library(tidyverse)
library(here)
library(performance)
library(lme4)
library(glmmTMB)
library(see)
library(ggrepel)
library(qqplotr)
CarolinaModel <- 
  "nivel_est =~ i1 + i2 +i3 + i4 + i5 
   pobreza =~ i6 + i7 + i8 + i9 + i10
   rend_aca =~ i11 + i12 + i13 + i14 + i15
   nivel_est =~ pobreza
   rend_aca =~ nivel_est + pobreza 
   "

Adquiriendo los datos

caro_raw <- 
  read_csv(here("SEM lavaan/data_sem", 
                "carolina.csv"))

Organizando los datos

Análisis descriptivo

Análisis inferencial

Modelo de regresión lineal múltiple

Construimos el modelo

Revisamos el modelo

summary(caro_model_LM)

Call:
lm(formula = rend_aca ~ pobreza + nivel_est, data = caro_LM)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.2196 -0.3462  0.0272  0.3493  1.2182 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.10164    0.09865   11.17   <2e-16 ***
pobreza      0.53685    0.03992   13.45   <2e-16 ***
nivel_est    0.08687    0.04597    1.89   0.0593 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4805 on 597 degrees of freedom
Multiple R-squared:  0.4641,    Adjusted R-squared:  0.4623 
F-statistic: 258.5 on 2 and 597 DF,  p-value: < 2.2e-16

Que por cada unidad incrementada en asimilador el desempeño aumentará en un 2.40 unidades.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGhlcmUpCmxpYnJhcnkocGVyZm9ybWFuY2UpCmxpYnJhcnkobG1lNCkKbGlicmFyeShnbG1tVE1CKQpsaWJyYXJ5KHNlZSkKbGlicmFyeShnZ3JlcGVsKQpsaWJyYXJ5KHFxcGxvdHIpCmBgYAoKCmBgYHtyfQpDYXJvbGluYU1vZGVsIDwtIAogICJuaXZlbF9lc3QgPX4gaTEgKyBpMiAraTMgKyBpNCArIGk1IAogICBwb2JyZXphID1+IGk2ICsgaTcgKyBpOCArIGk5ICsgaTEwCiAgIHJlbmRfYWNhID1+IGkxMSArIGkxMiArIGkxMyArIGkxNCArIGkxNQogICBuaXZlbF9lc3QgPX4gcG9icmV6YQogICByZW5kX2FjYSA9fiBuaXZlbF9lc3QgKyBwb2JyZXphIAogICAiCmBgYAoKIyBBZHF1aXJpZW5kbyBsb3MgZGF0b3MgCgpgYGB7cn0KY2Fyb19yYXcgPC0gCiAgcmVhZF9jc3YoaGVyZSgiU0VNIGxhdmFhbi9kYXRhX3NlbSIsIAogICAgICAgICAgICAgICAgImNhcm9saW5hLmNzdiIpKQpgYGAKCiMgT3JnYW5pemFuZG8gbG9zIGRhdG9zIAoKYGBge3J9CmNhcm9fTE0gPC0gCiAgY2Fyb19yYXcgJT4lIAogIHJvd3dpc2UoKSAlPiUgCiAgbXV0YXRlKG5pdmVsX2VzdCA9IG1lYW4oYyhpMSwgaTIsIGkzLCBpNCwgaTUpKSwKICAgICAgICAgcG9icmV6YSA9IG1lYW4oYyhpNiwgaTcsIGk4LCBpOSwgaTEwKSksCiAgICAgICAgIHJlbmRfYWNhID0gbWVhbihjKGkxMSwgaTEyLCBpMTMsIGkxNCwgaTE1KSkpICU+JSAKICBzZWxlY3QocmVuZF9hY2EsIHBvYnJlemEsIG5pdmVsX2VzdCkKCmhlYWQoY2Fyb19MTSkKYGBgCgojIEFuw6FsaXNpcyBkZXNjcmlwdGl2bwoKYGBge3J9CmNhcm9fTE0gJT4lCiAga2VlcChpcy5udW1lcmljKSAlPiUgCiAgZ2F0aGVyKCkgJT4lIAogIGdncGxvdChhZXModmFsdWUpKSArCiAgZmFjZXRfd3JhcCh+IGtleSwgc2NhbGVzID0gImZyZWUiKSArCiAgZ2VvbV9oaXN0b2dyYW0oKQpgYGAKCiMgQW7DoWxpc2lzIGluZmVyZW5jaWFsIAoKIyMgTW9kZWxvIGRlIHJlZ3Jlc2nDs24gbGluZWFsIG3Dumx0aXBsZQoKQ29uc3RydWltb3MgZWwgbW9kZWxvCgpgYGB7cn0KY2Fyb19tb2RlbF9MTSA8LSAKICBsbShyZW5kX2FjYSB+IHBvYnJlemEgKyBuaXZlbF9lc3QsIAogICAgIGRhdGEgPSBjYXJvX0xNKQpgYGAKClJldmlzYW1vcyBlbCBtb2RlbG8gCgpgYGB7cn0Kc3VtbWFyeShjYXJvX21vZGVsX0xNKQpgYGAKClF1ZSBwb3IgY2FkYSB1bmlkYWQgaW5jcmVtZW50YWRhIGVuIGFzaW1pbGFkb3IgZWwgZGVzZW1wZcOxbyBhdW1lbnRhcsOhIGVuIHVuIDIuNDAgdW5pZGFkZXMuCgpgYGB7cn0KY2hlY2tfbW9kZWwoY2Fyb19tb2RlbF9MTSkKYGBgCgo=