library(tidyverse)
library(here)
library(performance)
library(lme4)
library(glmmTMB)
library(see)
library(ggrepel)
library(qqplotr)
DeivisModel <-
"elem_lab_emo =~ i1 + i2 +i3
efi_gest_doc =~ i4 + i5 + i6
con_ped_CP =~ i7 + i8 + i9
con_ped_CP =~ elem_lab_emo + efi_gest_doc
efi_gest_doc =~ elem_lab_emo
"
deivis_raw <-
read_csv(here("SEM lavaan/data_sem",
"deivis.csv"))
── Column specification ────────────────────────────────────────────────────────────────────────────────
cols(
i1 = col_double(),
i2 = col_double(),
i3 = col_double(),
i4 = col_double(),
i5 = col_double(),
i6 = col_double(),
i7 = col_double(),
i8 = col_double(),
i9 = col_double(),
genero = col_character()
)
Construimos el modelo
deivis_model_LM <-
lm(con_ped_CP ~ efi_gest_doc + elem_lab_emo,
data = deivis_LM)
Revisamos el modelo
summary(deivis_model_LM)
Call:
lm(formula = con_ped_CP ~ efi_gest_doc + elem_lab_emo, data = deivis_LM)
Residuals:
Min 1Q Median 3Q Max
-1.52078 -0.32478 -0.00998 0.32335 1.44343
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.47760 0.06072 24.334 < 2e-16 ***
efi_gest_doc 0.10737 0.02673 4.017 6.19e-05 ***
elem_lab_emo 0.40343 0.02289 17.624 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.4697 on 1497 degrees of freedom
Multiple R-squared: 0.3675, Adjusted R-squared: 0.3666
F-statistic: 434.8 on 2 and 1497 DF, p-value: < 2.2e-16
Que por cada unidad incrementada en asimilador el desempeño aumentará en un 2.40 unidades.