options(
  scipen = 999
)
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.3     ✓ dplyr   1.0.0
## ✓ tidyr   1.1.0     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ── Conflicts ───────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
#make some data
set.seed(1488)
d = MASS::mvrnorm(n = 10e3,
                  mu = c(0, 0),
                  Sigma = matrix(c(1, .5, .5, 1), nrow = 2),
                  empirical = T) %>% 
  as_tibble()
## Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if `.name_repair` is omitted as of tibble 2.0.0.
## Using compatibility `.name_repair`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
#stats
psych::describe(d)
#cors
cor(d)
##     V1  V2
## V1 1.0 0.5
## V2 0.5 1.0
#var and covar
var(d)
##     V1  V2
## V1 1.0 0.5
## V2 0.5 1.0
#slopes
lm(V1 ~ V2, data = d)
## 
## Call:
## lm(formula = V1 ~ V2, data = d)
## 
## Coefficients:
##            (Intercept)                      V2  
## 0.00000000000000001221  0.49999999999999983347
lm(V2 ~ V1, data = d)
## 
## Call:
## lm(formula = V2 ~ V1, data = d)
## 
## Coefficients:
##            (Intercept)                      V1  
## 0.00000000000000000222  0.49999999999999944489
#change the scale of V1 to SD = 2
d2 = d
d2$V1 = d2$V1 * 2

#stats
psych::describe(d2)
#cors
cor(d2)
##     V1  V2
## V1 1.0 0.5
## V2 0.5 1.0
#var and covar
var(d2)
##    V1 V2
## V1  4  1
## V2  1  1
#slopes
lm(V1 ~ V2, data = d2)
## 
## Call:
## lm(formula = V1 ~ V2, data = d2)
## 
## Coefficients:
##            (Intercept)                      V2  
## 0.00000000000000002442  0.99999999999999966693
lm(V2 ~ V1, data = d2)
## 
## Call:
## lm(formula = V2 ~ V1, data = d2)
## 
## Coefficients:
##            (Intercept)                      V1  
## 0.00000000000000000222  0.24999999999999972244

Notes: