library(tidyverse)
library(here)
library(performance)
library(lme4)
library(glmmTMB)
library(see)
library(ggrepel)
library(qqplotr)
CarolinaModel <-
"nivel_est =~ i1 + i2 +i3 + i4 + i5
pobreza =~ i6 + i7 + i8 + i9 + i10
rend_aca =~ i11 + i12 + i13 + i14 + i15
nivel_est =~ pobreza
rend_aca =~ nivel_est + pobreza
"
Adquiriendo los datos
caro_raw <-
read_csv(here("SEM lavaan/data_sem",
"carolina.csv"))
Organizando los datos
Análisis descriptivo

Análisis inferencial
Modelo de regresión lineal múltiple
Construimos el modelo
Revisamos el modelo
summary(caro_model_LM)
Call:
lm(formula = rend_aca ~ pobreza + nivel_est, data = caro_LM)
Residuals:
Min 1Q Median 3Q Max
-1.2196 -0.3462 0.0272 0.3493 1.2182
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.10164 0.09865 11.17 <2e-16 ***
pobreza 0.53685 0.03992 13.45 <2e-16 ***
nivel_est 0.08687 0.04597 1.89 0.0593 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.4805 on 597 degrees of freedom
Multiple R-squared: 0.4641, Adjusted R-squared: 0.4623
F-statistic: 258.5 on 2 and 597 DF, p-value: < 2.2e-16
Que por cada unidad incrementada en asimilador el desempeño aumentará en un 2.40 unidades.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGhlcmUpCmxpYnJhcnkocGVyZm9ybWFuY2UpCmxpYnJhcnkobG1lNCkKbGlicmFyeShnbG1tVE1CKQpsaWJyYXJ5KHNlZSkKbGlicmFyeShnZ3JlcGVsKQpsaWJyYXJ5KHFxcGxvdHIpCmBgYAoKCmBgYHtyfQpDYXJvbGluYU1vZGVsIDwtIAogICJuaXZlbF9lc3QgPX4gaTEgKyBpMiAraTMgKyBpNCArIGk1IAogICBwb2JyZXphID1+IGk2ICsgaTcgKyBpOCArIGk5ICsgaTEwCiAgIHJlbmRfYWNhID1+IGkxMSArIGkxMiArIGkxMyArIGkxNCArIGkxNQogICBuaXZlbF9lc3QgPX4gcG9icmV6YQogICByZW5kX2FjYSA9fiBuaXZlbF9lc3QgKyBwb2JyZXphIAogICAiCmBgYAoKIyBBZHF1aXJpZW5kbyBsb3MgZGF0b3MgCgpgYGB7cn0KY2Fyb19yYXcgPC0gCiAgcmVhZF9jc3YoaGVyZSgiU0VNIGxhdmFhbi9kYXRhX3NlbSIsIAogICAgICAgICAgICAgICAgImNhcm9saW5hLmNzdiIpKQpgYGAKCiMgT3JnYW5pemFuZG8gbG9zIGRhdG9zIAoKYGBge3J9CmNhcm9fTE0gPC0gCiAgY2Fyb19yYXcgJT4lIAogIHJvd3dpc2UoKSAlPiUgCiAgbXV0YXRlKG5pdmVsX2VzdCA9IG1lYW4oYyhpMSwgaTIsIGkzLCBpNCwgaTUpKSwKICAgICAgICAgcG9icmV6YSA9IG1lYW4oYyhpNiwgaTcsIGk4LCBpOSwgaTEwKSksCiAgICAgICAgIHJlbmRfYWNhID0gbWVhbihjKGkxMSwgaTEyLCBpMTMsIGkxNCwgaTE1KSkpICU+JSAKICBzZWxlY3QocmVuZF9hY2EsIHBvYnJlemEsIG5pdmVsX2VzdCkKCmhlYWQoY2Fyb19MTSkKYGBgCgojIEFuw6FsaXNpcyBkZXNjcmlwdGl2bwoKYGBge3J9CmNhcm9fTE0gJT4lCiAga2VlcChpcy5udW1lcmljKSAlPiUgCiAgZ2F0aGVyKCkgJT4lIAogIGdncGxvdChhZXModmFsdWUpKSArCiAgZmFjZXRfd3JhcCh+IGtleSwgc2NhbGVzID0gImZyZWUiKSArCiAgZ2VvbV9oaXN0b2dyYW0oKQpgYGAKCiMgQW7DoWxpc2lzIGluZmVyZW5jaWFsIAoKIyMgTW9kZWxvIGRlIHJlZ3Jlc2nDs24gbGluZWFsIG3Dumx0aXBsZQoKQ29uc3RydWltb3MgZWwgbW9kZWxvCgpgYGB7cn0KY2Fyb19tb2RlbF9MTSA8LSAKICBsbShyZW5kX2FjYSB+IHBvYnJlemEgKyBuaXZlbF9lc3QsIAogICAgIGRhdGEgPSBjYXJvX0xNKQpgYGAKClJldmlzYW1vcyBlbCBtb2RlbG8gCgpgYGB7cn0Kc3VtbWFyeShjYXJvX21vZGVsX0xNKQpgYGAKClF1ZSBwb3IgY2FkYSB1bmlkYWQgaW5jcmVtZW50YWRhIGVuIGFzaW1pbGFkb3IgZWwgZGVzZW1wZcOxbyBhdW1lbnRhcsOhIGVuIHVuIDIuNDAgdW5pZGFkZXMuCgpgYGB7cn0KY2hlY2tfbW9kZWwoY2Fyb19tb2RlbF9MTSkKYGBgCgo=