Índice


1 Elaboración del NDGI

(volver al índice)

1. Gráfica del shape de la región de los lagos

Tenemos una función que grafica inmediatamente la forma de un shape:

# leemos el shp:
mask <- st_read("region_los_lagos.shp", 
        quiet = TRUE) %>% 
        sf_as_ee()
# convertimos el shp en geometria:
region <- mask$geometry()
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(region)


Cruzamos con data Sentinel filtrada:

start <- ee$Date("2014-06-01")
finish <- ee$Date("2014-10-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate("2019-03-01", "2020-03-01")$filterBounds(region)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(first, vizParams, "Landsat 8 image")

2. Matemáticas de mapas

Cálculo del Normalized Difference Glacier Index (NDGI):

\[ NDGI = {B_3-B_4 \over B_3+B_4} \]

normalizedDifference calcula la diferencia normalizada entre dos bandas. Es:

\[{B1 - B2 } \over { B1 + B2}\]

Los valores de entrada negativos se fuerzan a 0 para que el resultado se limite al rango (-1, 1).


3. Obtengamos los píxeles del NDGI para tres rangos:

El Índice Glaciar Diferencial Normalizado (NDGI) se utiliza para ayudar a detectar y monitorear glaciares utilizando las bandas espectrales verde y roja. Esta ecuación se utiliza comúnmente en la detección de glaciares y en aplicaciones de monitoreo de glaciares.

  1. NDGI
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) 
}

ndgi <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(ndgi, ndgiParams, "NDGI")
  1. NDGI < 0
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) < 0
}

ndgi_04 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(ndgi_04, ndgiParams, "NDGI")
  1. NDGI > 0

Aca hay que agregar un paso. Debemos pintar solo los pixeles rojos

getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > 0
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")


4. Cortamos con geometrías geográficas de glaciares

mask_0 <- st_read("Lim_glaciares_v2_Simplify.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()

Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(region_0)
# mask_0 <- st_read("cl_lagos_geo/cl_lagos_geoPolygon.shp",
#         quiet = TRUE) %>%
#         sf_as_ee()
# 
# # convertimos el shp en geometria:
# region_0 <- mask_0$geometry()
# 
# Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
# Map$addLayer(region_0)

Tomemos el raster generado con NDGI > 0: ngdi_01 en una caja coords = c(-73,-43,-72,-42.5)

box <- ee$Geometry$Rectangle(coords = c(-73,-43,-72,-42.5),
                             ## WGS 84
                             proj = "EPSG:4326",
                             geodesic = FALSE)
sale <- ndgi_01$clip(box)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale, ndgiParams, "NDGI")

el raster sale contiene el corte de ndgi_01 con la caja.

tomemos una caja mas amplia:

box_1 <- ee$Geometry$Rectangle(coords = c(-74.83774,-44.06706,-71.58093,-40.23878),
                             proj = "EPSG:4326",
                             geodesic = FALSE)
sale_2 <- ndgi_01$clip(box_1)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale_2, ndgiParams, "NDGI")

y ahora intersectamos con el shp de los glaciares de Chile:

figura n°1

sale_4 <- sale_2$clip(region_0)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale_4, ndgiParams, "NDGI")



Segunda parte: construcción de muestras

(volver al índice)

Se deben construir dos mapas que sirvan de alimento a dos poblaciones muestrales. El primero ya lo tenemos y lo acabamos de desplegar: se llama sale_4. Las muestras aquí contienen el valor 0: rojo.

Para el segundo necesitamos construir una región que contenga las áreas glaciares como espacios vacíos. Es lo que vamos a hacer a continuación. Las muestras aquí contienen el valor 1: verde.

Construyamos una geometría en forma de rectángulo box_2:

box_2 <- ee$Geometry$Rectangle(coords = c(-73,-43,-72.2,-42),
                             proj = "EPSG:4326",
                             geodesic = FALSE)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(box_2)


Restémosela al shape de la región y coloreémosla de amarillo:

diff1 <- region$difference(box_2, ee$ErrorMargin(1))
Map$addLayer(diff1, list(color = "FFFF00"), "diff1")


La misma idea vamos a aplicar para seleccionar una región que excluya las áreas glaciares. Vamos a considerar el mismo cuadrado y eliminaremos las áreas de no interés. El proceso es muy largo, así que consideramos por el momento sólo la región acotada por el rectángulo.

diff1 <- box_2$difference(region_0, ee$ErrorMargin(1))
Map$addLayer(diff1, list(color = "FFFF00"), "diff1")


Obtenemos el negativo de figura n°1 en el rectángulo en cuestión y la llamamos figura n°2:

sale_3 <- sale_2$clip(diff1)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(sale_3, ndgiParams, "NDGI")

Seleccion de muestras:

Ahora tenemos listos los dos rasters a partir de los cuales podemos extraer las muestras.


I Intersectamos nuestro raster resultado con la region de glaciares:

extraer aleatoriamente las muestras de 10 mts. encontrar funcion

primero resolver en R.

 mySamples <- sale_3$sampleRegions(
    collection = ee$Feature(region_0),
    scale = 1000,
    tileScale = 16,
    geometries = TRUE
  )


Desplegamos la data y la cantidad de registros:

  mySamples_sf_batch <-  ee_as_sf(mySamples) 
  mySamples_sf_batch <- as.data.frame((mySamples_sf_batch))
  
  mySamples_sf_batch  %>%  kbl() %>%
  kable_material(c("striped", "hover"), font_size = 12)%>%
  scroll_box(width = "100%", height = "500px")
nd geometry
0 POINT (-72.23802 -42.99786)
0 POINT (-72.22904 -42.99786)
1 POINT (-72.25599 -42.98888)
0 POINT (-72.23802 -42.98888)
0 POINT (-72.22904 -42.98888)
0 POINT (-72.22006 -42.98888)
1 POINT (-72.31887 -42.97989)
0 POINT (-72.25599 -42.97989)
0 POINT (-72.21107 -42.97989)
0 POINT (-72.27396 -42.97091)
0 POINT (-72.22006 -42.97091)
0 POINT (-72.22904 -42.90803)
0 POINT (-72.24701 -42.89905)
0 POINT (-72.23802 -42.89905)
0 POINT (-72.52548 -42.88108)
1 POINT (-72.45362 -42.88108)
0 POINT (-72.53447 -42.8721)
1 POINT (-72.50752 -42.8721)
1 POINT (-72.48955 -42.8721)
1 POINT (-72.45362 -42.8721)
1 POINT (-72.44464 -42.8721)
0 POINT (-72.53447 -42.86311)
1 POINT (-72.50752 -42.86311)
1 POINT (-72.49854 -42.86311)
1 POINT (-72.48955 -42.86311)
1 POINT (-72.39972 -42.86311)
0 POINT (-72.4626 -42.85413)
1 POINT (-72.45362 -42.85413)
1 POINT (-72.43565 -42.85413)
1 POINT (-72.39972 -42.85413)
1 POINT (-72.47159 -42.84515)
0 POINT (-72.45362 -42.84515)
1 POINT (-72.42667 -42.84515)
1 POINT (-72.41769 -42.84515)
1 POINT (-72.4087 -42.84515)
1 POINT (-72.39972 -42.84515)
0 POINT (-72.33684 -42.83616)
0 POINT (-72.32786 -42.83616)
0 POINT (-72.31887 -42.83616)
0 POINT (-72.30989 -42.83616)
0 POINT (-72.52548 -42.82718)
0 POINT (-72.5165 -42.82718)
1 POINT (-72.39074 -42.82718)
0 POINT (-72.26497 -42.82718)
1 POINT (-72.5165 -42.8182)
1 POINT (-72.39074 -42.8182)
1 POINT (-72.38175 -42.80921)
1 POINT (-72.37277 -42.80921)
0 POINT (-72.50752 -42.80023)
1 POINT (-72.37277 -42.80023)
1 POINT (-72.49854 -42.79125)
1 POINT (-72.49854 -42.78227)
1 POINT (-72.48955 -42.78227)
1 POINT (-72.33684 -42.78227)
1 POINT (-72.48057 -42.77328)
1 POINT (-72.43565 -42.77328)
1 POINT (-72.42667 -42.77328)
0 POINT (-72.37277 -42.77328)
0 POINT (-72.36379 -42.77328)
0 POINT (-72.3548 -42.77328)
0 POINT (-72.47159 -42.7643)
0 POINT (-72.4626 -42.7643)
0 POINT (-72.45362 -42.7643)
1 POINT (-72.42667 -42.7643)
1 POINT (-72.41769 -42.7643)
1 POINT (-72.39972 -42.7643)
0 POINT (-72.39074 -42.7643)
0 POINT (-72.38175 -42.7643)
1 POINT (-72.42667 -42.75532)
0 POINT (-72.33684 -42.6565)
0 POINT (-72.30091 -42.63853)
1 POINT (-72.23802 -42.63853)
0 POINT (-72.28294 -42.62955)
0 POINT (-72.33684 -42.61159)
0 POINT (-72.26497 -42.61159)
0 POINT (-72.34582 -42.6026)
0 POINT (-72.33684 -42.6026)
0 POINT (-72.34582 -42.59362)
0 POINT (-72.38175 -42.58464)
0 POINT (-72.37277 -42.58464)
0 POINT (-72.31887 -42.57565)
0 POINT (-72.34582 -42.56667)
0 POINT (-72.39972 -42.55769)
0 POINT (-72.21107 -42.53972)
0 POINT (-72.20209 -42.50379)
0 POINT (-72.38175 -42.44989)
0 POINT (-72.37277 -42.44989)
1 POINT (-72.31887 -42.44989)
0 POINT (-72.38175 -42.44091)
0 POINT (-72.37277 -42.44091)
0 POINT (-72.38175 -42.43192)
0 POINT (-72.24701 -42.42294)
0 POINT (-72.34582 -42.41396)
1 POINT (-72.36379 -42.40497)
0 POINT (-72.32786 -42.40497)
0 POINT (-72.37277 -42.39599)
0 POINT (-72.37277 -42.38701)
0 POINT (-72.23802 -42.38701)
0 POINT (-72.28294 -42.36006)
0 POINT (-72.23802 -42.33311)
0 POINT (-72.22006 -42.33311)
0 POINT (-72.22006 -42.31514)
0 POINT (-72.22904 -42.30616)
0 POINT (-72.22006 -42.29718)
1 POINT (-72.21107 -42.27921)
0 POINT (-72.25599 -42.26124)
0 POINT (-72.27396 -42.25226)
0 POINT (-72.22006 -42.25226)
0 POINT (-72.21107 -42.25226)
0 POINT (-72.20209 -42.25226)
0 POINT (-72.20209 -42.16243)
0 POINT (-72.21107 -42.15344)
0 POINT (-72.20209 -42.15344)
0 POINT (-72.23802 -42.14446)
0 POINT (-72.25599 -42.13548)
1 POINT (-72.24701 -42.13548)
0 POINT (-72.22904 -42.13548)
0 POINT (-72.25599 -42.1265)
0 POINT (-72.24701 -42.1265)
1 POINT (-72.27396 -42.10853)
1 POINT (-72.22904 -42.10853)
1 POINT (-72.24701 -42.09955)
1 POINT (-72.23802 -42.09955)
0 POINT (-72.22006 -42.09955)
1 POINT (-72.3548 -42.09056)
0 POINT (-72.34582 -42.09056)
1 POINT (-72.26497 -42.09056)
0 POINT (-72.25599 -42.09056)
0 POINT (-72.23802 -42.09056)
0 POINT (-72.22006 -42.09056)
0 POINT (-72.21107 -42.09056)
0 POINT (-72.23802 -42.08158)
0 POINT (-72.21107 -42.0726)
0 POINT (-72.33684 -42.06361)
0 POINT (-72.29192 -42.06361)
1 POINT (-72.27396 -42.06361)
1 POINT (-72.26497 -42.06361)
0 POINT (-72.25599 -42.06361)
0 POINT (-72.33684 -42.05463)
0 POINT (-72.32786 -42.05463)
0 POINT (-72.30989 -42.05463)
0 POINT (-72.3548 -42.04565)
0 POINT (-72.33684 -42.04565)
1 POINT (-72.32786 -42.04565)
0 POINT (-72.30989 -42.04565)
0 POINT (-72.36379 -42.03666)
0 POINT (-72.3548 -42.03666)
1 POINT (-72.32786 -42.03666)
0 POINT (-72.30091 -42.03666)
0 POINT (-72.29192 -42.03666)
0 POINT (-72.31887 -42.02768)
0 POINT (-72.30091 -42.02768)
0 POINT (-72.3548 -42.0187)
0 POINT (-72.34582 -42.0187)
0 POINT (-72.29192 -42.0187)
1 POINT (-72.23802 -42.0187)
0 POINT (-72.22904 -42.0187)
0 POINT (-72.22006 -42.0187)
0 POINT (-72.21107 -42.0187)
0 POINT (-72.20209 -42.0187)
0 POINT (-72.3548 -42.00971)
0 POINT (-72.34582 -42.00971)
1 POINT (-72.23802 -42.00971)
0 POINT (-72.22904 -42.00971)
0 POINT (-72.22006 -42.00971)
0 POINT (-72.21107 -42.00971)
0 POINT (-72.3548 -42.00073)
0 POINT (-72.33684 -42.00073)
1 POINT (-72.32786 -42.00073)
0 POINT (-72.25599 -42.00073)
1 POINT (-72.21107 -42.00073)
nrow(mySamples_sf_batch)
## [1] 171


la minoría son verdes: 1

filtros_de_1 <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "1")
saveRDS(filtros_de_1,"muestra_1.rds")
filtros_de_1  %>%  kbl() %>%
  kable_material(c("striped", "hover"), font_size = 12)%>%
  scroll_box(width = "100%", height = "500px")
nd geometry
3 1 POINT (-72.25599 -42.98888)
7 1 POINT (-72.31887 -42.97989)
16 1 POINT (-72.45362 -42.88108)
18 1 POINT (-72.50752 -42.8721)
19 1 POINT (-72.48955 -42.8721)
20 1 POINT (-72.45362 -42.8721)
21 1 POINT (-72.44464 -42.8721)
23 1 POINT (-72.50752 -42.86311)
24 1 POINT (-72.49854 -42.86311)
25 1 POINT (-72.48955 -42.86311)
26 1 POINT (-72.39972 -42.86311)
28 1 POINT (-72.45362 -42.85413)
29 1 POINT (-72.43565 -42.85413)
30 1 POINT (-72.39972 -42.85413)
31 1 POINT (-72.47159 -42.84515)
33 1 POINT (-72.42667 -42.84515)
34 1 POINT (-72.41769 -42.84515)
35 1 POINT (-72.4087 -42.84515)
36 1 POINT (-72.39972 -42.84515)
43 1 POINT (-72.39074 -42.82718)
45 1 POINT (-72.5165 -42.8182)
46 1 POINT (-72.39074 -42.8182)
47 1 POINT (-72.38175 -42.80921)
48 1 POINT (-72.37277 -42.80921)
50 1 POINT (-72.37277 -42.80023)
51 1 POINT (-72.49854 -42.79125)
52 1 POINT (-72.49854 -42.78227)
53 1 POINT (-72.48955 -42.78227)
54 1 POINT (-72.33684 -42.78227)
55 1 POINT (-72.48057 -42.77328)
56 1 POINT (-72.43565 -42.77328)
57 1 POINT (-72.42667 -42.77328)
64 1 POINT (-72.42667 -42.7643)
65 1 POINT (-72.41769 -42.7643)
66 1 POINT (-72.39972 -42.7643)
69 1 POINT (-72.42667 -42.75532)
72 1 POINT (-72.23802 -42.63853)
88 1 POINT (-72.31887 -42.44989)
94 1 POINT (-72.36379 -42.40497)
105 1 POINT (-72.21107 -42.27921)
116 1 POINT (-72.24701 -42.13548)
120 1 POINT (-72.27396 -42.10853)
121 1 POINT (-72.22904 -42.10853)
122 1 POINT (-72.24701 -42.09955)
123 1 POINT (-72.23802 -42.09955)
125 1 POINT (-72.3548 -42.09056)
127 1 POINT (-72.26497 -42.09056)
136 1 POINT (-72.27396 -42.06361)
137 1 POINT (-72.26497 -42.06361)
144 1 POINT (-72.32786 -42.04565)
148 1 POINT (-72.32786 -42.03666)
156 1 POINT (-72.23802 -42.0187)
163 1 POINT (-72.23802 -42.00971)
169 1 POINT (-72.32786 -42.00073)
171 1 POINT (-72.21107 -42.00073)
nrow(filtros_de_1)
## [1] 55


la mayoría son rojos: 0

filtros_de_0 <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "0")
filtros_de_0 %>%  kbl() %>%
  kable_material(c("striped", "hover"), font_size = 12)%>%
  scroll_box(width = "100%", height = "500px")
nd geometry
1 0 POINT (-72.23802 -42.99786)
2 0 POINT (-72.22904 -42.99786)
4 0 POINT (-72.23802 -42.98888)
5 0 POINT (-72.22904 -42.98888)
6 0 POINT (-72.22006 -42.98888)
8 0 POINT (-72.25599 -42.97989)
9 0 POINT (-72.21107 -42.97989)
10 0 POINT (-72.27396 -42.97091)
11 0 POINT (-72.22006 -42.97091)
12 0 POINT (-72.22904 -42.90803)
13 0 POINT (-72.24701 -42.89905)
14 0 POINT (-72.23802 -42.89905)
15 0 POINT (-72.52548 -42.88108)
17 0 POINT (-72.53447 -42.8721)
22 0 POINT (-72.53447 -42.86311)
27 0 POINT (-72.4626 -42.85413)
32 0 POINT (-72.45362 -42.84515)
37 0 POINT (-72.33684 -42.83616)
38 0 POINT (-72.32786 -42.83616)
39 0 POINT (-72.31887 -42.83616)
40 0 POINT (-72.30989 -42.83616)
41 0 POINT (-72.52548 -42.82718)
42 0 POINT (-72.5165 -42.82718)
44 0 POINT (-72.26497 -42.82718)
49 0 POINT (-72.50752 -42.80023)
58 0 POINT (-72.37277 -42.77328)
59 0 POINT (-72.36379 -42.77328)
60 0 POINT (-72.3548 -42.77328)
61 0 POINT (-72.47159 -42.7643)
62 0 POINT (-72.4626 -42.7643)
63 0 POINT (-72.45362 -42.7643)
67 0 POINT (-72.39074 -42.7643)
68 0 POINT (-72.38175 -42.7643)
70 0 POINT (-72.33684 -42.6565)
71 0 POINT (-72.30091 -42.63853)
73 0 POINT (-72.28294 -42.62955)
74 0 POINT (-72.33684 -42.61159)
75 0 POINT (-72.26497 -42.61159)
76 0 POINT (-72.34582 -42.6026)
77 0 POINT (-72.33684 -42.6026)
78 0 POINT (-72.34582 -42.59362)
79 0 POINT (-72.38175 -42.58464)
80 0 POINT (-72.37277 -42.58464)
81 0 POINT (-72.31887 -42.57565)
82 0 POINT (-72.34582 -42.56667)
83 0 POINT (-72.39972 -42.55769)
84 0 POINT (-72.21107 -42.53972)
85 0 POINT (-72.20209 -42.50379)
86 0 POINT (-72.38175 -42.44989)
87 0 POINT (-72.37277 -42.44989)
89 0 POINT (-72.38175 -42.44091)
90 0 POINT (-72.37277 -42.44091)
91 0 POINT (-72.38175 -42.43192)
92 0 POINT (-72.24701 -42.42294)
93 0 POINT (-72.34582 -42.41396)
95 0 POINT (-72.32786 -42.40497)
96 0 POINT (-72.37277 -42.39599)
97 0 POINT (-72.37277 -42.38701)
98 0 POINT (-72.23802 -42.38701)
99 0 POINT (-72.28294 -42.36006)
100 0 POINT (-72.23802 -42.33311)
101 0 POINT (-72.22006 -42.33311)
102 0 POINT (-72.22006 -42.31514)
103 0 POINT (-72.22904 -42.30616)
104 0 POINT (-72.22006 -42.29718)
106 0 POINT (-72.25599 -42.26124)
107 0 POINT (-72.27396 -42.25226)
108 0 POINT (-72.22006 -42.25226)
109 0 POINT (-72.21107 -42.25226)
110 0 POINT (-72.20209 -42.25226)
111 0 POINT (-72.20209 -42.16243)
112 0 POINT (-72.21107 -42.15344)
113 0 POINT (-72.20209 -42.15344)
114 0 POINT (-72.23802 -42.14446)
115 0 POINT (-72.25599 -42.13548)
117 0 POINT (-72.22904 -42.13548)
118 0 POINT (-72.25599 -42.1265)
119 0 POINT (-72.24701 -42.1265)
124 0 POINT (-72.22006 -42.09955)
126 0 POINT (-72.34582 -42.09056)
128 0 POINT (-72.25599 -42.09056)
129 0 POINT (-72.23802 -42.09056)
130 0 POINT (-72.22006 -42.09056)
131 0 POINT (-72.21107 -42.09056)
132 0 POINT (-72.23802 -42.08158)
133 0 POINT (-72.21107 -42.0726)
134 0 POINT (-72.33684 -42.06361)
135 0 POINT (-72.29192 -42.06361)
138 0 POINT (-72.25599 -42.06361)
139 0 POINT (-72.33684 -42.05463)
140 0 POINT (-72.32786 -42.05463)
141 0 POINT (-72.30989 -42.05463)
142 0 POINT (-72.3548 -42.04565)
143 0 POINT (-72.33684 -42.04565)
145 0 POINT (-72.30989 -42.04565)
146 0 POINT (-72.36379 -42.03666)
147 0 POINT (-72.3548 -42.03666)
149 0 POINT (-72.30091 -42.03666)
150 0 POINT (-72.29192 -42.03666)
151 0 POINT (-72.31887 -42.02768)
152 0 POINT (-72.30091 -42.02768)
153 0 POINT (-72.3548 -42.0187)
154 0 POINT (-72.34582 -42.0187)
155 0 POINT (-72.29192 -42.0187)
157 0 POINT (-72.22904 -42.0187)
158 0 POINT (-72.22006 -42.0187)
159 0 POINT (-72.21107 -42.0187)
160 0 POINT (-72.20209 -42.0187)
161 0 POINT (-72.3548 -42.00971)
162 0 POINT (-72.34582 -42.00971)
164 0 POINT (-72.22904 -42.00971)
165 0 POINT (-72.22006 -42.00971)
166 0 POINT (-72.21107 -42.00971)
167 0 POINT (-72.3548 -42.00073)
168 0 POINT (-72.33684 -42.00073)
170 0 POINT (-72.25599 -42.00073)
nrow(filtros_de_0)
## [1] 116


II Ahora intersectamos nuestro raster resultado sale_2, con la región que excluye los límites glaciares: diff1. Recordemos que acá seleccionamos los verdes: 1


Obtenemos las muestras:

 mySamples <- sale_2$sampleRegions(
    collection = ee$Feature(diff1),
    scale= 10000,
    tileScale=16,
    geometries=TRUE
  )


Desplegamos la data y el numero de columnas:

mySamples_sf_batch <-  ee_as_sf(mySamples) 
  mySamples_sf_batch <- as.data.frame((mySamples_sf_batch))
mySamples_sf_batch  %>%  kbl() %>%
  kable_material(c("striped", "hover"), font_size = 12)%>%
  scroll_box(width = "100%", height = "500px")
nd geometry
1 POINT (-72.98812 -42.98439)
1 POINT (-72.89829 -42.98439)
1 POINT (-72.80845 -42.98439)
1 POINT (-72.71862 -42.98439)
1 POINT (-72.62879 -42.98439)
1 POINT (-72.53896 -42.98439)
1 POINT (-72.44913 -42.98439)
1 POINT (-72.3593 -42.98439)
1 POINT (-72.26946 -42.98439)
1 POINT (-72.98812 -42.89455)
1 POINT (-72.89829 -42.89455)
1 POINT (-72.80845 -42.89455)
1 POINT (-72.71862 -42.89455)
0 POINT (-72.62879 -42.89455)
1 POINT (-72.53896 -42.89455)
1 POINT (-72.44913 -42.89455)
1 POINT (-72.3593 -42.89455)
0 POINT (-72.26946 -42.89455)
1 POINT (-72.98812 -42.80472)
1 POINT (-72.89829 -42.80472)
1 POINT (-72.80845 -42.80472)
1 POINT (-72.71862 -42.80472)
1 POINT (-72.62879 -42.80472)
1 POINT (-72.53896 -42.80472)
1 POINT (-72.3593 -42.80472)
1 POINT (-72.26946 -42.80472)
1 POINT (-72.98812 -42.71489)
1 POINT (-72.89829 -42.71489)
1 POINT (-72.80845 -42.71489)
1 POINT (-72.71862 -42.71489)
1 POINT (-72.62879 -42.71489)
1 POINT (-72.53896 -42.71489)
1 POINT (-72.44913 -42.71489)
1 POINT (-72.3593 -42.71489)
1 POINT (-72.26946 -42.71489)
1 POINT (-72.98812 -42.62506)
1 POINT (-72.89829 -42.62506)
1 POINT (-72.80845 -42.62506)
1 POINT (-72.71862 -42.62506)
1 POINT (-72.62879 -42.62506)
1 POINT (-72.53896 -42.62506)
1 POINT (-72.44913 -42.62506)
1 POINT (-72.3593 -42.62506)
1 POINT (-72.26946 -42.62506)
1 POINT (-72.98812 -42.53523)
1 POINT (-72.89829 -42.53523)
1 POINT (-72.80845 -42.53523)
1 POINT (-72.71862 -42.53523)
1 POINT (-72.62879 -42.53523)
1 POINT (-72.53896 -42.53523)
1 POINT (-72.44913 -42.53523)
1 POINT (-72.3593 -42.53523)
1 POINT (-72.26946 -42.53523)
1 POINT (-72.98812 -42.4454)
1 POINT (-72.89829 -42.4454)
1 POINT (-72.80845 -42.4454)
1 POINT (-72.71862 -42.4454)
1 POINT (-72.62879 -42.4454)
1 POINT (-72.53896 -42.4454)
1 POINT (-72.44913 -42.4454)
1 POINT (-72.3593 -42.4454)
1 POINT (-72.26946 -42.4454)
1 POINT (-72.98812 -42.35557)
1 POINT (-72.89829 -42.35557)
1 POINT (-72.80845 -42.35557)
1 POINT (-72.71862 -42.35557)
1 POINT (-72.62879 -42.35557)
1 POINT (-72.53896 -42.35557)
1 POINT (-72.44913 -42.35557)
1 POINT (-72.3593 -42.35557)
1 POINT (-72.26946 -42.35557)
1 POINT (-72.98812 -42.26573)
1 POINT (-72.89829 -42.26573)
1 POINT (-72.80845 -42.26573)
1 POINT (-72.71862 -42.26573)
1 POINT (-72.62879 -42.26573)
1 POINT (-72.53896 -42.26573)
1 POINT (-72.44913 -42.26573)
1 POINT (-72.3593 -42.26573)
1 POINT (-72.26946 -42.26573)
1 POINT (-72.98812 -42.1759)
1 POINT (-72.89829 -42.1759)
1 POINT (-72.80845 -42.1759)
1 POINT (-72.71862 -42.1759)
1 POINT (-72.62879 -42.1759)
1 POINT (-72.53896 -42.1759)
1 POINT (-72.44913 -42.1759)
1 POINT (-72.3593 -42.1759)
1 POINT (-72.26946 -42.1759)
1 POINT (-72.98812 -42.08607)
1 POINT (-72.89829 -42.08607)
1 POINT (-72.80845 -42.08607)
1 POINT (-72.71862 -42.08607)
1 POINT (-72.62879 -42.08607)
1 POINT (-72.53896 -42.08607)
1 POINT (-72.44913 -42.08607)
1 POINT (-72.3593 -42.08607)
0 POINT (-72.26946 -42.08607)
  nrow(mySamples_sf_batch)
## [1] 98


Obtenemos las muestras para el color rojo: 0

filtros_de_0_r <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "0")
saveRDS(filtros_de_0_r,"muestra_2.rds")
filtros_de_0_r %>%  kbl() %>%
  kable_material(c("striped", "hover"), font_size = 12)%>%
  scroll_box(width = "100%", height = "500px")
nd geometry
14 0 POINT (-72.62879 -42.89455)
18 0 POINT (-72.26946 -42.89455)
98 0 POINT (-72.26946 -42.08607)
nrow(filtros_de_0_r)
## [1] 3


Obtenemos las muestras para el color verde: 1

filtros_de_1_r <- subset(mySamples_sf_batch, mySamples_sf_batch$nd == "1")
filtros_de_1_r %>%  kbl() %>%
  kable_material(c("striped", "hover"), font_size = 12)%>%
  scroll_box(width = "100%", height = "500px")
nd geometry
1 1 POINT (-72.98812 -42.98439)
2 1 POINT (-72.89829 -42.98439)
3 1 POINT (-72.80845 -42.98439)
4 1 POINT (-72.71862 -42.98439)
5 1 POINT (-72.62879 -42.98439)
6 1 POINT (-72.53896 -42.98439)
7 1 POINT (-72.44913 -42.98439)
8 1 POINT (-72.3593 -42.98439)
9 1 POINT (-72.26946 -42.98439)
10 1 POINT (-72.98812 -42.89455)
11 1 POINT (-72.89829 -42.89455)
12 1 POINT (-72.80845 -42.89455)
13 1 POINT (-72.71862 -42.89455)
15 1 POINT (-72.53896 -42.89455)
16 1 POINT (-72.44913 -42.89455)
17 1 POINT (-72.3593 -42.89455)
19 1 POINT (-72.98812 -42.80472)
20 1 POINT (-72.89829 -42.80472)
21 1 POINT (-72.80845 -42.80472)
22 1 POINT (-72.71862 -42.80472)
23 1 POINT (-72.62879 -42.80472)
24 1 POINT (-72.53896 -42.80472)
25 1 POINT (-72.3593 -42.80472)
26 1 POINT (-72.26946 -42.80472)
27 1 POINT (-72.98812 -42.71489)
28 1 POINT (-72.89829 -42.71489)
29 1 POINT (-72.80845 -42.71489)
30 1 POINT (-72.71862 -42.71489)
31 1 POINT (-72.62879 -42.71489)
32 1 POINT (-72.53896 -42.71489)
33 1 POINT (-72.44913 -42.71489)
34 1 POINT (-72.3593 -42.71489)
35 1 POINT (-72.26946 -42.71489)
36 1 POINT (-72.98812 -42.62506)
37 1 POINT (-72.89829 -42.62506)
38 1 POINT (-72.80845 -42.62506)
39 1 POINT (-72.71862 -42.62506)
40 1 POINT (-72.62879 -42.62506)
41 1 POINT (-72.53896 -42.62506)
42 1 POINT (-72.44913 -42.62506)
43 1 POINT (-72.3593 -42.62506)
44 1 POINT (-72.26946 -42.62506)
45 1 POINT (-72.98812 -42.53523)
46 1 POINT (-72.89829 -42.53523)
47 1 POINT (-72.80845 -42.53523)
48 1 POINT (-72.71862 -42.53523)
49 1 POINT (-72.62879 -42.53523)
50 1 POINT (-72.53896 -42.53523)
51 1 POINT (-72.44913 -42.53523)
52 1 POINT (-72.3593 -42.53523)
53 1 POINT (-72.26946 -42.53523)
54 1 POINT (-72.98812 -42.4454)
55 1 POINT (-72.89829 -42.4454)
56 1 POINT (-72.80845 -42.4454)
57 1 POINT (-72.71862 -42.4454)
58 1 POINT (-72.62879 -42.4454)
59 1 POINT (-72.53896 -42.4454)
60 1 POINT (-72.44913 -42.4454)
61 1 POINT (-72.3593 -42.4454)
62 1 POINT (-72.26946 -42.4454)
63 1 POINT (-72.98812 -42.35557)
64 1 POINT (-72.89829 -42.35557)
65 1 POINT (-72.80845 -42.35557)
66 1 POINT (-72.71862 -42.35557)
67 1 POINT (-72.62879 -42.35557)
68 1 POINT (-72.53896 -42.35557)
69 1 POINT (-72.44913 -42.35557)
70 1 POINT (-72.3593 -42.35557)
71 1 POINT (-72.26946 -42.35557)
72 1 POINT (-72.98812 -42.26573)
73 1 POINT (-72.89829 -42.26573)
74 1 POINT (-72.80845 -42.26573)
75 1 POINT (-72.71862 -42.26573)
76 1 POINT (-72.62879 -42.26573)
77 1 POINT (-72.53896 -42.26573)
78 1 POINT (-72.44913 -42.26573)
79 1 POINT (-72.3593 -42.26573)
80 1 POINT (-72.26946 -42.26573)
81 1 POINT (-72.98812 -42.1759)
82 1 POINT (-72.89829 -42.1759)
83 1 POINT (-72.80845 -42.1759)
84 1 POINT (-72.71862 -42.1759)
85 1 POINT (-72.62879 -42.1759)
86 1 POINT (-72.53896 -42.1759)
87 1 POINT (-72.44913 -42.1759)
88 1 POINT (-72.3593 -42.1759)
89 1 POINT (-72.26946 -42.1759)
90 1 POINT (-72.98812 -42.08607)
91 1 POINT (-72.89829 -42.08607)
92 1 POINT (-72.80845 -42.08607)
93 1 POINT (-72.71862 -42.08607)
94 1 POINT (-72.62879 -42.08607)
95 1 POINT (-72.53896 -42.08607)
96 1 POINT (-72.44913 -42.08607)
97 1 POINT (-72.3593 -42.08607)
nrow(filtros_de_1_r)
## [1] 95


como es de esperar, en ésta zona la abrumadora mayoría de los pixeles son verdes.

Suma de las muestras:

filtros_de_0 y filtros_de_1_r


Ahora tenemos un dataframe que debemos convertir a FeatureCollection para poder construir la muestra de entrenamiento.

union_de_muestras <- rbind(filtros_de_0,filtros_de_1_r)
union_de_muestras %>%  kbl() %>%
  kable_material(c("striped", "hover"), font_size = 12)%>%
  scroll_box(width = "100%", height = "500px")
nd geometry
1 0 POINT (-72.23802 -42.99786)
2 0 POINT (-72.22904 -42.99786)
4 0 POINT (-72.23802 -42.98888)
5 0 POINT (-72.22904 -42.98888)
6 0 POINT (-72.22006 -42.98888)
8 0 POINT (-72.25599 -42.97989)
9 0 POINT (-72.21107 -42.97989)
10 0 POINT (-72.27396 -42.97091)
11 0 POINT (-72.22006 -42.97091)
12 0 POINT (-72.22904 -42.90803)
13 0 POINT (-72.24701 -42.89905)
14 0 POINT (-72.23802 -42.89905)
15 0 POINT (-72.52548 -42.88108)
17 0 POINT (-72.53447 -42.8721)
22 0 POINT (-72.53447 -42.86311)
27 0 POINT (-72.4626 -42.85413)
32 0 POINT (-72.45362 -42.84515)
37 0 POINT (-72.33684 -42.83616)
38 0 POINT (-72.32786 -42.83616)
39 0 POINT (-72.31887 -42.83616)
40 0 POINT (-72.30989 -42.83616)
41 0 POINT (-72.52548 -42.82718)
42 0 POINT (-72.5165 -42.82718)
44 0 POINT (-72.26497 -42.82718)
49 0 POINT (-72.50752 -42.80023)
58 0 POINT (-72.37277 -42.77328)
59 0 POINT (-72.36379 -42.77328)
60 0 POINT (-72.3548 -42.77328)
61 0 POINT (-72.47159 -42.7643)
62 0 POINT (-72.4626 -42.7643)
63 0 POINT (-72.45362 -42.7643)
67 0 POINT (-72.39074 -42.7643)
68 0 POINT (-72.38175 -42.7643)
70 0 POINT (-72.33684 -42.6565)
71 0 POINT (-72.30091 -42.63853)
73 0 POINT (-72.28294 -42.62955)
74 0 POINT (-72.33684 -42.61159)
75 0 POINT (-72.26497 -42.61159)
76 0 POINT (-72.34582 -42.6026)
77 0 POINT (-72.33684 -42.6026)
78 0 POINT (-72.34582 -42.59362)
79 0 POINT (-72.38175 -42.58464)
80 0 POINT (-72.37277 -42.58464)
81 0 POINT (-72.31887 -42.57565)
82 0 POINT (-72.34582 -42.56667)
83 0 POINT (-72.39972 -42.55769)
84 0 POINT (-72.21107 -42.53972)
85 0 POINT (-72.20209 -42.50379)
86 0 POINT (-72.38175 -42.44989)
87 0 POINT (-72.37277 -42.44989)
89 0 POINT (-72.38175 -42.44091)
90 0 POINT (-72.37277 -42.44091)
91 0 POINT (-72.38175 -42.43192)
92 0 POINT (-72.24701 -42.42294)
93 0 POINT (-72.34582 -42.41396)
95 0 POINT (-72.32786 -42.40497)
96 0 POINT (-72.37277 -42.39599)
97 0 POINT (-72.37277 -42.38701)
98 0 POINT (-72.23802 -42.38701)
99 0 POINT (-72.28294 -42.36006)
100 0 POINT (-72.23802 -42.33311)
101 0 POINT (-72.22006 -42.33311)
102 0 POINT (-72.22006 -42.31514)
103 0 POINT (-72.22904 -42.30616)
104 0 POINT (-72.22006 -42.29718)
106 0 POINT (-72.25599 -42.26124)
107 0 POINT (-72.27396 -42.25226)
108 0 POINT (-72.22006 -42.25226)
109 0 POINT (-72.21107 -42.25226)
110 0 POINT (-72.20209 -42.25226)
111 0 POINT (-72.20209 -42.16243)
112 0 POINT (-72.21107 -42.15344)
113 0 POINT (-72.20209 -42.15344)
114 0 POINT (-72.23802 -42.14446)
115 0 POINT (-72.25599 -42.13548)
117 0 POINT (-72.22904 -42.13548)
118 0 POINT (-72.25599 -42.1265)
119 0 POINT (-72.24701 -42.1265)
124 0 POINT (-72.22006 -42.09955)
126 0 POINT (-72.34582 -42.09056)
128 0 POINT (-72.25599 -42.09056)
129 0 POINT (-72.23802 -42.09056)
130 0 POINT (-72.22006 -42.09056)
131 0 POINT (-72.21107 -42.09056)
132 0 POINT (-72.23802 -42.08158)
133 0 POINT (-72.21107 -42.0726)
134 0 POINT (-72.33684 -42.06361)
135 0 POINT (-72.29192 -42.06361)
138 0 POINT (-72.25599 -42.06361)
139 0 POINT (-72.33684 -42.05463)
140 0 POINT (-72.32786 -42.05463)
141 0 POINT (-72.30989 -42.05463)
142 0 POINT (-72.3548 -42.04565)
143 0 POINT (-72.33684 -42.04565)
145 0 POINT (-72.30989 -42.04565)
146 0 POINT (-72.36379 -42.03666)
147 0 POINT (-72.3548 -42.03666)
149 0 POINT (-72.30091 -42.03666)
150 0 POINT (-72.29192 -42.03666)
151 0 POINT (-72.31887 -42.02768)
152 0 POINT (-72.30091 -42.02768)
153 0 POINT (-72.3548 -42.0187)
154 0 POINT (-72.34582 -42.0187)
155 0 POINT (-72.29192 -42.0187)
157 0 POINT (-72.22904 -42.0187)
158 0 POINT (-72.22006 -42.0187)
159 0 POINT (-72.21107 -42.0187)
160 0 POINT (-72.20209 -42.0187)
161 0 POINT (-72.3548 -42.00971)
162 0 POINT (-72.34582 -42.00971)
164 0 POINT (-72.22904 -42.00971)
165 0 POINT (-72.22006 -42.00971)
166 0 POINT (-72.21107 -42.00971)
167 0 POINT (-72.3548 -42.00073)
168 0 POINT (-72.33684 -42.00073)
170 0 POINT (-72.25599 -42.00073)
18 1 POINT (-72.98812 -42.98439)
210 1 POINT (-72.89829 -42.98439)
3 1 POINT (-72.80845 -42.98439)
410 1 POINT (-72.71862 -42.98439)
510 1 POINT (-72.62879 -42.98439)
610 1 POINT (-72.53896 -42.98439)
7 1 POINT (-72.44913 -42.98439)
810 1 POINT (-72.3593 -42.98439)
910 1 POINT (-72.26946 -42.98439)
105 1 POINT (-72.98812 -42.89455)
116 1 POINT (-72.89829 -42.89455)
121 1 POINT (-72.80845 -42.89455)
136 1 POINT (-72.71862 -42.89455)
156 1 POINT (-72.53896 -42.89455)
16 1 POINT (-72.44913 -42.89455)
171 1 POINT (-72.3593 -42.89455)
19 1 POINT (-72.98812 -42.80472)
20 1 POINT (-72.89829 -42.80472)
21 1 POINT (-72.80845 -42.80472)
221 1 POINT (-72.71862 -42.80472)
23 1 POINT (-72.62879 -42.80472)
24 1 POINT (-72.53896 -42.80472)
25 1 POINT (-72.3593 -42.80472)
26 1 POINT (-72.26946 -42.80472)
271 1 POINT (-72.98812 -42.71489)
28 1 POINT (-72.89829 -42.71489)
29 1 POINT (-72.80845 -42.71489)
30 1 POINT (-72.71862 -42.71489)
31 1 POINT (-72.62879 -42.71489)
321 1 POINT (-72.53896 -42.71489)
33 1 POINT (-72.44913 -42.71489)
34 1 POINT (-72.3593 -42.71489)
35 1 POINT (-72.26946 -42.71489)
36 1 POINT (-72.98812 -42.62506)
371 1 POINT (-72.89829 -42.62506)
381 1 POINT (-72.80845 -42.62506)
391 1 POINT (-72.71862 -42.62506)
401 1 POINT (-72.62879 -42.62506)
411 1 POINT (-72.53896 -42.62506)
421 1 POINT (-72.44913 -42.62506)
43 1 POINT (-72.3593 -42.62506)
441 1 POINT (-72.26946 -42.62506)
45 1 POINT (-72.98812 -42.53523)
46 1 POINT (-72.89829 -42.53523)
47 1 POINT (-72.80845 -42.53523)
48 1 POINT (-72.71862 -42.53523)
491 1 POINT (-72.62879 -42.53523)
50 1 POINT (-72.53896 -42.53523)
51 1 POINT (-72.44913 -42.53523)
52 1 POINT (-72.3593 -42.53523)
53 1 POINT (-72.26946 -42.53523)
54 1 POINT (-72.98812 -42.4454)
55 1 POINT (-72.89829 -42.4454)
56 1 POINT (-72.80845 -42.4454)
57 1 POINT (-72.71862 -42.4454)
581 1 POINT (-72.62879 -42.4454)
591 1 POINT (-72.53896 -42.4454)
601 1 POINT (-72.44913 -42.4454)
611 1 POINT (-72.3593 -42.4454)
621 1 POINT (-72.26946 -42.4454)
631 1 POINT (-72.98812 -42.35557)
64 1 POINT (-72.89829 -42.35557)
65 1 POINT (-72.80845 -42.35557)
66 1 POINT (-72.71862 -42.35557)
671 1 POINT (-72.62879 -42.35557)
681 1 POINT (-72.53896 -42.35557)
69 1 POINT (-72.44913 -42.35557)
701 1 POINT (-72.3593 -42.35557)
711 1 POINT (-72.26946 -42.35557)
72 1 POINT (-72.98812 -42.26573)
731 1 POINT (-72.89829 -42.26573)
741 1 POINT (-72.80845 -42.26573)
751 1 POINT (-72.71862 -42.26573)
761 1 POINT (-72.62879 -42.26573)
771 1 POINT (-72.53896 -42.26573)
781 1 POINT (-72.44913 -42.26573)
791 1 POINT (-72.3593 -42.26573)
801 1 POINT (-72.26946 -42.26573)
811 1 POINT (-72.98812 -42.1759)
821 1 POINT (-72.89829 -42.1759)
831 1 POINT (-72.80845 -42.1759)
841 1 POINT (-72.71862 -42.1759)
851 1 POINT (-72.62879 -42.1759)
861 1 POINT (-72.53896 -42.1759)
871 1 POINT (-72.44913 -42.1759)
88 1 POINT (-72.3593 -42.1759)
891 1 POINT (-72.26946 -42.1759)
901 1 POINT (-72.98812 -42.08607)
911 1 POINT (-72.89829 -42.08607)
921 1 POINT (-72.80845 -42.08607)
931 1 POINT (-72.71862 -42.08607)
94 1 POINT (-72.62879 -42.08607)
951 1 POINT (-72.53896 -42.08607)
961 1 POINT (-72.44913 -42.08607)
971 1 POINT (-72.3593 -42.08607)
nrow(union_de_muestras)
## [1] 211
saveRDS(union_de_muestras, "union_de_muestras.rds")











Algebra de conjuntos:

# Create two circular geometries.
poly1 <- ee$Geometry$Point(c(-50, 30))$buffer(1e6)
poly2 <- ee$Geometry$Point(c(-40, 30))$buffer(1e6)

# Display polygon 1 in red and polygon 2 in blue.
Map$setCenter(-45, 30,  zoom = 5)
Map$addLayer(poly1, list(color = "FF0000"), "poly1") +
Map$addLayer(poly2, list(color = "0000FF"), "poly2")
# Compute the intersection, display it in blue.
Map$setCenter(-45, 30,  zoom = 5)
intersection <- poly1$intersection(poly2, ee$ErrorMargin(1))
Map$addLayer(intersection, list(color = "00FF00"), "intersection")
# Compute the union, display it in magenta.
Map$setCenter(-45, 30,  zoom = 5)
union <- poly1$union(poly2, ee$ErrorMargin(1))
Map$addLayer(union, list(color = "FF00FF"), "union")
# Compute the difference, display in yellow.
Map$setCenter(-45, 30,  zoom = 5)
diff1 <- poly1$difference(poly2, ee$ErrorMargin(1))
Map$addLayer(diff1, list(color = "FFFF00"), "diff1")

https://www.rdocumentation.org/packages/BiocGenerics/versions/0.18.0/topics/sets

# selectMethod("intersect",c(region, region_0))
# ggg

Ejemplo 1: grafica de una caja

box <- ee$Geometry$Rectangle(coords = c(-73,-43,-72.462,-42.811),
                             ## WGS 84
                             proj = "EPSG:4326",
                             geodesic = FALSE)

Map$setCenter(lon = -73.079, lat = -42.611, zoom = 7)
Map$addLayer(box)

Ejemplo 2: estadisticas de un shp:

vias<-readOGR(".","region_los_lagos")
## OGR data source with driver: ESRI Shapefile 
## Source: "C:\Users\usuario\Desktop\ds\ds_rgee\cart", layer: "region_los_lagos"
## with 1 features
## It has 17 fields
## Integer64 fields read as strings:  FID_1 TOTAL_VIVI PARTICULAR COLECTIVAS TOTAL_PERS HOMBRES MUJERES
summary(vias)
## Object of class SpatialPolygonsDataFrame
## Coordinates:
##         min       max
## x -74.83774 -71.58093
## y -44.06706 -40.23878
## Is projected: FALSE 
## proj4string : [+proj=longlat +datum=WGS84 +no_defs]
## Data attributes:
##     FID_1              REGION           NOM_REGION         TOTAL_VIVI       
##  Length:1           Length:1           Length:1           Length:1          
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##   PARTICULAR         COLECTIVAS         TOTAL_PERS          HOMBRES         
##  Length:1           Length:1           Length:1           Length:1          
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##    MUJERES             DENSIDAD       INDICE_MAS      INDICE_DEP   
##  Length:1           Min.   :17.11   Min.   :97.64   Min.   :47.03  
##  Class :character   1st Qu.:17.11   1st Qu.:97.64   1st Qu.:47.03  
##  Mode  :character   Median :17.11   Median :97.64   Median :47.03  
##                     Mean   :17.11   Mean   :97.64   Mean   :47.03  
##                     3rd Qu.:17.11   3rd Qu.:97.64   3rd Qu.:47.03  
##                     Max.   :17.11   Max.   :97.64   Max.   :47.03  
##    IND_DEP_JU      IND_DEP_VE      SHAPE_Leng        Shape_Le_1   
##  Min.   :30.55   Min.   :16.48   Min.   :7760164   Min.   :60.65  
##  1st Qu.:30.55   1st Qu.:16.48   1st Qu.:7760164   1st Qu.:60.65  
##  Median :30.55   Median :16.48   Median :7760164   Median :60.65  
##  Mean   :30.55   Mean   :16.48   Mean   :7760164   Mean   :60.65  
##  3rd Qu.:30.55   3rd Qu.:16.48   3rd Qu.:7760164   3rd Qu.:60.65  
##  Max.   :30.55   Max.   :16.48   Max.   :7760164   Max.   :60.65  
##    Shape_Area   
##  Min.   :5.259  
##  1st Qu.:5.259  
##  Median :5.259  
##  Mean   :5.259  
##  3rd Qu.:5.259  
##  Max.   :5.259

https://ecodata.nrel.colostate.edu/gdpe-gee-remote-sensing-lessons/module7.html

Referencias:

https://drive.google.com/drive/folders/1yDB9oZBS6ZSZ-U1Rf7WsNlLdaHdHl-3z

https://rstudio-pubs-static.s3.amazonaws.com/643255_63554e7e1f9f466dad4f9e62ff977a88.html

https://drive.google.com/drive/folders/1yDB9oZBS6ZSZ-U1Rf7WsNlLdaHdHl-3z?usp=sharing

https://rstudio-pubs-static.s3.amazonaws.com/639598_f8b124e23b7949a49250693dc3c5a6a7.html

https://github.com/csaybar/rgee/blob/examples//GetStarted/03_finding_images.R

https://rpubs.com/daniballari/raster

https://stackoverflow.com/questions/63543942/raster-does-not-align-with-shapefile-after-processing-with-rgee

https://rpubs.com/ohfrancom/618462

https://www.ide.cl/index.php/limites-y-fronteras/item/1528-division-politica-administrativa-2020

Catastro de Lagos https://www.ide.cl/index.php/aguas-continentales/item/1508-catastro-de-lagos

Lagos de Chile
http://datos.cedeus.cl/layers/geonode:cl_lagos_geo