Glaciares en Chile
I Parte: Random Forest con imágenes satelitales
Abstract
Aplicar Random Forest a imágenes satelitales consiste en: 1 declarar un diccionario de categorías asociadas a geometrías y contrastarlas con una imagen, lo que constituye la fase de elaboración de la muestra de entrenamiento, 2 el proceso de construcción del modelo y por último, 3 la imagen original reclasificada, esto es, el output del Random Forest. Ésta entrega hace el desarrollo inicial de los requerimientos.
Tenemos una función que grafica inmediatamente la forma de un shape:
# leemos el shp:
mask <- st_read("region_los_lagos.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region <- mask$geometry()
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(region)
Cruzamos con data Sentinel filtrada:
start <- ee$Date("2014-06-01")
finish <- ee$Date("2014-10-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate("2019-03-01", "2020-03-01")$filterBounds(region)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(first, vizParams, "Landsat 8 image")
Cálculo del Normalized Difference Glacier Index (NDGI):
\[ NDGI = {B_3-B_4 \over B_3+B_4} \]
normalizedDifference calcula la diferencia normalizada entre dos bandas. Es:
\[{B1 - B2 } \over { B1 + B2}\]
Los valores de entrada negativos se fuerzan a 0 para que el resultado se limite al rango (-1, 1).
El Índice Glaciar Diferencial Normalizado (NDGI) se utiliza para ayudar a detectar y monitorear glaciares utilizando las bandas espectrales verde y roja. Esta ecuación se utiliza comúnmente en la detección de glaciares y en aplicaciones de monitoreo de glaciares.
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4"))
}
ndgi <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(ndgi, ndgiParams, "NDGI")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) < 0
}
ndgi_04 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(ndgi_04, ndgiParams, "NDGI")
Aca hay que agregar un paso. Debemos pintar solo los pixeles rojos
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > 0
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("Lim_glaciares_v2_Simplify.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(region_0)
# mask_0 <- st_read("cl_lagos_geo/cl_lagos_geoPolygon.shp",
# quiet = TRUE) %>%
# sf_as_ee()
#
# # convertimos el shp en geometria:
# region_0 <- mask_0$geometry()
#
# Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
# Map$addLayer(region_0)
Tomemos el raster generado con NDGI > 0: ngdi_01 en una caja coords = c(-73,-43,-72,-42.5)
box <- ee$Geometry$Rectangle(coords = c(-73,-43,-72,-42.5),
## WGS 84
proj = "EPSG:4326",
geodesic = FALSE)
sale <- ndgi_01$clip(box)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale, ndgiParams, "NDGI")
el raster sale contiene el corte de ndgi_01 con la caja.
tomemos una caja mas amplia:
box_1 <- ee$Geometry$Rectangle(coords = c(-74.83774,-44.06706,-71.58093,-40.23878),
proj = "EPSG:4326",
geodesic = FALSE)
sale_2 <- ndgi_01$clip(box_1)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale_2, ndgiParams, "NDGI")
y ahora intersectamos con el shp de los glaciares de Chile:
figura n°1
sale_4 <- sale_2$clip(region_0)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale_4, ndgiParams, "NDGI")
Se deben construir dos mapas que sirvan de alimento a dos poblaciones muestrales. El primero ya lo tenemos y lo acabamos de desplegar: se llama sale_4. Las muestras aquí contienen el valor 0: rojo.
Para el segundo necesitamos construir una región que contenga las áreas glaciares como espacios vacíos. Es lo que vamos a hacer a continuación. Las muestras aquí contienen el valor 1: verde.
Construyamos una geometría en forma de rectángulo box_2:
box_2 <- ee$Geometry$Rectangle(coords = c(-73,-43,-72.2,-42),
proj = "EPSG:4326",
geodesic = FALSE)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(box_2)
Restémosela al shape de la región y coloreémosla de amarillo:
diff1 <- region$difference(box_2, ee$ErrorMargin(1))
Map$addLayer(diff1, list(color = "FFFF00"), "diff1")
La misma idea vamos a aplicar para seleccionar una región que excluya las áreas glaciares. Vamos a considerar el mismo cuadrado y eliminaremos las áreas de no interés. El proceso es muy largo, así que consideramos por el momento sólo la región acotada por el rectángulo.
diff1 <- box_2$difference(region_0, ee$ErrorMargin(1))
Map$addLayer(diff1, list(color = "FFFF00"), "diff1")
Obtenemos el negativo de figura n°1 en el rectángulo en cuestión y la llamamos figura n°2:
sale_3 <- sale_2$clip(diff1)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale_3, ndgiParams, "NDGI")
Ahora tenemos listos los dos rasters a partir de los cuales podemos extraer las muestras.
I Intersectamos nuestro raster resultado con la region de glaciares:
extraer aleatoriamente las muestras de 10 mts. encontrar funcion
primero resolver en R.
mySamples <- sale_3$sampleRegions(
collection = ee$Feature(region_0),
scale = 1000,
tileScale = 16,
geometries = TRUE
)
Desplegamos la data y la cantidad de registros:
mySamples_sf_batch <- ee_as_sf(mySamples)
mySamples_sf_batch <- as.data.frame((mySamples_sf_batch))
mySamples_sf_batch %>% kbl() %>%
kable_material(c("striped", "hover"), font_size = 12)%>%
scroll_box(width = "100%", height = "500px")
| nd | geometry |
|---|---|
| 0 | POINT (-72.23802 -42.99786) |
| 0 | POINT (-72.22904 -42.99786) |
| 1 | POINT (-72.25599 -42.98888) |
| 0 | POINT (-72.23802 -42.98888) |
| 0 | POINT (-72.22904 -42.98888) |
| 0 | POINT (-72.22006 -42.98888) |
| 1 | POINT (-72.31887 -42.97989) |
| 0 | POINT (-72.25599 -42.97989) |
| 0 | POINT (-72.21107 -42.97989) |
| 0 | POINT (-72.27396 -42.97091) |
| 0 | POINT (-72.22006 -42.97091) |
| 0 | POINT (-72.22904 -42.90803) |
| 0 | POINT (-72.24701 -42.89905) |
| 0 | POINT (-72.23802 -42.89905) |
| 0 | POINT (-72.52548 -42.88108) |
| 1 | POINT (-72.45362 -42.88108) |
| 0 | POINT (-72.53447 -42.8721) |
| 1 | POINT (-72.50752 -42.8721) |
| 1 | POINT (-72.48955 -42.8721) |
| 1 | POINT (-72.45362 -42.8721) |
| 1 | POINT (-72.44464 -42.8721) |
| 0 | POINT (-72.53447 -42.86311) |
| 1 | POINT (-72.50752 -42.86311) |
| 1 | POINT (-72.49854 -42.86311) |
| 1 | POINT (-72.48955 -42.86311) |
| 1 | POINT (-72.39972 -42.86311) |
| 0 | POINT (-72.4626 -42.85413) |
| 1 | POINT (-72.45362 -42.85413) |
| 1 | POINT (-72.43565 -42.85413) |
| 1 | POINT (-72.39972 -42.85413) |
| 1 | POINT (-72.47159 -42.84515) |
| 0 | POINT (-72.45362 -42.84515) |
| 1 | POINT (-72.42667 -42.84515) |
| 1 | POINT (-72.41769 -42.84515) |
| 1 | POINT (-72.4087 -42.84515) |
| 1 | POINT (-72.39972 -42.84515) |
| 0 | POINT (-72.33684 -42.83616) |
| 0 | POINT (-72.32786 -42.83616) |
| 0 | POINT (-72.31887 -42.83616) |
| 0 | POINT (-72.30989 -42.83616) |
| 0 | POINT (-72.52548 -42.82718) |
| 0 | POINT (-72.5165 -42.82718) |
| 1 | POINT (-72.39074 -42.82718) |
| 0 | POINT (-72.26497 -42.82718) |
| 1 | POINT (-72.5165 -42.8182) |
| 1 | POINT (-72.39074 -42.8182) |
| 1 | POINT (-72.38175 -42.80921) |
| 1 | POINT (-72.37277 -42.80921) |
| 0 | POINT (-72.50752 -42.80023) |
| 1 | POINT (-72.37277 -42.80023) |
| 1 | POINT (-72.49854 -42.79125) |
| 1 | POINT (-72.49854 -42.78227) |
| 1 | POINT (-72.48955 -42.78227) |
| 1 | POINT (-72.33684 -42.78227) |
| 1 | POINT (-72.48057 -42.77328) |
| 1 | POINT (-72.43565 -42.77328) |
| 1 | POINT (-72.42667 -42.77328) |
| 0 | POINT (-72.37277 -42.77328) |
| 0 | POINT (-72.36379 -42.77328) |
| 0 | POINT (-72.3548 -42.77328) |
| 0 | POINT (-72.47159 -42.7643) |
| 0 | POINT (-72.4626 -42.7643) |
| 0 | POINT (-72.45362 -42.7643) |
| 1 | POINT (-72.42667 -42.7643) |
| 1 | POINT (-72.41769 -42.7643) |
| 1 | POINT (-72.39972 -42.7643) |
| 0 | POINT (-72.39074 -42.7643) |
| 0 | POINT (-72.38175 -42.7643) |
| 1 | POINT (-72.42667 -42.75532) |
| 0 | POINT (-72.33684 -42.6565) |
| 0 | POINT (-72.30091 -42.63853) |
| 1 | POINT (-72.23802 -42.63853) |
| 0 | POINT (-72.28294 -42.62955) |
| 0 | POINT (-72.33684 -42.61159) |
| 0 | POINT (-72.26497 -42.61159) |
| 0 | POINT (-72.34582 -42.6026) |
| 0 | POINT (-72.33684 -42.6026) |
| 0 | POINT (-72.34582 -42.59362) |
| 0 | POINT (-72.38175 -42.58464) |
| 0 | POINT (-72.37277 -42.58464) |
| 0 | POINT (-72.31887 -42.57565) |
| 0 | POINT (-72.34582 -42.56667) |
| 0 | POINT (-72.39972 -42.55769) |
| 0 | POINT (-72.21107 -42.53972) |
| 0 | POINT (-72.20209 -42.50379) |
| 0 | POINT (-72.38175 -42.44989) |
| 0 | POINT (-72.37277 -42.44989) |
| 1 | POINT (-72.31887 -42.44989) |
| 0 | POINT (-72.38175 -42.44091) |
| 0 | POINT (-72.37277 -42.44091) |
| 0 | POINT (-72.38175 -42.43192) |
| 0 | POINT (-72.24701 -42.42294) |
| 0 | POINT (-72.34582 -42.41396) |
| 1 | POINT (-72.36379 -42.40497) |
| 0 | POINT (-72.32786 -42.40497) |
| 0 | POINT (-72.37277 -42.39599) |
| 0 | POINT (-72.37277 -42.38701) |
| 0 | POINT (-72.23802 -42.38701) |
| 0 | POINT (-72.28294 -42.36006) |
| 0 | POINT (-72.23802 -42.33311) |
| 0 | POINT (-72.22006 -42.33311) |
| 0 | POINT (-72.22006 -42.31514) |
| 0 | POINT (-72.22904 -42.30616) |
| 0 | POINT (-72.22006 -42.29718) |
| 1 | POINT (-72.21107 -42.27921) |
| 0 | POINT (-72.25599 -42.26124) |
| 0 | POINT (-72.27396 -42.25226) |
| 0 | POINT (-72.22006 -42.25226) |
| 0 | POINT (-72.21107 -42.25226) |
| 0 | POINT (-72.20209 -42.25226) |
| 0 | POINT (-72.20209 -42.16243) |
| 0 | POINT (-72.21107 -42.15344) |
| 0 | POINT (-72.20209 -42.15344) |
| 0 | POINT (-72.23802 -42.14446) |
| 0 | POINT (-72.25599 -42.13548) |
| 1 | POINT (-72.24701 -42.13548) |
| 0 | POINT (-72.22904 -42.13548) |
| 0 | POINT (-72.25599 -42.1265) |
| 0 | POINT (-72.24701 -42.1265) |
| 1 | POINT (-72.27396 -42.10853) |
| 1 | POINT (-72.22904 -42.10853) |
| 1 | POINT (-72.24701 -42.09955) |
| 1 | POINT (-72.23802 -42.09955) |
| 0 | POINT (-72.22006 -42.09955) |
| 1 | POINT (-72.3548 -42.09056) |
| 0 | POINT (-72.34582 -42.09056) |
| 1 | POINT (-72.26497 -42.09056) |
| 0 | POINT (-72.25599 -42.09056) |
| 0 | POINT (-72.23802 -42.09056) |
| 0 | POINT (-72.22006 -42.09056) |
| 0 | POINT (-72.21107 -42.09056) |
| 0 | POINT (-72.23802 -42.08158) |
| 0 | POINT (-72.21107 -42.0726) |
| 0 | POINT (-72.33684 -42.06361) |
| 0 | POINT (-72.29192 -42.06361) |
| 1 | POINT (-72.27396 -42.06361) |
| 1 | POINT (-72.26497 -42.06361) |
| 0 | POINT (-72.25599 -42.06361) |
| 0 | POINT (-72.33684 -42.05463) |
| 0 | POINT (-72.32786 -42.05463) |
| 0 | POINT (-72.30989 -42.05463) |
| 0 | POINT (-72.3548 -42.04565) |
| 0 | POINT (-72.33684 -42.04565) |
| 1 | POINT (-72.32786 -42.04565) |
| 0 | POINT (-72.30989 -42.04565) |
| 0 | POINT (-72.36379 -42.03666) |
| 0 | POINT (-72.3548 -42.03666) |
| 1 | POINT (-72.32786 -42.03666) |
| 0 | POINT (-72.30091 -42.03666) |
| 0 | POINT (-72.29192 -42.03666) |
| 0 | POINT (-72.31887 -42.02768) |
| 0 | POINT (-72.30091 -42.02768) |
| 0 | POINT (-72.3548 -42.0187) |
| 0 | POINT (-72.34582 -42.0187) |
| 0 | POINT (-72.29192 -42.0187) |
| 1 | POINT (-72.23802 -42.0187) |
| 0 | POINT (-72.22904 -42.0187) |
| 0 | POINT (-72.22006 -42.0187) |
| 0 | POINT (-72.21107 -42.0187) |
| 0 | POINT (-72.20209 -42.0187) |
| 0 | POINT (-72.3548 -42.00971) |
| 0 | POINT (-72.34582 -42.00971) |
| 1 | POINT (-72.23802 -42.00971) |
| 0 | POINT (-72.22904 -42.00971) |
| 0 | POINT (-72.22006 -42.00971) |
| 0 | POINT (-72.21107 -42.00971) |
| 0 | POINT (-72.3548 -42.00073) |
| 0 | POINT (-72.33684 -42.00073) |
| 1 | POINT (-72.32786 -42.00073) |
| 0 | POINT (-72.25599 -42.00073) |
| 1 | POINT (-72.21107 -42.00073) |
nrow(mySamples_sf_batch)
## [1] 171
la minoría son verdes: 1
filtros_de_1 <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "1")
saveRDS(filtros_de_1,"muestra_1.rds")
filtros_de_1 %>% kbl() %>%
kable_material(c("striped", "hover"), font_size = 12)%>%
scroll_box(width = "100%", height = "500px")
| nd | geometry | |
|---|---|---|
| 3 | 1 | POINT (-72.25599 -42.98888) |
| 7 | 1 | POINT (-72.31887 -42.97989) |
| 16 | 1 | POINT (-72.45362 -42.88108) |
| 18 | 1 | POINT (-72.50752 -42.8721) |
| 19 | 1 | POINT (-72.48955 -42.8721) |
| 20 | 1 | POINT (-72.45362 -42.8721) |
| 21 | 1 | POINT (-72.44464 -42.8721) |
| 23 | 1 | POINT (-72.50752 -42.86311) |
| 24 | 1 | POINT (-72.49854 -42.86311) |
| 25 | 1 | POINT (-72.48955 -42.86311) |
| 26 | 1 | POINT (-72.39972 -42.86311) |
| 28 | 1 | POINT (-72.45362 -42.85413) |
| 29 | 1 | POINT (-72.43565 -42.85413) |
| 30 | 1 | POINT (-72.39972 -42.85413) |
| 31 | 1 | POINT (-72.47159 -42.84515) |
| 33 | 1 | POINT (-72.42667 -42.84515) |
| 34 | 1 | POINT (-72.41769 -42.84515) |
| 35 | 1 | POINT (-72.4087 -42.84515) |
| 36 | 1 | POINT (-72.39972 -42.84515) |
| 43 | 1 | POINT (-72.39074 -42.82718) |
| 45 | 1 | POINT (-72.5165 -42.8182) |
| 46 | 1 | POINT (-72.39074 -42.8182) |
| 47 | 1 | POINT (-72.38175 -42.80921) |
| 48 | 1 | POINT (-72.37277 -42.80921) |
| 50 | 1 | POINT (-72.37277 -42.80023) |
| 51 | 1 | POINT (-72.49854 -42.79125) |
| 52 | 1 | POINT (-72.49854 -42.78227) |
| 53 | 1 | POINT (-72.48955 -42.78227) |
| 54 | 1 | POINT (-72.33684 -42.78227) |
| 55 | 1 | POINT (-72.48057 -42.77328) |
| 56 | 1 | POINT (-72.43565 -42.77328) |
| 57 | 1 | POINT (-72.42667 -42.77328) |
| 64 | 1 | POINT (-72.42667 -42.7643) |
| 65 | 1 | POINT (-72.41769 -42.7643) |
| 66 | 1 | POINT (-72.39972 -42.7643) |
| 69 | 1 | POINT (-72.42667 -42.75532) |
| 72 | 1 | POINT (-72.23802 -42.63853) |
| 88 | 1 | POINT (-72.31887 -42.44989) |
| 94 | 1 | POINT (-72.36379 -42.40497) |
| 105 | 1 | POINT (-72.21107 -42.27921) |
| 116 | 1 | POINT (-72.24701 -42.13548) |
| 120 | 1 | POINT (-72.27396 -42.10853) |
| 121 | 1 | POINT (-72.22904 -42.10853) |
| 122 | 1 | POINT (-72.24701 -42.09955) |
| 123 | 1 | POINT (-72.23802 -42.09955) |
| 125 | 1 | POINT (-72.3548 -42.09056) |
| 127 | 1 | POINT (-72.26497 -42.09056) |
| 136 | 1 | POINT (-72.27396 -42.06361) |
| 137 | 1 | POINT (-72.26497 -42.06361) |
| 144 | 1 | POINT (-72.32786 -42.04565) |
| 148 | 1 | POINT (-72.32786 -42.03666) |
| 156 | 1 | POINT (-72.23802 -42.0187) |
| 163 | 1 | POINT (-72.23802 -42.00971) |
| 169 | 1 | POINT (-72.32786 -42.00073) |
| 171 | 1 | POINT (-72.21107 -42.00073) |
nrow(filtros_de_1)
## [1] 55
la mayoría son rojos: 0
filtros_de_0 <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "0")
filtros_de_0 %>% kbl() %>%
kable_material(c("striped", "hover"), font_size = 12)%>%
scroll_box(width = "100%", height = "500px")
| nd | geometry | |
|---|---|---|
| 1 | 0 | POINT (-72.23802 -42.99786) |
| 2 | 0 | POINT (-72.22904 -42.99786) |
| 4 | 0 | POINT (-72.23802 -42.98888) |
| 5 | 0 | POINT (-72.22904 -42.98888) |
| 6 | 0 | POINT (-72.22006 -42.98888) |
| 8 | 0 | POINT (-72.25599 -42.97989) |
| 9 | 0 | POINT (-72.21107 -42.97989) |
| 10 | 0 | POINT (-72.27396 -42.97091) |
| 11 | 0 | POINT (-72.22006 -42.97091) |
| 12 | 0 | POINT (-72.22904 -42.90803) |
| 13 | 0 | POINT (-72.24701 -42.89905) |
| 14 | 0 | POINT (-72.23802 -42.89905) |
| 15 | 0 | POINT (-72.52548 -42.88108) |
| 17 | 0 | POINT (-72.53447 -42.8721) |
| 22 | 0 | POINT (-72.53447 -42.86311) |
| 27 | 0 | POINT (-72.4626 -42.85413) |
| 32 | 0 | POINT (-72.45362 -42.84515) |
| 37 | 0 | POINT (-72.33684 -42.83616) |
| 38 | 0 | POINT (-72.32786 -42.83616) |
| 39 | 0 | POINT (-72.31887 -42.83616) |
| 40 | 0 | POINT (-72.30989 -42.83616) |
| 41 | 0 | POINT (-72.52548 -42.82718) |
| 42 | 0 | POINT (-72.5165 -42.82718) |
| 44 | 0 | POINT (-72.26497 -42.82718) |
| 49 | 0 | POINT (-72.50752 -42.80023) |
| 58 | 0 | POINT (-72.37277 -42.77328) |
| 59 | 0 | POINT (-72.36379 -42.77328) |
| 60 | 0 | POINT (-72.3548 -42.77328) |
| 61 | 0 | POINT (-72.47159 -42.7643) |
| 62 | 0 | POINT (-72.4626 -42.7643) |
| 63 | 0 | POINT (-72.45362 -42.7643) |
| 67 | 0 | POINT (-72.39074 -42.7643) |
| 68 | 0 | POINT (-72.38175 -42.7643) |
| 70 | 0 | POINT (-72.33684 -42.6565) |
| 71 | 0 | POINT (-72.30091 -42.63853) |
| 73 | 0 | POINT (-72.28294 -42.62955) |
| 74 | 0 | POINT (-72.33684 -42.61159) |
| 75 | 0 | POINT (-72.26497 -42.61159) |
| 76 | 0 | POINT (-72.34582 -42.6026) |
| 77 | 0 | POINT (-72.33684 -42.6026) |
| 78 | 0 | POINT (-72.34582 -42.59362) |
| 79 | 0 | POINT (-72.38175 -42.58464) |
| 80 | 0 | POINT (-72.37277 -42.58464) |
| 81 | 0 | POINT (-72.31887 -42.57565) |
| 82 | 0 | POINT (-72.34582 -42.56667) |
| 83 | 0 | POINT (-72.39972 -42.55769) |
| 84 | 0 | POINT (-72.21107 -42.53972) |
| 85 | 0 | POINT (-72.20209 -42.50379) |
| 86 | 0 | POINT (-72.38175 -42.44989) |
| 87 | 0 | POINT (-72.37277 -42.44989) |
| 89 | 0 | POINT (-72.38175 -42.44091) |
| 90 | 0 | POINT (-72.37277 -42.44091) |
| 91 | 0 | POINT (-72.38175 -42.43192) |
| 92 | 0 | POINT (-72.24701 -42.42294) |
| 93 | 0 | POINT (-72.34582 -42.41396) |
| 95 | 0 | POINT (-72.32786 -42.40497) |
| 96 | 0 | POINT (-72.37277 -42.39599) |
| 97 | 0 | POINT (-72.37277 -42.38701) |
| 98 | 0 | POINT (-72.23802 -42.38701) |
| 99 | 0 | POINT (-72.28294 -42.36006) |
| 100 | 0 | POINT (-72.23802 -42.33311) |
| 101 | 0 | POINT (-72.22006 -42.33311) |
| 102 | 0 | POINT (-72.22006 -42.31514) |
| 103 | 0 | POINT (-72.22904 -42.30616) |
| 104 | 0 | POINT (-72.22006 -42.29718) |
| 106 | 0 | POINT (-72.25599 -42.26124) |
| 107 | 0 | POINT (-72.27396 -42.25226) |
| 108 | 0 | POINT (-72.22006 -42.25226) |
| 109 | 0 | POINT (-72.21107 -42.25226) |
| 110 | 0 | POINT (-72.20209 -42.25226) |
| 111 | 0 | POINT (-72.20209 -42.16243) |
| 112 | 0 | POINT (-72.21107 -42.15344) |
| 113 | 0 | POINT (-72.20209 -42.15344) |
| 114 | 0 | POINT (-72.23802 -42.14446) |
| 115 | 0 | POINT (-72.25599 -42.13548) |
| 117 | 0 | POINT (-72.22904 -42.13548) |
| 118 | 0 | POINT (-72.25599 -42.1265) |
| 119 | 0 | POINT (-72.24701 -42.1265) |
| 124 | 0 | POINT (-72.22006 -42.09955) |
| 126 | 0 | POINT (-72.34582 -42.09056) |
| 128 | 0 | POINT (-72.25599 -42.09056) |
| 129 | 0 | POINT (-72.23802 -42.09056) |
| 130 | 0 | POINT (-72.22006 -42.09056) |
| 131 | 0 | POINT (-72.21107 -42.09056) |
| 132 | 0 | POINT (-72.23802 -42.08158) |
| 133 | 0 | POINT (-72.21107 -42.0726) |
| 134 | 0 | POINT (-72.33684 -42.06361) |
| 135 | 0 | POINT (-72.29192 -42.06361) |
| 138 | 0 | POINT (-72.25599 -42.06361) |
| 139 | 0 | POINT (-72.33684 -42.05463) |
| 140 | 0 | POINT (-72.32786 -42.05463) |
| 141 | 0 | POINT (-72.30989 -42.05463) |
| 142 | 0 | POINT (-72.3548 -42.04565) |
| 143 | 0 | POINT (-72.33684 -42.04565) |
| 145 | 0 | POINT (-72.30989 -42.04565) |
| 146 | 0 | POINT (-72.36379 -42.03666) |
| 147 | 0 | POINT (-72.3548 -42.03666) |
| 149 | 0 | POINT (-72.30091 -42.03666) |
| 150 | 0 | POINT (-72.29192 -42.03666) |
| 151 | 0 | POINT (-72.31887 -42.02768) |
| 152 | 0 | POINT (-72.30091 -42.02768) |
| 153 | 0 | POINT (-72.3548 -42.0187) |
| 154 | 0 | POINT (-72.34582 -42.0187) |
| 155 | 0 | POINT (-72.29192 -42.0187) |
| 157 | 0 | POINT (-72.22904 -42.0187) |
| 158 | 0 | POINT (-72.22006 -42.0187) |
| 159 | 0 | POINT (-72.21107 -42.0187) |
| 160 | 0 | POINT (-72.20209 -42.0187) |
| 161 | 0 | POINT (-72.3548 -42.00971) |
| 162 | 0 | POINT (-72.34582 -42.00971) |
| 164 | 0 | POINT (-72.22904 -42.00971) |
| 165 | 0 | POINT (-72.22006 -42.00971) |
| 166 | 0 | POINT (-72.21107 -42.00971) |
| 167 | 0 | POINT (-72.3548 -42.00073) |
| 168 | 0 | POINT (-72.33684 -42.00073) |
| 170 | 0 | POINT (-72.25599 -42.00073) |
nrow(filtros_de_0)
## [1] 116
II Ahora intersectamos nuestro raster resultado sale_2, con la región que excluye los límites glaciares: diff1. Recordemos que acá seleccionamos los verdes: 1
Obtenemos las muestras:
mySamples <- sale_2$sampleRegions(
collection = ee$Feature(diff1),
scale= 10000,
tileScale=16,
geometries=TRUE
)
Desplegamos la data y el numero de columnas:
mySamples_sf_batch <- ee_as_sf(mySamples)
mySamples_sf_batch <- as.data.frame((mySamples_sf_batch))
mySamples_sf_batch %>% kbl() %>%
kable_material(c("striped", "hover"), font_size = 12)%>%
scroll_box(width = "100%", height = "500px")
| nd | geometry |
|---|---|
| 1 | POINT (-72.98812 -42.98439) |
| 1 | POINT (-72.89829 -42.98439) |
| 1 | POINT (-72.80845 -42.98439) |
| 1 | POINT (-72.71862 -42.98439) |
| 1 | POINT (-72.62879 -42.98439) |
| 1 | POINT (-72.53896 -42.98439) |
| 1 | POINT (-72.44913 -42.98439) |
| 1 | POINT (-72.3593 -42.98439) |
| 1 | POINT (-72.26946 -42.98439) |
| 1 | POINT (-72.98812 -42.89455) |
| 1 | POINT (-72.89829 -42.89455) |
| 1 | POINT (-72.80845 -42.89455) |
| 1 | POINT (-72.71862 -42.89455) |
| 0 | POINT (-72.62879 -42.89455) |
| 1 | POINT (-72.53896 -42.89455) |
| 1 | POINT (-72.44913 -42.89455) |
| 1 | POINT (-72.3593 -42.89455) |
| 0 | POINT (-72.26946 -42.89455) |
| 1 | POINT (-72.98812 -42.80472) |
| 1 | POINT (-72.89829 -42.80472) |
| 1 | POINT (-72.80845 -42.80472) |
| 1 | POINT (-72.71862 -42.80472) |
| 1 | POINT (-72.62879 -42.80472) |
| 1 | POINT (-72.53896 -42.80472) |
| 1 | POINT (-72.3593 -42.80472) |
| 1 | POINT (-72.26946 -42.80472) |
| 1 | POINT (-72.98812 -42.71489) |
| 1 | POINT (-72.89829 -42.71489) |
| 1 | POINT (-72.80845 -42.71489) |
| 1 | POINT (-72.71862 -42.71489) |
| 1 | POINT (-72.62879 -42.71489) |
| 1 | POINT (-72.53896 -42.71489) |
| 1 | POINT (-72.44913 -42.71489) |
| 1 | POINT (-72.3593 -42.71489) |
| 1 | POINT (-72.26946 -42.71489) |
| 1 | POINT (-72.98812 -42.62506) |
| 1 | POINT (-72.89829 -42.62506) |
| 1 | POINT (-72.80845 -42.62506) |
| 1 | POINT (-72.71862 -42.62506) |
| 1 | POINT (-72.62879 -42.62506) |
| 1 | POINT (-72.53896 -42.62506) |
| 1 | POINT (-72.44913 -42.62506) |
| 1 | POINT (-72.3593 -42.62506) |
| 1 | POINT (-72.26946 -42.62506) |
| 1 | POINT (-72.98812 -42.53523) |
| 1 | POINT (-72.89829 -42.53523) |
| 1 | POINT (-72.80845 -42.53523) |
| 1 | POINT (-72.71862 -42.53523) |
| 1 | POINT (-72.62879 -42.53523) |
| 1 | POINT (-72.53896 -42.53523) |
| 1 | POINT (-72.44913 -42.53523) |
| 1 | POINT (-72.3593 -42.53523) |
| 1 | POINT (-72.26946 -42.53523) |
| 1 | POINT (-72.98812 -42.4454) |
| 1 | POINT (-72.89829 -42.4454) |
| 1 | POINT (-72.80845 -42.4454) |
| 1 | POINT (-72.71862 -42.4454) |
| 1 | POINT (-72.62879 -42.4454) |
| 1 | POINT (-72.53896 -42.4454) |
| 1 | POINT (-72.44913 -42.4454) |
| 1 | POINT (-72.3593 -42.4454) |
| 1 | POINT (-72.26946 -42.4454) |
| 1 | POINT (-72.98812 -42.35557) |
| 1 | POINT (-72.89829 -42.35557) |
| 1 | POINT (-72.80845 -42.35557) |
| 1 | POINT (-72.71862 -42.35557) |
| 1 | POINT (-72.62879 -42.35557) |
| 1 | POINT (-72.53896 -42.35557) |
| 1 | POINT (-72.44913 -42.35557) |
| 1 | POINT (-72.3593 -42.35557) |
| 1 | POINT (-72.26946 -42.35557) |
| 1 | POINT (-72.98812 -42.26573) |
| 1 | POINT (-72.89829 -42.26573) |
| 1 | POINT (-72.80845 -42.26573) |
| 1 | POINT (-72.71862 -42.26573) |
| 1 | POINT (-72.62879 -42.26573) |
| 1 | POINT (-72.53896 -42.26573) |
| 1 | POINT (-72.44913 -42.26573) |
| 1 | POINT (-72.3593 -42.26573) |
| 1 | POINT (-72.26946 -42.26573) |
| 1 | POINT (-72.98812 -42.1759) |
| 1 | POINT (-72.89829 -42.1759) |
| 1 | POINT (-72.80845 -42.1759) |
| 1 | POINT (-72.71862 -42.1759) |
| 1 | POINT (-72.62879 -42.1759) |
| 1 | POINT (-72.53896 -42.1759) |
| 1 | POINT (-72.44913 -42.1759) |
| 1 | POINT (-72.3593 -42.1759) |
| 1 | POINT (-72.26946 -42.1759) |
| 1 | POINT (-72.98812 -42.08607) |
| 1 | POINT (-72.89829 -42.08607) |
| 1 | POINT (-72.80845 -42.08607) |
| 1 | POINT (-72.71862 -42.08607) |
| 1 | POINT (-72.62879 -42.08607) |
| 1 | POINT (-72.53896 -42.08607) |
| 1 | POINT (-72.44913 -42.08607) |
| 1 | POINT (-72.3593 -42.08607) |
| 0 | POINT (-72.26946 -42.08607) |
nrow(mySamples_sf_batch)
## [1] 98
Obtenemos las muestras para el color rojo: 0
filtros_de_0_r <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "0")
saveRDS(filtros_de_0_r,"muestra_2.rds")
filtros_de_0_r %>% kbl() %>%
kable_material(c("striped", "hover"), font_size = 12)%>%
scroll_box(width = "100%", height = "500px")
| nd | geometry | |
|---|---|---|
| 14 | 0 | POINT (-72.62879 -42.89455) |
| 18 | 0 | POINT (-72.26946 -42.89455) |
| 98 | 0 | POINT (-72.26946 -42.08607) |
nrow(filtros_de_0_r)
## [1] 3
Obtenemos las muestras para el color verde: 1
filtros_de_1_r <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "1")
filtros_de_1_r %>% kbl() %>%
kable_material(c("striped", "hover"), font_size = 12)%>%
scroll_box(width = "100%", height = "500px")
| nd | geometry | |
|---|---|---|
| 1 | 1 | POINT (-72.98812 -42.98439) |
| 2 | 1 | POINT (-72.89829 -42.98439) |
| 3 | 1 | POINT (-72.80845 -42.98439) |
| 4 | 1 | POINT (-72.71862 -42.98439) |
| 5 | 1 | POINT (-72.62879 -42.98439) |
| 6 | 1 | POINT (-72.53896 -42.98439) |
| 7 | 1 | POINT (-72.44913 -42.98439) |
| 8 | 1 | POINT (-72.3593 -42.98439) |
| 9 | 1 | POINT (-72.26946 -42.98439) |
| 10 | 1 | POINT (-72.98812 -42.89455) |
| 11 | 1 | POINT (-72.89829 -42.89455) |
| 12 | 1 | POINT (-72.80845 -42.89455) |
| 13 | 1 | POINT (-72.71862 -42.89455) |
| 15 | 1 | POINT (-72.53896 -42.89455) |
| 16 | 1 | POINT (-72.44913 -42.89455) |
| 17 | 1 | POINT (-72.3593 -42.89455) |
| 19 | 1 | POINT (-72.98812 -42.80472) |
| 20 | 1 | POINT (-72.89829 -42.80472) |
| 21 | 1 | POINT (-72.80845 -42.80472) |
| 22 | 1 | POINT (-72.71862 -42.80472) |
| 23 | 1 | POINT (-72.62879 -42.80472) |
| 24 | 1 | POINT (-72.53896 -42.80472) |
| 25 | 1 | POINT (-72.3593 -42.80472) |
| 26 | 1 | POINT (-72.26946 -42.80472) |
| 27 | 1 | POINT (-72.98812 -42.71489) |
| 28 | 1 | POINT (-72.89829 -42.71489) |
| 29 | 1 | POINT (-72.80845 -42.71489) |
| 30 | 1 | POINT (-72.71862 -42.71489) |
| 31 | 1 | POINT (-72.62879 -42.71489) |
| 32 | 1 | POINT (-72.53896 -42.71489) |
| 33 | 1 | POINT (-72.44913 -42.71489) |
| 34 | 1 | POINT (-72.3593 -42.71489) |
| 35 | 1 | POINT (-72.26946 -42.71489) |
| 36 | 1 | POINT (-72.98812 -42.62506) |
| 37 | 1 | POINT (-72.89829 -42.62506) |
| 38 | 1 | POINT (-72.80845 -42.62506) |
| 39 | 1 | POINT (-72.71862 -42.62506) |
| 40 | 1 | POINT (-72.62879 -42.62506) |
| 41 | 1 | POINT (-72.53896 -42.62506) |
| 42 | 1 | POINT (-72.44913 -42.62506) |
| 43 | 1 | POINT (-72.3593 -42.62506) |
| 44 | 1 | POINT (-72.26946 -42.62506) |
| 45 | 1 | POINT (-72.98812 -42.53523) |
| 46 | 1 | POINT (-72.89829 -42.53523) |
| 47 | 1 | POINT (-72.80845 -42.53523) |
| 48 | 1 | POINT (-72.71862 -42.53523) |
| 49 | 1 | POINT (-72.62879 -42.53523) |
| 50 | 1 | POINT (-72.53896 -42.53523) |
| 51 | 1 | POINT (-72.44913 -42.53523) |
| 52 | 1 | POINT (-72.3593 -42.53523) |
| 53 | 1 | POINT (-72.26946 -42.53523) |
| 54 | 1 | POINT (-72.98812 -42.4454) |
| 55 | 1 | POINT (-72.89829 -42.4454) |
| 56 | 1 | POINT (-72.80845 -42.4454) |
| 57 | 1 | POINT (-72.71862 -42.4454) |
| 58 | 1 | POINT (-72.62879 -42.4454) |
| 59 | 1 | POINT (-72.53896 -42.4454) |
| 60 | 1 | POINT (-72.44913 -42.4454) |
| 61 | 1 | POINT (-72.3593 -42.4454) |
| 62 | 1 | POINT (-72.26946 -42.4454) |
| 63 | 1 | POINT (-72.98812 -42.35557) |
| 64 | 1 | POINT (-72.89829 -42.35557) |
| 65 | 1 | POINT (-72.80845 -42.35557) |
| 66 | 1 | POINT (-72.71862 -42.35557) |
| 67 | 1 | POINT (-72.62879 -42.35557) |
| 68 | 1 | POINT (-72.53896 -42.35557) |
| 69 | 1 | POINT (-72.44913 -42.35557) |
| 70 | 1 | POINT (-72.3593 -42.35557) |
| 71 | 1 | POINT (-72.26946 -42.35557) |
| 72 | 1 | POINT (-72.98812 -42.26573) |
| 73 | 1 | POINT (-72.89829 -42.26573) |
| 74 | 1 | POINT (-72.80845 -42.26573) |
| 75 | 1 | POINT (-72.71862 -42.26573) |
| 76 | 1 | POINT (-72.62879 -42.26573) |
| 77 | 1 | POINT (-72.53896 -42.26573) |
| 78 | 1 | POINT (-72.44913 -42.26573) |
| 79 | 1 | POINT (-72.3593 -42.26573) |
| 80 | 1 | POINT (-72.26946 -42.26573) |
| 81 | 1 | POINT (-72.98812 -42.1759) |
| 82 | 1 | POINT (-72.89829 -42.1759) |
| 83 | 1 | POINT (-72.80845 -42.1759) |
| 84 | 1 | POINT (-72.71862 -42.1759) |
| 85 | 1 | POINT (-72.62879 -42.1759) |
| 86 | 1 | POINT (-72.53896 -42.1759) |
| 87 | 1 | POINT (-72.44913 -42.1759) |
| 88 | 1 | POINT (-72.3593 -42.1759) |
| 89 | 1 | POINT (-72.26946 -42.1759) |
| 90 | 1 | POINT (-72.98812 -42.08607) |
| 91 | 1 | POINT (-72.89829 -42.08607) |
| 92 | 1 | POINT (-72.80845 -42.08607) |
| 93 | 1 | POINT (-72.71862 -42.08607) |
| 94 | 1 | POINT (-72.62879 -42.08607) |
| 95 | 1 | POINT (-72.53896 -42.08607) |
| 96 | 1 | POINT (-72.44913 -42.08607) |
| 97 | 1 | POINT (-72.3593 -42.08607) |
nrow(filtros_de_1_r)
## [1] 95
como es de esperar, en ésta zona la abrumadora mayoría de los pixeles son verdes.
Suma de las muestras:
filtros_de_0 y filtros_de_1_r
Ahora tenemos un dataframe que debemos convertir a FeatureCollection para poder construir la muestra de entrenamiento.
union_de_muestras <- rbind(filtros_de_0,filtros_de_1_r)
union_de_muestras %>% kbl() %>%
kable_material(c("striped", "hover"), font_size = 12)%>%
scroll_box(width = "100%", height = "500px")
| nd | geometry | |
|---|---|---|
| 1 | 0 | POINT (-72.23802 -42.99786) |
| 2 | 0 | POINT (-72.22904 -42.99786) |
| 4 | 0 | POINT (-72.23802 -42.98888) |
| 5 | 0 | POINT (-72.22904 -42.98888) |
| 6 | 0 | POINT (-72.22006 -42.98888) |
| 8 | 0 | POINT (-72.25599 -42.97989) |
| 9 | 0 | POINT (-72.21107 -42.97989) |
| 10 | 0 | POINT (-72.27396 -42.97091) |
| 11 | 0 | POINT (-72.22006 -42.97091) |
| 12 | 0 | POINT (-72.22904 -42.90803) |
| 13 | 0 | POINT (-72.24701 -42.89905) |
| 14 | 0 | POINT (-72.23802 -42.89905) |
| 15 | 0 | POINT (-72.52548 -42.88108) |
| 17 | 0 | POINT (-72.53447 -42.8721) |
| 22 | 0 | POINT (-72.53447 -42.86311) |
| 27 | 0 | POINT (-72.4626 -42.85413) |
| 32 | 0 | POINT (-72.45362 -42.84515) |
| 37 | 0 | POINT (-72.33684 -42.83616) |
| 38 | 0 | POINT (-72.32786 -42.83616) |
| 39 | 0 | POINT (-72.31887 -42.83616) |
| 40 | 0 | POINT (-72.30989 -42.83616) |
| 41 | 0 | POINT (-72.52548 -42.82718) |
| 42 | 0 | POINT (-72.5165 -42.82718) |
| 44 | 0 | POINT (-72.26497 -42.82718) |
| 49 | 0 | POINT (-72.50752 -42.80023) |
| 58 | 0 | POINT (-72.37277 -42.77328) |
| 59 | 0 | POINT (-72.36379 -42.77328) |
| 60 | 0 | POINT (-72.3548 -42.77328) |
| 61 | 0 | POINT (-72.47159 -42.7643) |
| 62 | 0 | POINT (-72.4626 -42.7643) |
| 63 | 0 | POINT (-72.45362 -42.7643) |
| 67 | 0 | POINT (-72.39074 -42.7643) |
| 68 | 0 | POINT (-72.38175 -42.7643) |
| 70 | 0 | POINT (-72.33684 -42.6565) |
| 71 | 0 | POINT (-72.30091 -42.63853) |
| 73 | 0 | POINT (-72.28294 -42.62955) |
| 74 | 0 | POINT (-72.33684 -42.61159) |
| 75 | 0 | POINT (-72.26497 -42.61159) |
| 76 | 0 | POINT (-72.34582 -42.6026) |
| 77 | 0 | POINT (-72.33684 -42.6026) |
| 78 | 0 | POINT (-72.34582 -42.59362) |
| 79 | 0 | POINT (-72.38175 -42.58464) |
| 80 | 0 | POINT (-72.37277 -42.58464) |
| 81 | 0 | POINT (-72.31887 -42.57565) |
| 82 | 0 | POINT (-72.34582 -42.56667) |
| 83 | 0 | POINT (-72.39972 -42.55769) |
| 84 | 0 | POINT (-72.21107 -42.53972) |
| 85 | 0 | POINT (-72.20209 -42.50379) |
| 86 | 0 | POINT (-72.38175 -42.44989) |
| 87 | 0 | POINT (-72.37277 -42.44989) |
| 89 | 0 | POINT (-72.38175 -42.44091) |
| 90 | 0 | POINT (-72.37277 -42.44091) |
| 91 | 0 | POINT (-72.38175 -42.43192) |
| 92 | 0 | POINT (-72.24701 -42.42294) |
| 93 | 0 | POINT (-72.34582 -42.41396) |
| 95 | 0 | POINT (-72.32786 -42.40497) |
| 96 | 0 | POINT (-72.37277 -42.39599) |
| 97 | 0 | POINT (-72.37277 -42.38701) |
| 98 | 0 | POINT (-72.23802 -42.38701) |
| 99 | 0 | POINT (-72.28294 -42.36006) |
| 100 | 0 | POINT (-72.23802 -42.33311) |
| 101 | 0 | POINT (-72.22006 -42.33311) |
| 102 | 0 | POINT (-72.22006 -42.31514) |
| 103 | 0 | POINT (-72.22904 -42.30616) |
| 104 | 0 | POINT (-72.22006 -42.29718) |
| 106 | 0 | POINT (-72.25599 -42.26124) |
| 107 | 0 | POINT (-72.27396 -42.25226) |
| 108 | 0 | POINT (-72.22006 -42.25226) |
| 109 | 0 | POINT (-72.21107 -42.25226) |
| 110 | 0 | POINT (-72.20209 -42.25226) |
| 111 | 0 | POINT (-72.20209 -42.16243) |
| 112 | 0 | POINT (-72.21107 -42.15344) |
| 113 | 0 | POINT (-72.20209 -42.15344) |
| 114 | 0 | POINT (-72.23802 -42.14446) |
| 115 | 0 | POINT (-72.25599 -42.13548) |
| 117 | 0 | POINT (-72.22904 -42.13548) |
| 118 | 0 | POINT (-72.25599 -42.1265) |
| 119 | 0 | POINT (-72.24701 -42.1265) |
| 124 | 0 | POINT (-72.22006 -42.09955) |
| 126 | 0 | POINT (-72.34582 -42.09056) |
| 128 | 0 | POINT (-72.25599 -42.09056) |
| 129 | 0 | POINT (-72.23802 -42.09056) |
| 130 | 0 | POINT (-72.22006 -42.09056) |
| 131 | 0 | POINT (-72.21107 -42.09056) |
| 132 | 0 | POINT (-72.23802 -42.08158) |
| 133 | 0 | POINT (-72.21107 -42.0726) |
| 134 | 0 | POINT (-72.33684 -42.06361) |
| 135 | 0 | POINT (-72.29192 -42.06361) |
| 138 | 0 | POINT (-72.25599 -42.06361) |
| 139 | 0 | POINT (-72.33684 -42.05463) |
| 140 | 0 | POINT (-72.32786 -42.05463) |
| 141 | 0 | POINT (-72.30989 -42.05463) |
| 142 | 0 | POINT (-72.3548 -42.04565) |
| 143 | 0 | POINT (-72.33684 -42.04565) |
| 145 | 0 | POINT (-72.30989 -42.04565) |
| 146 | 0 | POINT (-72.36379 -42.03666) |
| 147 | 0 | POINT (-72.3548 -42.03666) |
| 149 | 0 | POINT (-72.30091 -42.03666) |
| 150 | 0 | POINT (-72.29192 -42.03666) |
| 151 | 0 | POINT (-72.31887 -42.02768) |
| 152 | 0 | POINT (-72.30091 -42.02768) |
| 153 | 0 | POINT (-72.3548 -42.0187) |
| 154 | 0 | POINT (-72.34582 -42.0187) |
| 155 | 0 | POINT (-72.29192 -42.0187) |
| 157 | 0 | POINT (-72.22904 -42.0187) |
| 158 | 0 | POINT (-72.22006 -42.0187) |
| 159 | 0 | POINT (-72.21107 -42.0187) |
| 160 | 0 | POINT (-72.20209 -42.0187) |
| 161 | 0 | POINT (-72.3548 -42.00971) |
| 162 | 0 | POINT (-72.34582 -42.00971) |
| 164 | 0 | POINT (-72.22904 -42.00971) |
| 165 | 0 | POINT (-72.22006 -42.00971) |
| 166 | 0 | POINT (-72.21107 -42.00971) |
| 167 | 0 | POINT (-72.3548 -42.00073) |
| 168 | 0 | POINT (-72.33684 -42.00073) |
| 170 | 0 | POINT (-72.25599 -42.00073) |
| 18 | 1 | POINT (-72.98812 -42.98439) |
| 210 | 1 | POINT (-72.89829 -42.98439) |
| 3 | 1 | POINT (-72.80845 -42.98439) |
| 410 | 1 | POINT (-72.71862 -42.98439) |
| 510 | 1 | POINT (-72.62879 -42.98439) |
| 610 | 1 | POINT (-72.53896 -42.98439) |
| 7 | 1 | POINT (-72.44913 -42.98439) |
| 810 | 1 | POINT (-72.3593 -42.98439) |
| 910 | 1 | POINT (-72.26946 -42.98439) |
| 105 | 1 | POINT (-72.98812 -42.89455) |
| 116 | 1 | POINT (-72.89829 -42.89455) |
| 121 | 1 | POINT (-72.80845 -42.89455) |
| 136 | 1 | POINT (-72.71862 -42.89455) |
| 156 | 1 | POINT (-72.53896 -42.89455) |
| 16 | 1 | POINT (-72.44913 -42.89455) |
| 171 | 1 | POINT (-72.3593 -42.89455) |
| 19 | 1 | POINT (-72.98812 -42.80472) |
| 20 | 1 | POINT (-72.89829 -42.80472) |
| 21 | 1 | POINT (-72.80845 -42.80472) |
| 221 | 1 | POINT (-72.71862 -42.80472) |
| 23 | 1 | POINT (-72.62879 -42.80472) |
| 24 | 1 | POINT (-72.53896 -42.80472) |
| 25 | 1 | POINT (-72.3593 -42.80472) |
| 26 | 1 | POINT (-72.26946 -42.80472) |
| 271 | 1 | POINT (-72.98812 -42.71489) |
| 28 | 1 | POINT (-72.89829 -42.71489) |
| 29 | 1 | POINT (-72.80845 -42.71489) |
| 30 | 1 | POINT (-72.71862 -42.71489) |
| 31 | 1 | POINT (-72.62879 -42.71489) |
| 321 | 1 | POINT (-72.53896 -42.71489) |
| 33 | 1 | POINT (-72.44913 -42.71489) |
| 34 | 1 | POINT (-72.3593 -42.71489) |
| 35 | 1 | POINT (-72.26946 -42.71489) |
| 36 | 1 | POINT (-72.98812 -42.62506) |
| 371 | 1 | POINT (-72.89829 -42.62506) |
| 381 | 1 | POINT (-72.80845 -42.62506) |
| 391 | 1 | POINT (-72.71862 -42.62506) |
| 401 | 1 | POINT (-72.62879 -42.62506) |
| 411 | 1 | POINT (-72.53896 -42.62506) |
| 421 | 1 | POINT (-72.44913 -42.62506) |
| 43 | 1 | POINT (-72.3593 -42.62506) |
| 441 | 1 | POINT (-72.26946 -42.62506) |
| 45 | 1 | POINT (-72.98812 -42.53523) |
| 46 | 1 | POINT (-72.89829 -42.53523) |
| 47 | 1 | POINT (-72.80845 -42.53523) |
| 48 | 1 | POINT (-72.71862 -42.53523) |
| 491 | 1 | POINT (-72.62879 -42.53523) |
| 50 | 1 | POINT (-72.53896 -42.53523) |
| 51 | 1 | POINT (-72.44913 -42.53523) |
| 52 | 1 | POINT (-72.3593 -42.53523) |
| 53 | 1 | POINT (-72.26946 -42.53523) |
| 54 | 1 | POINT (-72.98812 -42.4454) |
| 55 | 1 | POINT (-72.89829 -42.4454) |
| 56 | 1 | POINT (-72.80845 -42.4454) |
| 57 | 1 | POINT (-72.71862 -42.4454) |
| 581 | 1 | POINT (-72.62879 -42.4454) |
| 591 | 1 | POINT (-72.53896 -42.4454) |
| 601 | 1 | POINT (-72.44913 -42.4454) |
| 611 | 1 | POINT (-72.3593 -42.4454) |
| 621 | 1 | POINT (-72.26946 -42.4454) |
| 631 | 1 | POINT (-72.98812 -42.35557) |
| 64 | 1 | POINT (-72.89829 -42.35557) |
| 65 | 1 | POINT (-72.80845 -42.35557) |
| 66 | 1 | POINT (-72.71862 -42.35557) |
| 671 | 1 | POINT (-72.62879 -42.35557) |
| 681 | 1 | POINT (-72.53896 -42.35557) |
| 69 | 1 | POINT (-72.44913 -42.35557) |
| 701 | 1 | POINT (-72.3593 -42.35557) |
| 711 | 1 | POINT (-72.26946 -42.35557) |
| 72 | 1 | POINT (-72.98812 -42.26573) |
| 731 | 1 | POINT (-72.89829 -42.26573) |
| 741 | 1 | POINT (-72.80845 -42.26573) |
| 751 | 1 | POINT (-72.71862 -42.26573) |
| 761 | 1 | POINT (-72.62879 -42.26573) |
| 771 | 1 | POINT (-72.53896 -42.26573) |
| 781 | 1 | POINT (-72.44913 -42.26573) |
| 791 | 1 | POINT (-72.3593 -42.26573) |
| 801 | 1 | POINT (-72.26946 -42.26573) |
| 811 | 1 | POINT (-72.98812 -42.1759) |
| 821 | 1 | POINT (-72.89829 -42.1759) |
| 831 | 1 | POINT (-72.80845 -42.1759) |
| 841 | 1 | POINT (-72.71862 -42.1759) |
| 851 | 1 | POINT (-72.62879 -42.1759) |
| 861 | 1 | POINT (-72.53896 -42.1759) |
| 871 | 1 | POINT (-72.44913 -42.1759) |
| 88 | 1 | POINT (-72.3593 -42.1759) |
| 891 | 1 | POINT (-72.26946 -42.1759) |
| 901 | 1 | POINT (-72.98812 -42.08607) |
| 911 | 1 | POINT (-72.89829 -42.08607) |
| 921 | 1 | POINT (-72.80845 -42.08607) |
| 931 | 1 | POINT (-72.71862 -42.08607) |
| 94 | 1 | POINT (-72.62879 -42.08607) |
| 951 | 1 | POINT (-72.53896 -42.08607) |
| 961 | 1 | POINT (-72.44913 -42.08607) |
| 971 | 1 | POINT (-72.3593 -42.08607) |
nrow(union_de_muestras)
## [1] 211
saveRDS(union_de_muestras, "union_de_muestras.rds")
Algebra de conjuntos:
# Create two circular geometries.
poly1 <- ee$Geometry$Point(c(-50, 30))$buffer(1e6)
poly2 <- ee$Geometry$Point(c(-40, 30))$buffer(1e6)
# Display polygon 1 in red and polygon 2 in blue.
Map$setCenter(-45, 30, zoom = 5)
Map$addLayer(poly1, list(color = "FF0000"), "poly1") +
Map$addLayer(poly2, list(color = "0000FF"), "poly2")
# Compute the intersection, display it in blue.
Map$setCenter(-45, 30, zoom = 5)
intersection <- poly1$intersection(poly2, ee$ErrorMargin(1))
Map$addLayer(intersection, list(color = "00FF00"), "intersection")
# Compute the union, display it in magenta.
Map$setCenter(-45, 30, zoom = 5)
union <- poly1$union(poly2, ee$ErrorMargin(1))
Map$addLayer(union, list(color = "FF00FF"), "union")
# Compute the difference, display in yellow.
Map$setCenter(-45, 30, zoom = 5)
diff1 <- poly1$difference(poly2, ee$ErrorMargin(1))
Map$addLayer(diff1, list(color = "FFFF00"), "diff1")
https://www.rdocumentation.org/packages/BiocGenerics/versions/0.18.0/topics/sets
# selectMethod("intersect",c(region, region_0))
# ggg
box <- ee$Geometry$Rectangle(coords = c(-73,-43,-72.462,-42.811),
## WGS 84
proj = "EPSG:4326",
geodesic = FALSE)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(box)
vias<-readOGR(".","region_los_lagos")
## OGR data source with driver: ESRI Shapefile
## Source: "C:\Users\usuario\Desktop\ds\ds_rgee\cart", layer: "region_los_lagos"
## with 1 features
## It has 17 fields
## Integer64 fields read as strings: FID_1 TOTAL_VIVI PARTICULAR COLECTIVAS TOTAL_PERS HOMBRES MUJERES
summary(vias)
## Object of class SpatialPolygonsDataFrame
## Coordinates:
## min max
## x -74.83774 -71.58093
## y -44.06706 -40.23878
## Is projected: FALSE
## proj4string : [+proj=longlat +datum=WGS84 +no_defs]
## Data attributes:
## FID_1 REGION NOM_REGION TOTAL_VIVI
## Length:1 Length:1 Length:1 Length:1
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## PARTICULAR COLECTIVAS TOTAL_PERS HOMBRES
## Length:1 Length:1 Length:1 Length:1
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## MUJERES DENSIDAD INDICE_MAS INDICE_DEP
## Length:1 Min. :17.11 Min. :97.64 Min. :47.03
## Class :character 1st Qu.:17.11 1st Qu.:97.64 1st Qu.:47.03
## Mode :character Median :17.11 Median :97.64 Median :47.03
## Mean :17.11 Mean :97.64 Mean :47.03
## 3rd Qu.:17.11 3rd Qu.:97.64 3rd Qu.:47.03
## Max. :17.11 Max. :97.64 Max. :47.03
## IND_DEP_JU IND_DEP_VE SHAPE_Leng Shape_Le_1
## Min. :30.55 Min. :16.48 Min. :7760164 Min. :60.65
## 1st Qu.:30.55 1st Qu.:16.48 1st Qu.:7760164 1st Qu.:60.65
## Median :30.55 Median :16.48 Median :7760164 Median :60.65
## Mean :30.55 Mean :16.48 Mean :7760164 Mean :60.65
## 3rd Qu.:30.55 3rd Qu.:16.48 3rd Qu.:7760164 3rd Qu.:60.65
## Max. :30.55 Max. :16.48 Max. :7760164 Max. :60.65
## Shape_Area
## Min. :5.259
## 1st Qu.:5.259
## Median :5.259
## Mean :5.259
## 3rd Qu.:5.259
## Max. :5.259
https://ecodata.nrel.colostate.edu/gdpe-gee-remote-sensing-lessons/module7.html
Referencias:
https://drive.google.com/drive/folders/1yDB9oZBS6ZSZ-U1Rf7WsNlLdaHdHl-3z
https://rstudio-pubs-static.s3.amazonaws.com/643255_63554e7e1f9f466dad4f9e62ff977a88.html
https://drive.google.com/drive/folders/1yDB9oZBS6ZSZ-U1Rf7WsNlLdaHdHl-3z?usp=sharing
https://rstudio-pubs-static.s3.amazonaws.com/639598_f8b124e23b7949a49250693dc3c5a6a7.html
https://github.com/csaybar/rgee/blob/examples//GetStarted/03_finding_images.R
https://rpubs.com/daniballari/raster
https://rpubs.com/ohfrancom/618462
https://www.ide.cl/index.php/limites-y-fronteras/item/1528-division-politica-administrativa-2020
Catastro de Lagos https://www.ide.cl/index.php/aguas-continentales/item/1508-catastro-de-lagos
Lagos de Chile
http://datos.cedeus.cl/layers/geonode:cl_lagos_geo