2.2
## 53 1.1 2.0 2.3
## 54 1.2 1.9 2.2
## 55 0.9 1.9 2.1
## 56 0.9 2.1 2.2
## 57 1.0 1.9 2.2
## 58 0.0 2.0 2.2
## 59 11.0 1.9 2.3
## 60 0.7 1.8 2.3
## 61 0.9 1.8 2.2
## 62 0.8 1.8 2.1
## 63 0.8 1.8 2.0
## 64 0.7 1.9 2.3
## 65 0.9 2.0 2.3
## 66 1.4 1.9 1.8
## 67 1.4 1.9 1.8
## 68 1.2 1.9 1.8
## 69 1.2 1.8 2.5
## 70 1.7 1.8 2.3
## 71 1.7 1.9 2.2
## 72 1.2 1.8 1.9
## 73 1.2 1.8 1.8
## 74 0.8 2.0 2.3
## 75 0.8 2.0 2.1
## 76 1.3 1.9 2.4
## 77 0.6 2.0 2.3
## 78 1.3 1.9 2.2
## 79 0.8 2.0 2.5
## 80 0.9 2.1 2.2
## 81 1.0 1.9 2.1
## 82 1.2 1.9 2.2
## 83 1.6 1.9 2.4
## 84 1.5 1.9 2.4
## 85 1.6 2.0 2.4
## 86 1.0 1.9 2.4
## 87 1.1 1.8 2.1
## 88 1.1 1.9 2.3
## 89 1.1 1.9 2.3
## 90 0.8 1.9 2.1
## 91 0.9 1.9 2.5
## 92 1.1 1.8 2.2
## 93 0.9 1.8 2.0
## 94 0.9 1.9 2.5
## 95 0.8 1.9 2.3
## 96 0.8 1.9 2.2
## 97 0.9 2.0 2.1
## 98 0.9 1.9 2.1
## 99 1.1 1.9 2.2
## 100 0.9 1.9 2.3
## 101 0.8 1.9 2.3
## 102 1.1 1.8 2.3
## 103 1.0 1.8 2.4
## 104 0.6 1.9 2.1
## 105 0.8 1.9 2.0
## 106 0.8 1.9 2.3
## 107 0.8 1.9 1.9
## 108 0.8 1.9 2.4
## 109 0.8 1.9 1.9
## 110 0.9 1.8 2.4
## 111 1.7 1.8 2.2
## 112 1.2 1.9 2.3
## 113 0.9 1.8 2.3
## 114 1.1 1.8 2.3
## 115 0.5 1.9 2.3
## 116 0.6 1.9 2.2
## 117 0.7 1.9 2.2
## 118 0.8 1.9 2.0
## 119 0.8 1.7 2.4
## 120 0.5 1.9 2.2
## 121 0.5 1.7 1.9
## 122 0.5 1.8 2.1
## 123 0.5 1.9 2.2
## 124 0.7 1.8 2.2
## 125 0.6 1.9 2.2
## 126 0.7 1.9 2.1
## 127 0.6 1.9 2.2
## 128 0.7 1.9 2.0
## 129 0.5 2.0 2.2
## 130 0.5 1.9 2.3
## 131 0.4 1.9 2.2
## 132 0.6 1.8 2.1
## 133 0.4 2.0 2.3
## 134 0.4 1.9 2.2
## 135 0.4 1.9 2.4
## 136 0.5 1.8 2.4
## 137 0.5 1.9 2.4
## 138 0.5 1.8 2.1
## 139 0.7 1.9 2.3
## 140 0.4 1.8 2.4
## 141 0.5 1.8 2.3
## 142 0.6 1.8 2.3
## 143 0.5 1.8 2.3
## 144 0.5 1.9 2.3
## 145 0.5 1.9 2.2
## 146 0.5 1.9 1.8
## 147 0.5 1.8 1.9
## 148 0.6 1.8 2.1
## 149 0.4 1.7 1.8
## 150 0.5 1.8 1.9
## 151 0.6 1.7 2.3
## 152 0.7 1.9 1.9
## 153 0.5 1.9 2.1
## 154 0.7 1.8 2.1
## 155 0.5 1.8 1.8
## 156 0.4 1.9 2.3
## 157 0.5 1.9 2.3
## 158 0.5 1.8 2.3
## 159 0.3 1.8 2.3
## 160 0.7 1.8 2.1
## 161 0.3 1.8 2.3
## 162 0.3 1.9 1.8
## 163 0.6 1.8 2.2
## 164 0.4 1.8 2.4
## 165 0.4 1.8 2.3
## 166 0.8 1.7 2.2
## 167 0.7 1.8 2.4
## 168 0.5 1.7 2.1
## 169 0.2 1.8 2.2
## 170 0.3 1.8 2.5
## 171 0.5 1.8 2.2
## 172 0.6 0.0 0.0
## 173 0.6 0.0 0.0
## 174 0.6 0.0 0.0
## 175 0.5 0.0 0.0
## 176 0.6 0.0 0.0
missingData <- as.data.frame(colSums(is.na(processPredictors_imputed)))
colnames(missingData) <- c("NAs")
missingData <- cbind(Predictors = rownames(missingData), missingData)
rownames(missingData) <- 1:nrow(missingData)
missingData <- missingData[missingData$NAs != 0,]
head(missingData)## [1] Predictors NAs
## <0 rows> (or 0-length row.names)
## [1] "BiologicalMaterial07"
## [1] 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
## [20] 100
## [1] "BiologicalMaterial02" "BiologicalMaterial04" "BiologicalMaterial12"
## [4] "ManufacturingProcess29" "ManufacturingProcess42" "ManufacturingProcess27"
## [7] "ManufacturingProcess25" "ManufacturingProcess31" "ManufacturingProcess18"
## [10] "ManufacturingProcess40"
removePredictors <- findCorrelation(cor(processPredictors_imputed), 0.90, names = TRUE)
removePredictors## [1] "BiologicalMaterial02" "BiologicalMaterial04" "BiologicalMaterial12"
## [4] "ManufacturingProcess29" "ManufacturingProcess42" "ManufacturingProcess27"
## [7] "ManufacturingProcess25" "ManufacturingProcess31" "ManufacturingProcess18"
## [10] "ManufacturingProcess40"
## [1] "BiologicalMaterial01" "BiologicalMaterial03" "BiologicalMaterial05"
## [4] "BiologicalMaterial06" "BiologicalMaterial08" "BiologicalMaterial09"
## [7] "BiologicalMaterial10" "BiologicalMaterial11" "ManufacturingProcess01"
## [10] "ManufacturingProcess02" "ManufacturingProcess03" "ManufacturingProcess04"
## [13] "ManufacturingProcess05" "ManufacturingProcess06" "ManufacturingProcess07"
## [16] "ManufacturingProcess08" "ManufacturingProcess09" "ManufacturingProcess10"
## [19] "ManufacturingProcess11" "ManufacturingProcess12" "ManufacturingProcess13"
## [22] "ManufacturingProcess14" "ManufacturingProcess15" "ManufacturingProcess16"
## [25] "ManufacturingProcess17" "ManufacturingProcess19" "ManufacturingProcess20"
## [28] "ManufacturingProcess21" "ManufacturingProcess22" "ManufacturingProcess23"
## [31] "ManufacturingProcess24" "ManufacturingProcess26" "ManufacturingProcess28"
## [34] "ManufacturingProcess30" "ManufacturingProcess32" "ManufacturingProcess33"
## [37] "ManufacturingProcess34" "ManufacturingProcess35" "ManufacturingProcess36"
## [40] "ManufacturingProcess37" "ManufacturingProcess38" "ManufacturingProcess39"
## [43] "ManufacturingProcess41" "ManufacturingProcess43" "ManufacturingProcess44"
## [46] "ManufacturingProcess45"
chemmfgproc <- cbind(ChemicalManufacturingProcess$Yield, processPredictors_imputed)
names(chemmfgproc)[names(chemmfgproc) == "ChemicalManufacturingProcess$Yield"] <- "Yield"
head(chemmfgproc )## Yield BiologicalMaterial01 BiologicalMaterial03 BiologicalMaterial05
## 1 38.00 6.25 56.97 19.51
## 2 42.44 8.01 67.48 19.36
## 3 42.03 8.01 67.48 19.36
## 4 41.42 8.01 67.48 19.36
## 5 42.49 7.47 72.25 17.91
## 6 43.57 6.12 65.31 21.79
## BiologicalMaterial06 BiologicalMaterial08 BiologicalMaterial09
## 1 43.73 16.66 11.44
## 2 53.14 19.04 12.55
## 3 53.14 19.04 12.55
## 4 53.14 19.04 12.55
## 5 54.66 18.22 12.80
## 6 51.23 18.30 12.13
## BiologicalMaterial10 BiologicalMaterial11 ManufacturingProcess01
## 1 3.46 138.09 10.9909
## 2 3.46 153.67 0.0000
## 3 3.46 153.67 0.0000
## 4 3.46 153.67 0.0000
## 5 3.05 147.61 10.7000
## 6 3.78 151.88 12.0000
## ManufacturingProcess02 ManufacturingProcess03 ManufacturingProcess04
## 1 12.79439 1.508846 927.0047
## 2 0.00000 1.527970 917.0000
## 3 0.00000 1.530834 912.0000
## 4 0.00000 1.530834 911.0000
## 5 0.00000 1.531619 918.0000
## 6 0.00000 1.530527 924.0000
## ManufacturingProcess05 ManufacturingProcess06 ManufacturingProcess07
## 1 998.8306 205.8232 177.4114
## 2 1032.2000 210.0000 177.0000
## 3 1003.6000 207.1000 178.0000
## 4 1014.6000 213.3000 177.0000
## 5 1027.5000 205.7000 178.0000
## 6 1016.8000 208.9000 178.0000
## ManufacturingProcess08 ManufacturingProcess09 ManufacturingProcess10
## 1 177.9193 43.00 8.636328
## 2 178.0000 46.57 9.164042
## 3 178.0000 45.07 9.138575
## 4 177.0000 44.92 8.738187
## 5 178.0000 44.96 8.468328
## 6 178.0000 45.32 8.636328
## ManufacturingProcess11 ManufacturingProcess12 ManufacturingProcess13
## 1 10.025683 262.5544 35.5
## 2 10.025683 0.0000 34.0
## 3 9.551027 0.0000 34.8
## 4 9.551027 0.0000 34.8
## 5 8.957722 0.0000 34.6
## 6 10.115706 0.0000 34.0
## ManufacturingProcess14 ManufacturingProcess15 ManufacturingProcess16
## 1 4898 6108 4682
## 2 4869 6095 4617
## 3 4878 6087 4617
## 4 4897 6102 4635
## 5 4992 6233 4733
## 6 4985 6222 4786
## ManufacturingProcess17 ManufacturingProcess19 ManufacturingProcess20
## 1 35.5 6049 4665
## 2 34.0 6097 4621
## 3 34.8 6078 4621
## 4 34.8 6073 4611
## 5 33.9 6102 4659
## 6 33.4 6115 4696
## ManufacturingProcess21 ManufacturingProcess22 ManufacturingProcess23
## 1 0.0 4.249653 3.502078
## 2 0.0 3.000000 0.000000
## 3 0.0 4.000000 1.000000
## 4 0.0 5.000000 2.000000
## 5 -0.7 8.000000 4.000000
## 6 -0.6 9.000000 1.000000
## ManufacturingProcess24 ManufacturingProcess26 ManufacturingProcess28
## 1 14.92497 6074 10.7
## 2 3.00000 6107 11.2
## 3 4.00000 6116 11.1
## 4 5.00000 6111 11.1
## 5 18.00000 6151 11.3
## 6 1.00000 6128 11.4
## ManufacturingProcess30 ManufacturingProcess32 ManufacturingProcess33
## 1 9.9 156 66
## 2 9.9 169 66
## 3 9.4 173 66
## 4 9.4 171 68
## 5 9.0 171 70
## 6 10.1 173 70
## ManufacturingProcess34 ManufacturingProcess35 ManufacturingProcess36
## 1 2.4 486 0.019
## 2 2.6 508 0.019
## 3 2.6 509 0.018
## 4 2.5 496 0.018
## 5 2.5 468 0.017
## 6 2.5 490 0.018
## ManufacturingProcess37 ManufacturingProcess38 ManufacturingProcess39
## 1 0.5 3 7.2
## 2 2.0 2 7.2
## 3 0.7 2 7.2
## 4 1.2 2 7.2
## 5 0.2 2 7.3
## 6 0.4 2 7.2
## ManufacturingProcess41 ManufacturingProcess43 ManufacturingProcess44
## 1 0.0004980465 3.0 1.8
## 2 0.1500000000 0.9 1.9
## 3 0.0000000000 1.0 1.8
## 4 0.0000000000 1.1 1.8
## 5 0.0000000000 1.1 1.7
## 6 0.0000000000 2.2 1.8
## ManufacturingProcess45
## 1 2.4
## 2 2.2
## 3 2.3
## 4 2.1
## 5 2.1
## 6 2.0
5. Split the data into Training and Test Set
chemmfgproc_train <- initial_split(chemmfgproc, prop = 0.8, strata = "Yield")
train_chemmfgproc <- training(chemmfgproc_train)
test_chemmfgproc <- testing(chemmfgproc_train)
print (paste0("The number of observations in the training set is ", nrow(train_chemmfgproc)))## [1] "The number of observations in the training set is 144"
## [1] "The number of observations in the test set is 32"
trainingData_x <- as.data.frame(train_chemmfgproc[2:47])
trainingData_y <- as.data.frame(train_chemmfgproc$Yield)
colnames(trainingData_y) <- c("y")
testData_x <- as.data.frame(test_chemmfgproc[2:47])
testData_y <- as.data.frame(test_chemmfgproc$Yield)
colnames(testData_y) <- c("y")set.seed(100)
rpartModel <- train(x = trainingData_x,
y = trainingData_y$y,
method = "rpart",
tuneLength = 30,
trControl = controlObject
)## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
set.seed(100)
ctreeModel <- train(x = trainingData_x,
y = trainingData_y$y,
method = "ctree",
tuneLength = 10,
trControl = controlObject
)
set.seed(100)
gbmGrid <- expand.grid(interaction.depth = seq(1, 7, by = 2),
n.trees = c(seq(100, 1000, by = 50)),
shrinkage = c(0.01, .1),
n.minobsinnode = c(5, 10, 15))
set.seed(100)
gbmTune <- train(x = trainingData_x, y = trainingData_y$y,
method = "gbm",
tuneGrid = gbmGrid,
verbose = FALSE,
trControl = controlObject
)
set.seed(100)
cubistGrid <- expand.grid(committees = c(1, 5, 10, 50, 75, 100),
neighbors = c(0, 1, 3, 5, 7, 9))
cubistTuned <- train( x= trainingData_x[, colnames(trainingData_x)],
y = trainingData_y$y,
method = "cubist",
tuneGrid = cubistGrid,
trControl = controlObject
)Which tree-based regression model gives the optimal resampling and test set performance?
The Cubist model gave the optimal re-sampling and test set performance.
resamples <- resamples(list(CART=rpartModel,
"Cond Inf Tree"=ctreeModel,
"Boosted Tree" =gbmTune,
Cubist=cubistTuned))
summary(resamples)##
## Call:
## summary.resamples(object = resamples)
##
## Models: CART, Cond Inf Tree, Boosted Tree, Cubist
## Number of resamples: 50
##
## MAE
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.6987644 0.9964704 1.1287515 1.1467891 1.2718839 1.698406 0
## Cond Inf Tree 0.7578358 0.9667242 1.1023619 1.1224321 1.2734039 1.682129 0
## Boosted Tree 0.4670047 0.7177877 0.8417164 0.8269844 0.9142986 1.303525 0
## Cubist 0.3458477 0.6451495 0.7399143 0.7557013 0.8541947 1.204599 0
##
## RMSE
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.8430900 1.2524573 1.4269716 1.4250825 1.630184 1.995059 0
## Cond Inf Tree 0.8826277 1.2430463 1.3678897 1.4175017 1.578764 2.011548 0
## Boosted Tree 0.5520562 0.8938217 1.0532100 1.0592244 1.193044 1.612538 0
## Cubist 0.4809586 0.8460765 0.9210511 0.9575843 1.129748 1.483914 0
##
## Rsquared
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## CART 0.15018131 0.3393391 0.5039208 0.4732591 0.6088581 0.8517376 0
## Cond Inf Tree 0.08185229 0.3681705 0.5000381 0.4808266 0.6127432 0.8278142 0
## Boosted Tree 0.38510523 0.6235827 0.7083037 0.6941189 0.7891789 0.8832076 0
## Cubist 0.42039116 0.6555111 0.7754456 0.7447688 0.8339765 0.9330651 0
rpartPredictions <- predict(rpartModel, testData_x)
ctreePredictions <- predict(ctreeModel, testData_x)
gbmPredictions <- predict(gbmTune, testData_x)
cubistPredictions <- predict(cubistTuned, testData_x)rPart:
## RMSE Rsquared MAE
## 1.4523969 0.3269829 1.1986451
cTree:
## RMSE Rsquared MAE
## 1.5256196 0.2967076 1.2501367
gbm:
## RMSE Rsquared MAE
## 0.9946852 0.6566986 0.7967199
Cubist:
## RMSE Rsquared MAE
## 0.8411718 0.7569305 0.6850943
Which predictors are most important in the optimal tree-based regression model?
Optimal Tree Based Regression top ten most important predictors are:
ManufacturingProcess32 ManufacturingProcess17 BiologicalMaterial06 ManufacturingProcess09
ManufacturingProcess04
ManufacturingProcess28
ManufacturingProcess13
ManufacturingProcess33
ManufacturingProcess39
BiologicalMaterial03
Do either the biological or process variables dominate the list?
Of the top 20, 14 are Manufacturing processes and only 6 are biological.
How do the top 10 important predictors compare to the top 10 predictors from the optimal linear and nonlinear models?
For both the Linear and Non-Linear models, there is one more biological process in the top ten. There are six predictors among the top ten that they all have in common:
ManufacturingProcess13
ManufacturingProcess32
BiologicalMaterial06 ManufacturingProcess17
ManufacturingProcess09
BiologicalMaterial03
Optimal Linear top ten most important predictors are:
ManufacturingProcess32
ManufacturingProcess09
ManufacturingProcess13
ManufacturingProcess17
ManufacturingProcess36
BiologicalMaterial06
BiologicalMaterial08
ManufacturingProcess06
ManufacturingProcess33
BiologicalMaterial03
Optimal Non-Linear top ten most important predictors are:
ManufacturingProcess13
ManufacturingProcess32
BiologicalMaterial06 ManufacturingProcess17
ManufacturingProcess09
BiologicalMaterial03 ManufacturingProcess06
ManufacturingProcess36 BiologicalMaterial11 ManufacturingProcess11
cubistTuned1 <- varImp(cubistTuned)
cubistTuned1<- cubistTuned1$importance %>%
arrange(desc(Overall))
cubistTuned1 <- head(cubistTuned1,20)cubistTuned1_df <- as.data.frame(cubistTuned1)
cubistTuned1_df['Predictors'] <- rownames(cubistTuned1)
colnames(cubistTuned1_df) <- c("Overall", "Predictors")
rownames(cubistTuned1_df) <- 1:nrow(cubistTuned1_df)cubistTuned1_df %>%
arrange(Overall)%>%
mutate(name = factor(Predictors, levels=c(Predictors))) %>%
ggplot(aes(x=name, y=Overall)) +
geom_segment(aes(xend = Predictors, yend = 0)) +
geom_point(size = 4, color = "red") +
theme_minimal() +
coord_flip() +
labs(title="cubist Predictor Variable Importance",
y="cubist Importance", x="Predictors") +
scale_y_continuous()Plot the optimal single tree with the distribution of yield in the terminal nodes. Does this view of the data provide additional knowledge about the biological or process predictors and their relationship with yield?
The view confirms that ManufacturingProcess32 is the optimal split in the data and carries the most importance to the Yield.