library(ggplot2)
library(ggcorrplot)
library(funModeling)
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
## funModeling v.1.9.4 :)
## Examples and tutorials at livebook.datascienceheroes.com
## / Now in Spanish: librovivodecienciadedatos.ai
library(olsrr)
##
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
##
## rivers
library(pls)
##
## Attaching package: 'pls'
## The following object is masked from 'package:stats':
##
## loadings
dfbody <- read.csv("data_multiple_regression_exercice.csv",header= TRUE, sep="")
dim(dfbody)
## [1] 507 24
p=ncol(dfbody)-1
p
## [1] 23
names(dfbody)
## [1] "weight" "biacromial" "pelvic.breadth" "bitrochanteric"
## [5] "chest.depth" "chest.diam" "elbow.diam" "wrist.diam"
## [9] "knee.diam" "ankle.diam" "shoulder.girth" "chest.girth"
## [13] "waist.girth" "navel.girth" "hip.girth" "thigh.girth"
## [17] "bicep.girth" "forearm.girth" "knee.girth" "calf.girth"
## [21] "ankle.girth" "wrist.girth" "age" "height"
head(dfbody)
## weight biacromial pelvic.breadth bitrochanteric chest.depth chest.diam
## 1 65.6 42.9 26.0 31.5 17.7 28.0
## 2 71.8 43.7 28.5 33.5 16.9 30.8
## 3 80.7 40.1 28.2 33.3 20.9 31.7
## 4 72.6 44.3 29.9 34.0 18.4 28.2
## 5 78.8 42.5 29.9 34.0 21.5 29.4
## 6 74.8 43.3 27.0 31.5 19.6 31.3
## elbow.diam wrist.diam knee.diam ankle.diam shoulder.girth chest.girth
## 1 13.1 10.4 18.8 14.1 106.2 89.5
## 2 14.0 11.8 20.6 15.1 110.5 97.0
## 3 13.9 10.9 19.7 14.1 115.1 97.5
## 4 13.9 11.2 20.9 15.0 104.5 97.0
## 5 15.2 11.6 20.7 14.9 107.5 97.5
## 6 14.0 11.5 18.8 13.9 119.8 99.9
## waist.girth navel.girth hip.girth thigh.girth bicep.girth forearm.girth
## 1 71.5 74.5 93.5 51.5 32.5 26.0
## 2 79.0 86.5 94.8 51.5 34.4 28.0
## 3 83.2 82.9 95.0 57.3 33.4 28.8
## 4 77.8 78.8 94.0 53.0 31.0 26.2
## 5 80.0 82.5 98.5 55.4 32.0 28.4
## 6 82.5 80.1 95.3 57.5 33.0 28.0
## knee.girth calf.girth ankle.girth wrist.girth age height
## 1 34.5 36.5 23.5 16.5 21.0 174.0
## 2 36.5 37.5 24.5 17.0 23.0 175.3
## 3 37.0 37.3 21.9 16.9 28.0 193.5
## 4 37.0 34.8 23.0 16.6 23.0 186.5
## 5 37.7 38.6 24.4 18.0 22.0 187.2
## 6 36.6 36.1 23.5 16.9 20.6 181.5
str(dfbody)
## 'data.frame': 507 obs. of 24 variables:
## $ weight : num 65.6 71.8 80.7 72.6 78.8 74.8 86.4 78.4 62 81.6 ...
## $ biacromial : num 42.9 43.7 40.1 44.3 42.5 43.3 43.5 44.4 43.5 42 ...
## $ pelvic.breadth: num 26 28.5 28.2 29.9 29.9 27 30 29.8 26.5 28 ...
## $ bitrochanteric: num 31.5 33.5 33.3 34 34 31.5 34 33.2 32.1 34 ...
## $ chest.depth : num 17.7 16.9 20.9 18.4 21.5 19.6 21.9 21.8 15.5 22.5 ...
## $ chest.diam : num 28 30.8 31.7 28.2 29.4 31.3 31.7 28.8 27.5 28 ...
## $ elbow.diam : num 13.1 14 13.9 13.9 15.2 14 16.1 15.1 14.1 15.6 ...
## $ wrist.diam : num 10.4 11.8 10.9 11.2 11.6 11.5 12.5 11.9 11.2 12 ...
## $ knee.diam : num 18.8 20.6 19.7 20.9 20.7 18.8 20.8 21 18.9 21.1 ...
## $ ankle.diam : num 14.1 15.1 14.1 15 14.9 13.9 15.6 14.6 13.2 15 ...
## $ shoulder.girth: num 106 110 115 104 108 ...
## $ chest.girth : num 89.5 97 97.5 97 97.5 ...
## $ waist.girth : num 71.5 79 83.2 77.8 80 82.5 82 76.8 68.5 77.5 ...
## $ navel.girth : num 74.5 86.5 82.9 78.8 82.5 80.1 84 80.5 69 81.5 ...
## $ hip.girth : num 93.5 94.8 95 94 98.5 95.3 101 98 89.5 99.8 ...
## $ thigh.girth : num 51.5 51.5 57.3 53 55.4 57.5 60.9 56 50 59.8 ...
## $ bicep.girth : num 32.5 34.4 33.4 31 32 33 42.4 34.1 33 36.5 ...
## $ forearm.girth : num 26 28 28.8 26.2 28.4 28 32.3 28 26 29.2 ...
## $ knee.girth : num 34.5 36.5 37 37 37.7 36.6 40.1 39.2 35.5 38.3 ...
## $ calf.girth : num 36.5 37.5 37.3 34.8 38.6 36.1 40.3 36.7 35 38.6 ...
## $ ankle.girth : num 23.5 24.5 21.9 23 24.4 23.5 23.6 22.5 22 22.2 ...
## $ wrist.girth : num 16.5 17 16.9 16.6 18 16.9 18.8 18 16.5 16.9 ...
## $ age : num 21 23 28 23 22 20.6 25.5 26.9 22.8 21 ...
## $ height : num 174 175 194 186 187 ...
anyNA(dfbody)
## [1] FALSE
attach(dfbody)
Separar el conjunto de registros aleatoriamente en dos conjuntos de datos data_training y data_test. El primer conjunto se utilizará para calcular los parámetros de cada modelo y el segundo se utilizará para realizar predicciones y evaluar los resultados.
Para ello lo que hice fue dividir aleatoriamente el 80% de los datos para entrenamiento y el 20% para el modelo de testeo.
index_sample=get_sample(data = dfbody, percentage_tr_rows=0.8, seed = 234)
data_training = dfbody[index_sample,]
data_test = dfbody[-index_sample,]
Antes de realizar el gráfico de regresión lineal y su validación, voy a entender más como estan correlacionadas las variables de entrenamiento como también entender la variabilidad de una variable vs las otras y si existen algun outlier en las variables.
Correlación con variable dependiente
correlation_table(data_training, "weight")
## Variable weight
## 1 weight 1.00
## 2 waist.girth 0.91
## 3 chest.girth 0.90
## 4 shoulder.girth 0.88
## 5 bicep.girth 0.87
## 6 forearm.girth 0.87
## 7 chest.diam 0.83
## 8 wrist.girth 0.81
## 9 chest.depth 0.80
## 10 elbow.diam 0.80
## 11 knee.girth 0.79
## 12 wrist.diam 0.76
## 13 hip.girth 0.76
## 14 ankle.girth 0.76
## 15 knee.diam 0.75
## 16 calf.girth 0.74
## 17 height 0.73
## 18 biacromial 0.72
## 19 navel.girth 0.72
## 20 ankle.diam 0.71
## 21 bitrochanteric 0.65
## 22 thigh.girth 0.54
## 23 pelvic.breadth 0.50
## 24 age 0.22
Matriz de correlación de variables para el conjunto de entrenamiento
cordatatraining = cor(data_training[,1:24])
cordatatraining
## weight biacromial pelvic.breadth bitrochanteric chest.depth
## weight 1.0000000 0.72333708 0.4979851 0.6523826 0.8020373
## biacromial 0.7233371 1.00000000 0.3205021 0.4812884 0.5744144
## pelvic.breadth 0.4979851 0.32050211 1.0000000 0.6847879 0.3531194
## bitrochanteric 0.6523826 0.48128837 0.6847879 1.0000000 0.4476102
## chest.depth 0.8020373 0.57441443 0.3531194 0.4476102 1.0000000
## chest.diam 0.8255359 0.76660976 0.3362752 0.5049457 0.6602519
## elbow.diam 0.7981996 0.76800227 0.3221594 0.5053734 0.6663184
## wrist.diam 0.7589759 0.71692617 0.2804776 0.4575196 0.6029277
## knee.diam 0.7475840 0.63330502 0.4382057 0.5833981 0.5246282
## ankle.diam 0.7143812 0.66730766 0.3673644 0.4728103 0.5850445
## shoulder.girth 0.8793832 0.78317389 0.2884577 0.4635623 0.7404735
## chest.girth 0.8988234 0.71414861 0.3261211 0.4743455 0.8080765
## waist.girth 0.9053409 0.63430902 0.4498945 0.5624033 0.8004537
## navel.girth 0.7179399 0.31395612 0.5935838 0.6070064 0.6130228
## hip.girth 0.7576721 0.32508769 0.5728108 0.7434893 0.5440697
## thigh.girth 0.5406768 0.10567708 0.4055826 0.5168913 0.3417289
## bicep.girth 0.8656875 0.69567295 0.3085243 0.4679921 0.7294714
## forearm.girth 0.8650929 0.75197645 0.2993726 0.4619208 0.7155195
## knee.girth 0.7919113 0.50768385 0.4761210 0.6174524 0.5626738
## calf.girth 0.7447298 0.49762067 0.3879855 0.5716573 0.5297461
## ankle.girth 0.7580149 0.59830444 0.3307441 0.5307470 0.5887505
## wrist.girth 0.8109316 0.76954325 0.2676489 0.4649945 0.6775134
## age 0.2214360 0.08389303 0.2585529 0.2717645 0.3081505
## height 0.7283307 0.76144089 0.3661565 0.4741203 0.5611011
## chest.diam elbow.diam wrist.diam knee.diam ankle.diam
## weight 0.8255359 0.7981996 0.7589759 0.7475840 0.7143812
## biacromial 0.7666098 0.7680023 0.7169262 0.6333050 0.6673077
## pelvic.breadth 0.3362752 0.3221594 0.2804776 0.4382057 0.3673644
## bitrochanteric 0.5049457 0.5053734 0.4575196 0.5833981 0.4728103
## chest.depth 0.6602519 0.6663184 0.6029277 0.5246282 0.5850445
## chest.diam 1.0000000 0.7462998 0.7207153 0.6485177 0.6633892
## elbow.diam 0.7462998 1.0000000 0.8295361 0.7121106 0.8214705
## wrist.diam 0.7207153 0.8295361 1.0000000 0.7051048 0.7679319
## knee.diam 0.6485177 0.7121106 0.7051048 1.0000000 0.7069192
## ankle.diam 0.6633892 0.8214705 0.7679319 0.7069192 1.0000000
## shoulder.girth 0.8675862 0.8179573 0.7739053 0.6729619 0.6889967
## chest.girth 0.8647893 0.8000336 0.7582419 0.6452346 0.7002848
## waist.girth 0.7846368 0.6920480 0.6763861 0.6060924 0.6266948
## navel.girth 0.5115517 0.4397734 0.3967711 0.4504462 0.4180081
## hip.girth 0.5068641 0.4242717 0.4113337 0.5579286 0.3894831
## thigh.girth 0.2940656 0.1917599 0.1814579 0.4049156 0.1599306
## bicep.girth 0.7905738 0.8061469 0.7600526 0.6775442 0.6779734
## forearm.girth 0.7976906 0.8628347 0.8135324 0.7130703 0.7315444
## knee.girth 0.5765679 0.5801664 0.5804820 0.7135134 0.5118940
## calf.girth 0.5707056 0.5707920 0.5656750 0.6600462 0.5115481
## ankle.girth 0.6259361 0.6649994 0.6484956 0.6313086 0.6623997
## wrist.girth 0.7507846 0.8432443 0.8659224 0.7206948 0.7696373
## age 0.2102470 0.2028904 0.2215147 0.1803180 0.2484763
## height 0.6357405 0.7523124 0.6848540 0.5867066 0.6917417
## shoulder.girth chest.girth waist.girth navel.girth hip.girth
## weight 0.8793832 0.8988234 0.9053409 0.7179399 0.7576721
## biacromial 0.7831739 0.7141486 0.6343090 0.3139561 0.3250877
## pelvic.breadth 0.2884577 0.3261211 0.4498945 0.5935838 0.5728108
## bitrochanteric 0.4635623 0.4743455 0.5624033 0.6070064 0.7434893
## chest.depth 0.7404735 0.8080765 0.8004537 0.6130228 0.5440697
## chest.diam 0.8675862 0.8647893 0.7846368 0.5115517 0.5068641
## elbow.diam 0.8179573 0.8000336 0.6920480 0.4397734 0.4242717
## wrist.diam 0.7739053 0.7582419 0.6763861 0.3967711 0.4113337
## knee.diam 0.6729619 0.6452346 0.6060924 0.4504462 0.5579286
## ankle.diam 0.6889967 0.7002848 0.6266948 0.4180081 0.3894831
## shoulder.girth 1.0000000 0.9285451 0.8227046 0.5325323 0.5314731
## chest.girth 0.9285451 1.0000000 0.8819770 0.6258189 0.5760541
## waist.girth 0.8227046 0.8819770 1.0000000 0.7621070 0.6909509
## navel.girth 0.5325323 0.6258189 0.7621070 1.0000000 0.8198649
## hip.girth 0.5314731 0.5760541 0.6909509 0.8198649 1.0000000
## thigh.girth 0.3087823 0.3504549 0.4151366 0.5812397 0.8235774
## bicep.girth 0.8944054 0.9044726 0.7999314 0.5520385 0.5504800
## forearm.girth 0.8907049 0.8839423 0.7730307 0.4865365 0.4994283
## knee.girth 0.6183799 0.6070020 0.6542704 0.6221640 0.7399292
## calf.girth 0.6043730 0.5832171 0.6020694 0.4986900 0.6581096
## ankle.girth 0.6776462 0.6641805 0.6465919 0.5258192 0.5821043
## wrist.girth 0.8351320 0.8192825 0.7167030 0.4410299 0.4481897
## age 0.1971285 0.2579937 0.3739958 0.4189151 0.2278693
## height 0.6807636 0.6281098 0.5597050 0.3252731 0.3384099
## thigh.girth bicep.girth forearm.girth knee.girth calf.girth
## weight 0.540676767 0.8656875 0.8650929 0.7919113 0.7447298
## biacromial 0.105677080 0.6956730 0.7519764 0.5076838 0.4976207
## pelvic.breadth 0.405582630 0.3085243 0.2993726 0.4761210 0.3879855
## bitrochanteric 0.516891268 0.4679921 0.4619208 0.6174524 0.5716573
## chest.depth 0.341728865 0.7294714 0.7155195 0.5626738 0.5297461
## chest.diam 0.294065600 0.7905738 0.7976906 0.5765679 0.5707056
## elbow.diam 0.191759902 0.8061469 0.8628347 0.5801664 0.5707920
## wrist.diam 0.181457879 0.7600526 0.8135324 0.5804820 0.5656750
## knee.diam 0.404915646 0.6775442 0.7130703 0.7135134 0.6600462
## ankle.diam 0.159930586 0.6779734 0.7315444 0.5118940 0.5115481
## shoulder.girth 0.308782294 0.8944054 0.8907049 0.6183799 0.6043730
## chest.girth 0.350454877 0.9044726 0.8839423 0.6070020 0.5832171
## waist.girth 0.415136602 0.7999314 0.7730307 0.6542704 0.6020694
## navel.girth 0.581239686 0.5520385 0.4865365 0.6221640 0.4986900
## hip.girth 0.823577426 0.5504800 0.4994283 0.7399292 0.6581096
## thigh.girth 1.000000000 0.3977879 0.3233755 0.6394071 0.6144429
## bicep.girth 0.397787922 1.0000000 0.9393573 0.6132996 0.6166695
## forearm.girth 0.323375544 0.9393573 1.0000000 0.6485153 0.6537984
## knee.girth 0.639407107 0.6132996 0.6485153 1.0000000 0.7990788
## calf.girth 0.614442942 0.6166695 0.6537984 0.7990788 1.0000000
## ankle.girth 0.413060662 0.6658508 0.7088273 0.7338806 0.7516910
## wrist.girth 0.228736643 0.8401296 0.9011480 0.6320826 0.6415886
## age -0.007646679 0.1919124 0.1660848 0.1439582 0.1244519
## height 0.101726784 0.6070166 0.6753614 0.5259818 0.4419199
## ankle.girth wrist.girth age height
## weight 0.7580149 0.8109316 0.221435966 0.72833068
## biacromial 0.5983044 0.7695432 0.083893026 0.76144089
## pelvic.breadth 0.3307441 0.2676489 0.258552894 0.36615649
## bitrochanteric 0.5307470 0.4649945 0.271764476 0.47412032
## chest.depth 0.5887505 0.6775134 0.308150549 0.56110106
## chest.diam 0.6259361 0.7507846 0.210246962 0.63574051
## elbow.diam 0.6649994 0.8432443 0.202890359 0.75231237
## wrist.diam 0.6484956 0.8659224 0.221514688 0.68485404
## knee.diam 0.6313086 0.7206948 0.180317957 0.58670658
## ankle.diam 0.6623997 0.7696373 0.248476291 0.69174166
## shoulder.girth 0.6776462 0.8351320 0.197128476 0.68076360
## chest.girth 0.6641805 0.8192825 0.257993695 0.62810979
## waist.girth 0.6465919 0.7167030 0.373995837 0.55970503
## navel.girth 0.5258192 0.4410299 0.418915127 0.32527309
## hip.girth 0.5821043 0.4481897 0.227869290 0.33840987
## thigh.girth 0.4130607 0.2287366 -0.007646679 0.10172678
## bicep.girth 0.6658508 0.8401296 0.191912416 0.60701664
## forearm.girth 0.7088273 0.9011480 0.166084760 0.67536145
## knee.girth 0.7338806 0.6320826 0.143958165 0.52598183
## calf.girth 0.7516910 0.6415886 0.124451947 0.44191990
## ankle.girth 1.0000000 0.7599351 0.156099154 0.56742251
## wrist.girth 0.7599351 1.0000000 0.199751271 0.70132692
## age 0.1560992 0.1997513 1.000000000 0.07945014
## height 0.5674225 0.7013269 0.079450138 1.00000000
Mapa de calor para el conjunto de entrenamiento
library(ggcorrplot)
library(ggplot2)
ggcorrplot(cordatatraining) + ggtitle('Matriz de Correlaciones conjunto entrenamiento')
Realizar el boxPlot para el conjunto de entrenamiento
boxplot(data_training [,] , main = "Boxplot conjunto de Entrenamiento", names=c("Weight","Biacromial", "Pelvic.Breadth", "Bitrochanteric", "Chest.depth", "Chest.diam", "Elbow.diam", "Wrist.diam", "Knee.diam", "Ankle.diam", "shoulder.girth","chest.girth","waist.girth","navel.girth","hip.girth","thigh.girth","bicep.girth","forearm.girth","knee.girth","calf.girth","ankle.girth","wrist.girth","age","height"), cex.main = 1, cex.sub= 0.5 , ylab = 'Variabilidad', xlab = 'Variables', cex.lab=0.8, col = c("orange2", "yellow3", "green3", "grey","red", "brown", "black", 'blue', 'pink', 'violet'), axes=T, xlim=c(0, 24), outpch = 25, outbg = "red", whiskcol = 'black', whisklty = 2, lty = 1, tcl=0.4, las=0.3 )
Realizar distancia de Mahalanobis para el conjunto de entrenamiento
datatrainingmahala= mahalanobis(data_training, colMeans(data_training), cov(data_training))
datatrainingmahala
## 225 31 290 174 505 274 493 440
## 26.194018 25.709546 21.490218 22.506174 35.220547 14.463441 33.499513 40.618378
## 385 196 68 55 310 319 79 238
## 32.224008 34.703966 17.731543 14.621177 15.106492 14.738978 17.436865 39.613674
## 43 370 362 301 65 382 16 355
## 14.541845 33.067279 15.034040 23.497079 15.445694 16.161802 31.624288 16.195831
## 89 277 498 134 152 282 112 147
## 20.631842 17.034460 22.548189 25.071961 18.034085 16.979922 30.593899 13.920002
## 42 489 330 415 207 212 78 99
## 41.598322 16.499088 15.610000 16.718339 34.132052 32.180960 40.733315 22.458554
## 376 163 243 391 221 86 144 327
## 25.207235 38.041555 28.078822 14.294444 53.669179 23.007066 30.735565 16.151416
## 359 200 58 241 25 45 263 183
## 64.430760 14.912236 19.348603 26.297356 28.922634 22.724439 27.788672 34.535399
## 487 326 494 349 442 234 95 271
## 10.593756 21.486398 26.659523 59.185369 40.269449 28.896443 24.681002 30.935693
## 345 40 206 185 1 322 333 188
## 15.565651 27.582477 18.835250 24.001951 22.379758 18.793111 34.414321 20.766502
## 427 469 438 85 311 167 71 46
## 16.050417 17.411243 34.757719 18.273790 26.601371 31.442345 23.771845 21.904680
## 281 193 218 194 133 216 244 392
## 11.753179 13.205066 36.808749 28.850565 24.276854 15.076133 50.424916 24.054455
## 20 92 286 334 98 298 410 291
## 23.058452 22.531952 20.100386 17.676128 23.195049 13.727310 16.008354 15.335473
## 49 97 66 109 104 434 153 88
## 23.981526 14.762105 40.122127 29.285714 14.736456 29.937988 29.122028 14.326633
## 158 324 491 60 264 422 375 108
## 21.540947 16.948088 43.996979 16.042712 16.427527 22.462780 29.389344 14.938395
## 266 157 187 466 19 418 33 429
## 24.947435 13.347754 24.871921 45.008583 24.456135 26.208250 26.298852 13.422081
## 151 368 63 120 474 354 265 96
## 19.964984 13.047505 19.528759 31.605934 91.414082 20.712715 14.637515 13.896713
## 454 453 395 222 361 424 171 313
## 16.128262 26.573235 27.922064 54.838308 24.391549 20.303558 15.113033 21.717413
## 293 273 409 471 54 154 47 235
## 28.980823 11.391618 19.333639 11.031677 23.495496 17.661168 27.243477 32.629445
## 24 249 69 233 38 335 433 125
## 28.774028 16.783349 57.056563 17.900959 15.099892 17.946416 18.603972 15.798682
## 192 126 30 401 170 114 145 197
## 37.086275 22.129321 15.167479 18.298715 17.419470 28.459303 20.164306 20.232878
## 476 146 53 384 247 118 386 331
## 27.542716 12.961243 22.010504 23.998055 19.478145 20.731118 16.452837 50.355301
## 398 159 123 300 283 230 437 94
## 20.609880 38.836689 16.574543 16.868612 17.524248 26.292944 13.172299 23.934832
## 137 190 229 15 284 122 75 268
## 31.643274 19.879805 18.603516 24.238648 24.317745 14.675723 20.075512 22.412001
## 226 480 251 208 176 232 164 485
## 20.189712 24.996192 16.301204 23.087000 39.510458 25.137316 24.587964 24.189033
## 227 337 179 342 100 460 470 117
## 44.127906 6.020223 36.164946 20.695511 30.503689 21.013894 11.811969 19.275114
## 270 357 215 44 4 140 14 482
## 25.491598 14.934868 48.298389 18.060399 28.721024 44.408489 15.462554 49.180033
## 308 365 364 90 444 350 239 91
## 18.223513 29.525728 14.202892 20.173217 16.218454 12.302168 27.458350 25.646003
## 172 106 9 374 169 447 473 358
## 21.994449 29.447384 25.407851 13.147394 27.497097 16.201828 15.821554 13.736644
## 383 73 461 278 344 378 347 201
## 9.989903 25.776707 17.155139 25.415537 9.697280 17.364157 16.337041 24.575236
## 356 317 450 210 105 173 425 414
## 22.285741 17.847435 16.001532 15.630819 28.656396 23.086847 68.233766 29.060611
## 205 186 388 387 237 346 236 285
## 20.953191 25.466880 12.762412 11.100739 24.122908 34.047751 35.299376 11.211832
## 48 416 130 17 412 141 160 259
## 33.807237 21.293973 24.196286 27.364565 24.666734 47.713484 17.702840 12.386271
## 380 379 61 110 83 287 84 340
## 22.089715 13.323916 28.752257 46.598900 10.128350 16.605756 15.589872 18.310163
## 451 486 363 3 306 316 13 341
## 11.166936 14.993567 18.495779 28.018175 15.399787 22.407768 27.321852 20.004308
## 27 36 223 138 431 240 490 446
## 22.010772 24.129807 28.183030 21.116661 23.057489 29.722444 19.286336 34.682921
## 488 155 143 312 294 305 127 111
## 27.713718 25.951955 13.294384 42.503246 11.015734 15.428816 39.501660 25.090078
## 455 393 289 257 12 432 77 184
## 24.794065 21.733564 25.475873 28.056791 22.877468 25.388307 21.444711 22.530936
## 87 296 74 231 59 439 224 492
## 30.811816 22.937145 25.359481 34.716995 22.158292 23.272522 23.715452 24.145848
## 309 421 452 10 307 499 57 397
## 18.953603 19.228821 22.841718 30.245110 20.279143 52.641616 22.798214 17.851367
## 328 39 260 394 93 329 302 132
## 43.532125 24.635011 13.320361 25.803913 23.507117 16.736233 20.616181 46.811505
## 477 135 242 2 178 62 445 403
## 40.167860 32.968381 21.537634 28.114907 36.403163 18.458722 16.492321 11.204608
## 336 50 139 116 276 150 129 21
## 11.449744 14.530366 19.740080 40.570851 14.736187 22.643353 41.305824 24.884268
## 448 280 288 177 390 204 338 303
## 35.059653 12.721675 11.151057 18.939663 17.041501 31.288922 19.763461 16.176121
## 148 29 128 161 22 246 162 406
## 15.949695 17.192242 17.439451 36.166018 25.284986 25.028278 30.860808 30.950071
## 339 497 202 441 325 32 211 275
## 17.744515 15.949515 39.605249 21.813905 25.235779 22.723012 16.147899 22.011749
## 506 255 267 420 168 245 463 373
## 22.409372 24.393988 14.446973 24.867237 21.312993 33.736314 26.200613 16.884736
## 67 217 64 198 456 405 203 175
## 16.050287 26.362549 16.609949 47.399470 32.190364 36.103400 21.929888 28.321725
## 299 7 258 6 481 478 297 80
## 21.099574 23.697328 20.791805 14.298626 27.788535 15.391506 18.433544 23.720635
## 321 252 195 272 449 199 166 372
## 26.252761 16.016476 24.779470 15.392229 15.018857 25.499805 27.579895 12.351127
## 41 315 292 56 367 475 314 351
## 21.149495 27.243038 19.835325 19.257557 32.482239 24.385143 16.099707 14.879685
## 462 34 35 70 102 436
## 14.795642 26.925216 21.461534 9.770562 25.035458 24.454800
summary(datatrainingmahala)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.02 16.61 22.41 23.94 27.77 91.41
boxplot(datatrainingmahala, col = "skyblue", xlab="Distancia Mahalanobis",main = "Distancia de Mahalanobis del conjunto de entrenamiento", outpch = 25, outbg = "red")
boxplot.stats(datatrainingmahala)
## $stats
## 337 287 506 481 474
## 6.020223 16.605756 22.410686 27.788535 44.408489
##
## $n
## [1] 406
##
## $conf
## [1] 21.53380 23.28757
##
## $out
## 221 359 349 244 466 474 222 69
## 53.66918 64.43076 59.18537 50.42492 45.00858 91.41408 54.83831 57.05656
## 331 215 482 425 141 110 499 132
## 50.35530 48.29839 49.18003 68.23377 47.71348 46.59890 52.64162 46.81150
## 198
## 47.39947
Modelo de regresión múltiple para el conjunto de entrenamiento
modelolm1=lm(weight~., data = data_training)
summary(modelolm1)
##
## Call:
## lm(formula = weight ~ ., data = data_training)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.1245 -1.2765 0.0074 1.2548 8.5173
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -118.39184 2.85443 -41.477 < 2e-16 ***
## biacromial -0.05318 0.07416 -0.717 0.473760
## pelvic.breadth 0.08507 0.07289 1.167 0.243865
## bitrochanteric -0.05284 0.10320 -0.512 0.608924
## chest.depth 0.31068 0.07741 4.014 7.20e-05 ***
## chest.diam 0.15778 0.09031 1.747 0.081415 .
## elbow.diam 0.03080 0.20745 0.148 0.882052
## wrist.diam 0.21581 0.25379 0.850 0.395665
## knee.diam 0.41704 0.15175 2.748 0.006275 **
## ankle.diam 0.04212 0.17336 0.243 0.808177
## shoulder.girth 0.05592 0.03517 1.590 0.112663
## chest.girth 0.14624 0.04225 3.461 0.000598 ***
## waist.girth 0.33340 0.02752 12.116 < 2e-16 ***
## navel.girth 0.02950 0.02723 1.083 0.279383
## hip.girth 0.25363 0.05468 4.638 4.83e-06 ***
## thigh.girth 0.22158 0.05884 3.766 0.000192 ***
## bicep.girth 0.13134 0.09050 1.451 0.147524
## forearm.girth 0.35670 0.15183 2.349 0.019316 *
## knee.girth 0.21726 0.09190 2.364 0.018569 *
## calf.girth 0.39131 0.07802 5.015 8.12e-07 ***
## ankle.girth 0.05629 0.11433 0.492 0.622776
## wrist.girth -0.31358 0.24225 -1.294 0.196288
## age -0.05850 0.01370 -4.270 2.47e-05 ***
## height 0.30778 0.02034 15.132 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.108 on 382 degrees of freedom
## Multiple R-squared: 0.9765, Adjusted R-squared: 0.975
## F-statistic: 688.9 on 23 and 382 DF, p-value: < 2.2e-16
Validación del modelo de regresión múltiple para el conjunto de entrenamiento
Análisis de los residuos
residuosmodelo1=rstandard(modelolm1)
valores.ajustados1=fitted(modelolm1)
plot(valores.ajustados1, residuosmodelo1, xlab = "Valores ajustados", main="Gráfico dispersión de residuos - conjunto entrenamiento" , ylab = "Residuos estandarizados", col = "blue")
Entender la normalidad de residuos con gráfico de histograma incluyendo curva de distribución empírica y teórica para el conjunto de entrenamiento
x=seq(-2,4,0.01)
hist(residuosmodelo1, breaks = "FD", col = "lightblue", main="Histograma de residuos - datos entrenamiento",
xlab="Residuos", prob = TRUE, ylim = c(0,0.5))
theo.res=dnorm(x, mean = 0, sd = 1)
lines(theo.res ~ x, col="violet", lwd = 2)
lines(density(residuosmodelo1), col = "blue", lwd = 2)
Gráfico de QQ plot para el conjunto de entrenamiento
qqnorm(residuosmodelo1, main= "QQ plot de residuos - datos entrenamiento")
qqline(residuosmodelo1, col="blue", lwd = 2)
prediccion1=predict(modelolm1, data_test)
prediccion1
## 5 8 11 18 23 26 28 37
## 79.96526 78.89438 80.38535 67.33191 67.65617 89.38856 73.43100 69.90253
## 51 52 72 76 81 82 101 103
## 75.59995 82.38469 77.76965 65.94783 96.77197 80.45650 86.71403 57.25589
## 107 113 115 119 121 124 131 136
## 84.40548 62.94834 82.80462 81.74278 81.73293 107.47256 75.38555 79.64496
## 142 149 156 165 180 181 182 189
## 87.76814 73.90585 66.92714 68.59073 81.14602 70.35148 83.18543 78.33134
## 191 209 213 214 219 220 228 248
## 79.67180 73.60900 93.78390 68.42034 79.11079 81.95546 78.09756 51.46534
## 250 253 254 256 261 262 269 279
## 47.69543 56.84060 44.30635 70.04823 40.35570 49.56773 83.43927 54.78193
## 295 304 318 320 323 332 343 348
## 50.67515 63.32607 45.91001 48.91492 54.20725 52.58160 47.86306 53.29895
## 352 353 360 366 369 371 377 381
## 59.45190 59.05218 54.48530 42.38543 62.37061 56.30421 56.83411 39.85894
## 389 396 399 400 402 404 407 408
## 53.29277 65.52477 55.67100 63.13899 72.76570 54.57043 86.46361 55.50647
## 411 413 417 419 423 426 428 430
## 77.74966 67.43435 60.16900 59.30239 63.54912 57.09038 78.95714 54.61854
## 435 443 457 458 459 464 465 467
## 58.51437 61.90194 80.50878 69.45860 59.26224 49.99025 64.50755 67.51135
## 468 472 479 483 484 495 496 500
## 64.85336 55.82649 72.72166 62.06329 55.62538 56.70487 62.46031 68.66276
## 501 502 503 504 507
## 62.57023 74.67758 70.99442 56.14787 71.02845
Datos verdaderos de conjunto dato testeo
data_test[,1]
## [1] 78.8 78.4 76.6 70.0 66.2 89.6 76.4 67.2 75.6 86.2 78.9 63.9
## [13] 93.0 80.9 86.4 53.9 83.2 65.0 84.1 82.7 79.5 116.4 75.0 76.4
## [25] 86.4 72.7 68.6 65.9 80.5 70.0 81.8 73.6 82.7 72.3 91.1 67.3
## [37] 76.6 85.0 77.3 51.6 49.2 59.0 47.6 66.8 42.0 50.0 82.5 55.0
## [49] 50.2 60.7 48.7 50.0 55.7 52.8 48.6 53.6 58.4 56.2 51.8 45.0
## [61] 60.2 58.8 54.4 43.2 54.6 63.6 56.8 64.1 72.3 55.9 84.5 55.9
## [73] 76.4 65.9 58.6 59.1 60.0 54.1 75.9 57.3 58.6 62.0 80.9 70.5
## [85] 60.9 52.7 62.7 66.4 67.3 57.7 72.3 63.6 53.4 57.3 64.1 68.2
## [97] 61.4 76.8 71.8 55.5 67.3
Cálculo suma errores totales
Error1=sum((data_test[,1]-prediccion1)^2)
Error1
## [1] 482.2333
Cálculo error medio
ME1.test = mean((data_test[,1]-prediccion1)^2)
ME1.test
## [1] 4.774587
Calculo error cuadrático medio
MEC1.test = mean((residuosmodelo1)^2)
MEC1.test
## [1] 1.009834
Análisis de valores verdaderos vs calculados conjunto entrenamiento.
plot(data_test[,1], prediccion1, main = 'Predicción valores verdaderos vs calculados - dato test' , xlab = "Valores verdaderos - weight",
ylab = "Valores calculados - weight", col = "blue")
abline(0,1, col = "orange", lwd = 2)
pent: variables con p-valor menor 0.05 serán incluídas en el modelo.
prem: variables con p-valor mayor 0.5 serán eliminadas del modelo.
progress: lógica que muestra las variables incluidas en cada paso
details: muestra el modelo en cada paso
modelolm2 = ols_step_both_p(modelolm1, pent= 0.05, prem = 0.5, details = TRUE, progress = TRUE,
print_plot=TRUE)
## Stepwise Selection Method
## ---------------------------
##
## Candidate Terms:
##
## 1. biacromial
## 2. pelvic.breadth
## 3. bitrochanteric
## 4. chest.depth
## 5. chest.diam
## 6. elbow.diam
## 7. wrist.diam
## 8. knee.diam
## 9. ankle.diam
## 10. shoulder.girth
## 11. chest.girth
## 12. waist.girth
## 13. navel.girth
## 14. hip.girth
## 15. thigh.girth
## 16. bicep.girth
## 17. forearm.girth
## 18. knee.girth
## 19. calf.girth
## 20. ankle.girth
## 21. wrist.girth
## 22. age
## 23. height
##
## We are selecting variables based on p value...
##
##
## Stepwise Selection: Step 1
##
## - waist.girth added
##
## Model Summary
## --------------------------------------------------------------
## R 0.905 RMSE 5.675
## R-Squared 0.820 Coef. Var 8.140
## Adj. R-Squared 0.819 MSE 32.203
## Pred R-Squared 0.818 MAE 4.458
## --------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 59124.940 1 59124.940 1835.991 0.0000
## Residual 13010.126 404 32.203
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------
## (Intercept) -14.579 1.987 -7.336 0.000 -18.485 -10.672
## waist.girth 1.089 0.025 0.905 42.848 0.000 1.039 1.139
## -------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 2
##
## - height added
##
## Model Summary
## --------------------------------------------------------------
## R 0.944 RMSE 4.414
## R-Squared 0.891 Coef. Var 6.332
## Adj. R-Squared 0.891 MSE 19.483
## Pred R-Squared 0.889 MAE 3.372
## --------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 64283.477 2 32141.738 1649.745 0.0000
## Residual 7851.589 403 19.483
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## --------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## --------------------------------------------------------------------------------------------
## (Intercept) -74.949 4.019 -18.648 0.000 -82.851 -67.048
## waist.girth 0.872 0.024 0.725 36.544 0.000 0.825 0.918
## height 0.450 0.028 0.323 16.272 0.000 0.396 0.504
## --------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## --------------------------------------------------------------
## R 0.944 RMSE 4.414
## R-Squared 0.891 Coef. Var 6.332
## Adj. R-Squared 0.891 MSE 19.483
## Pred R-Squared 0.889 MAE 3.372
## --------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 64283.477 2 32141.738 1649.745 0.0000
## Residual 7851.589 403 19.483
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## --------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## --------------------------------------------------------------------------------------------
## (Intercept) -74.949 4.019 -18.648 0.000 -82.851 -67.048
## waist.girth 0.872 0.024 0.725 36.544 0.000 0.825 0.918
## height 0.450 0.028 0.323 16.272 0.000 0.396 0.504
## --------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 3
##
## - thigh.girth added
##
## Model Summary
## -------------------------------------------------------------
## R 0.972 RMSE 3.155
## R-Squared 0.945 Coef. Var 4.526
## Adj. R-Squared 0.944 MSE 9.955
## Pred R-Squared 0.943 MAE 2.416
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 68133.199 3 22711.066 2281.398 0.0000
## Residual 4001.867 402 9.955
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -----------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -----------------------------------------------------------------------------------------------
## (Intercept) -119.047 3.645 -32.664 0.000 -126.212 -111.882
## waist.girth 0.710 0.019 0.590 37.501 0.000 0.673 0.747
## height 0.518 0.020 0.372 25.827 0.000 0.479 0.558
## thigh.girth 0.789 0.040 0.258 19.665 0.000 0.710 0.867
## -----------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.972 RMSE 3.155
## R-Squared 0.945 Coef. Var 4.526
## Adj. R-Squared 0.944 MSE 9.955
## Pred R-Squared 0.943 MAE 2.416
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 68133.199 3 22711.066 2281.398 0.0000
## Residual 4001.867 402 9.955
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -----------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -----------------------------------------------------------------------------------------------
## (Intercept) -119.047 3.645 -32.664 0.000 -126.212 -111.882
## waist.girth 0.710 0.019 0.590 37.501 0.000 0.673 0.747
## height 0.518 0.020 0.372 25.827 0.000 0.479 0.558
## thigh.girth 0.789 0.040 0.258 19.665 0.000 0.710 0.867
## -----------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 4
##
## - forearm.girth added
##
## Model Summary
## -------------------------------------------------------------
## R 0.981 RMSE 2.609
## R-Squared 0.962 Coef. Var 3.743
## Adj. R-Squared 0.962 MSE 6.807
## Pred R-Squared 0.961 MAE 1.960
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 69405.425 4 17351.356 2549.015 0.0000
## Residual 2729.641 401 6.807
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -113.358 3.042 -37.260 0.000 -119.339 -107.377
## waist.girth 0.555 0.019 0.461 28.705 0.000 0.517 0.593
## height 0.398 0.019 0.285 21.158 0.000 0.361 0.435
## thigh.girth 0.745 0.033 0.243 22.352 0.000 0.679 0.810
## forearm.girth 1.132 0.083 0.237 13.671 0.000 0.969 1.294
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.981 RMSE 2.609
## R-Squared 0.962 Coef. Var 3.743
## Adj. R-Squared 0.962 MSE 6.807
## Pred R-Squared 0.961 MAE 1.960
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 69405.425 4 17351.356 2549.015 0.0000
## Residual 2729.641 401 6.807
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -113.358 3.042 -37.260 0.000 -119.339 -107.377
## waist.girth 0.555 0.019 0.461 28.705 0.000 0.517 0.593
## height 0.398 0.019 0.285 21.158 0.000 0.361 0.435
## thigh.girth 0.745 0.033 0.243 22.352 0.000 0.679 0.810
## forearm.girth 1.132 0.083 0.237 13.671 0.000 0.969 1.294
## -------------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 5
##
## - calf.girth added
##
## Model Summary
## -------------------------------------------------------------
## R 0.983 RMSE 2.491
## R-Squared 0.966 Coef. Var 3.574
## Adj. R-Squared 0.965 MSE 6.207
## Pred R-Squared 0.964 MAE 1.842
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 69652.373 5 13930.475 2244.414 0.0000
## Residual 2482.693 400 6.207
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -115.077 2.918 -39.439 0.000 -120.813 -109.340
## waist.girth 0.550 0.018 0.457 29.757 0.000 0.513 0.586
## height 0.385 0.018 0.276 21.332 0.000 0.350 0.421
## thigh.girth 0.614 0.038 0.201 16.155 0.000 0.539 0.688
## forearm.girth 0.948 0.084 0.199 11.255 0.000 0.782 1.113
## calf.girth 0.457 0.072 0.094 6.308 0.000 0.314 0.599
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.983 RMSE 2.491
## R-Squared 0.966 Coef. Var 3.574
## Adj. R-Squared 0.965 MSE 6.207
## Pred R-Squared 0.964 MAE 1.842
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 69652.373 5 13930.475 2244.414 0.0000
## Residual 2482.693 400 6.207
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -115.077 2.918 -39.439 0.000 -120.813 -109.340
## waist.girth 0.550 0.018 0.457 29.757 0.000 0.513 0.586
## height 0.385 0.018 0.276 21.332 0.000 0.350 0.421
## thigh.girth 0.614 0.038 0.201 16.155 0.000 0.539 0.688
## forearm.girth 0.948 0.084 0.199 11.255 0.000 0.782 1.113
## calf.girth 0.457 0.072 0.094 6.308 0.000 0.314 0.599
## -------------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 6
##
## - chest.girth added
##
## Model Summary
## -------------------------------------------------------------
## R 0.985 RMSE 2.350
## R-Squared 0.969 Coef. Var 3.371
## Adj. R-Squared 0.969 MSE 5.522
## Pred R-Squared 0.968 MAE 1.765
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 69931.748 6 11655.291 2110.663 0.0000
## Residual 2203.318 399 5.522
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -118.274 2.789 -42.412 0.000 -123.756 -112.792
## waist.girth 0.439 0.023 0.365 18.844 0.000 0.394 0.485
## height 0.378 0.017 0.271 22.163 0.000 0.345 0.412
## thigh.girth 0.600 0.036 0.196 16.714 0.000 0.529 0.670
## forearm.girth 0.488 0.102 0.102 4.764 0.000 0.287 0.689
## calf.girth 0.539 0.069 0.111 7.782 0.000 0.403 0.675
## chest.girth 0.243 0.034 0.182 7.113 0.000 0.176 0.310
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.985 RMSE 2.350
## R-Squared 0.969 Coef. Var 3.371
## Adj. R-Squared 0.969 MSE 5.522
## Pred R-Squared 0.968 MAE 1.765
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 69931.748 6 11655.291 2110.663 0.0000
## Residual 2203.318 399 5.522
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -118.274 2.789 -42.412 0.000 -123.756 -112.792
## waist.girth 0.439 0.023 0.365 18.844 0.000 0.394 0.485
## height 0.378 0.017 0.271 22.163 0.000 0.345 0.412
## thigh.girth 0.600 0.036 0.196 16.714 0.000 0.529 0.670
## forearm.girth 0.488 0.102 0.102 4.764 0.000 0.287 0.689
## calf.girth 0.539 0.069 0.111 7.782 0.000 0.403 0.675
## chest.girth 0.243 0.034 0.182 7.113 0.000 0.176 0.310
## -------------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 7
##
## - hip.girth added
##
## Model Summary
## -------------------------------------------------------------
## R 0.986 RMSE 2.229
## R-Squared 0.973 Coef. Var 3.197
## Adj. R-Squared 0.972 MSE 4.968
## Pred R-Squared 0.971 MAE 1.670
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70157.849 7 10022.550 2017.469 0.0000
## Residual 1977.217 398 4.968
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -122.360 2.713 -45.093 0.000 -127.695 -117.026
## waist.girth 0.358 0.025 0.298 14.191 0.000 0.308 0.407
## height 0.357 0.016 0.256 21.666 0.000 0.325 0.389
## thigh.girth 0.326 0.053 0.107 6.148 0.000 0.222 0.430
## forearm.girth 0.591 0.098 0.124 6.008 0.000 0.398 0.784
## calf.girth 0.512 0.066 0.106 7.774 0.000 0.382 0.641
## chest.girth 0.250 0.032 0.187 7.712 0.000 0.186 0.314
## hip.girth 0.282 0.042 0.138 6.746 0.000 0.200 0.364
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.986 RMSE 2.229
## R-Squared 0.973 Coef. Var 3.197
## Adj. R-Squared 0.972 MSE 4.968
## Pred R-Squared 0.971 MAE 1.670
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70157.849 7 10022.550 2017.469 0.0000
## Residual 1977.217 398 4.968
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -122.360 2.713 -45.093 0.000 -127.695 -117.026
## waist.girth 0.358 0.025 0.298 14.191 0.000 0.308 0.407
## height 0.357 0.016 0.256 21.666 0.000 0.325 0.389
## thigh.girth 0.326 0.053 0.107 6.148 0.000 0.222 0.430
## forearm.girth 0.591 0.098 0.124 6.008 0.000 0.398 0.784
## calf.girth 0.512 0.066 0.106 7.774 0.000 0.382 0.641
## chest.girth 0.250 0.032 0.187 7.712 0.000 0.186 0.314
## hip.girth 0.282 0.042 0.138 6.746 0.000 0.200 0.364
## -------------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 8
##
## - knee.diam added
##
## Model Summary
## -------------------------------------------------------------
## R 0.987 RMSE 2.199
## R-Squared 0.973 Coef. Var 3.154
## Adj. R-Squared 0.973 MSE 4.834
## Pred R-Squared 0.972 MAE 1.654
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70216.126 8 8777.016 1815.834 0.0000
## Residual 1918.940 397 4.834
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -123.356 2.692 -45.825 0.000 -128.648 -118.064
## waist.girth 0.364 0.025 0.303 14.594 0.000 0.315 0.413
## height 0.345 0.017 0.248 20.788 0.000 0.313 0.378
## thigh.girth 0.335 0.052 0.110 6.409 0.000 0.233 0.438
## forearm.girth 0.503 0.100 0.105 5.018 0.000 0.306 0.700
## calf.girth 0.456 0.067 0.094 6.812 0.000 0.324 0.587
## chest.girth 0.250 0.032 0.188 7.830 0.000 0.187 0.313
## hip.girth 0.257 0.042 0.126 6.155 0.000 0.175 0.339
## knee.diam 0.459 0.132 0.046 3.472 0.001 0.199 0.719
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.987 RMSE 2.199
## R-Squared 0.973 Coef. Var 3.154
## Adj. R-Squared 0.973 MSE 4.834
## Pred R-Squared 0.972 MAE 1.654
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70216.126 8 8777.016 1815.834 0.0000
## Residual 1918.940 397 4.834
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -123.356 2.692 -45.825 0.000 -128.648 -118.064
## waist.girth 0.364 0.025 0.303 14.594 0.000 0.315 0.413
## height 0.345 0.017 0.248 20.788 0.000 0.313 0.378
## thigh.girth 0.335 0.052 0.110 6.409 0.000 0.233 0.438
## forearm.girth 0.503 0.100 0.105 5.018 0.000 0.306 0.700
## calf.girth 0.456 0.067 0.094 6.812 0.000 0.324 0.587
## chest.girth 0.250 0.032 0.188 7.830 0.000 0.187 0.313
## hip.girth 0.257 0.042 0.126 6.155 0.000 0.175 0.339
## knee.diam 0.459 0.132 0.046 3.472 0.001 0.199 0.719
## -------------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 9
##
## - age added
##
## Model Summary
## -------------------------------------------------------------
## R 0.987 RMSE 2.165
## R-Squared 0.974 Coef. Var 3.106
## Adj. R-Squared 0.974 MSE 4.689
## Pred R-Squared 0.973 MAE 1.630
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70278.408 9 7808.712 1665.493 0.0000
## Residual 1856.657 396 4.689
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -121.271 2.712 -44.713 0.000 -126.603 -115.939
## waist.girth 0.386 0.025 0.321 15.260 0.000 0.337 0.436
## height 0.334 0.017 0.240 20.069 0.000 0.301 0.367
## thigh.girth 0.280 0.054 0.091 5.196 0.000 0.174 0.385
## forearm.girth 0.472 0.099 0.099 4.758 0.000 0.277 0.666
## calf.girth 0.462 0.066 0.095 7.006 0.000 0.332 0.591
## chest.girth 0.248 0.031 0.186 7.868 0.000 0.186 0.310
## hip.girth 0.285 0.042 0.140 6.812 0.000 0.203 0.367
## knee.diam 0.503 0.131 0.050 3.845 0.000 0.246 0.760
## age -0.047 0.013 -0.034 -3.645 0.000 -0.073 -0.022
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.987 RMSE 2.165
## R-Squared 0.974 Coef. Var 3.106
## Adj. R-Squared 0.974 MSE 4.689
## Pred R-Squared 0.973 MAE 1.630
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70278.408 9 7808.712 1665.493 0.0000
## Residual 1856.657 396 4.689
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -121.271 2.712 -44.713 0.000 -126.603 -115.939
## waist.girth 0.386 0.025 0.321 15.260 0.000 0.337 0.436
## height 0.334 0.017 0.240 20.069 0.000 0.301 0.367
## thigh.girth 0.280 0.054 0.091 5.196 0.000 0.174 0.385
## forearm.girth 0.472 0.099 0.099 4.758 0.000 0.277 0.666
## calf.girth 0.462 0.066 0.095 7.006 0.000 0.332 0.591
## chest.girth 0.248 0.031 0.186 7.868 0.000 0.186 0.310
## hip.girth 0.285 0.042 0.140 6.812 0.000 0.203 0.367
## knee.diam 0.503 0.131 0.050 3.845 0.000 0.246 0.760
## age -0.047 0.013 -0.034 -3.645 0.000 -0.073 -0.022
## -------------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 10
##
## - chest.depth added
##
## Model Summary
## -------------------------------------------------------------
## R 0.987 RMSE 2.132
## R-Squared 0.975 Coef. Var 3.058
## Adj. R-Squared 0.974 MSE 4.546
## Pred R-Squared 0.973 MAE 1.611
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70339.455 10 7033.945 1547.333 0.0000
## Residual 1795.611 395 4.546
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -120.430 2.680 -44.929 0.000 -125.699 -115.160
## waist.girth 0.364 0.026 0.303 14.194 0.000 0.314 0.415
## height 0.324 0.017 0.232 19.477 0.000 0.291 0.356
## thigh.girth 0.262 0.053 0.086 4.934 0.000 0.158 0.367
## forearm.girth 0.476 0.098 0.100 4.877 0.000 0.284 0.668
## calf.girth 0.451 0.065 0.093 6.938 0.000 0.323 0.578
## chest.girth 0.216 0.032 0.162 6.710 0.000 0.153 0.279
## hip.girth 0.294 0.041 0.144 7.111 0.000 0.212 0.375
## knee.diam 0.549 0.129 0.055 4.240 0.000 0.294 0.803
## age -0.053 0.013 -0.039 -4.147 0.000 -0.079 -0.028
## chest.depth 0.279 0.076 0.053 3.665 0.000 0.129 0.428
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.987 RMSE 2.132
## R-Squared 0.975 Coef. Var 3.058
## Adj. R-Squared 0.974 MSE 4.546
## Pred R-Squared 0.973 MAE 1.611
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70339.455 10 7033.945 1547.333 0.0000
## Residual 1795.611 395 4.546
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -120.430 2.680 -44.929 0.000 -125.699 -115.160
## waist.girth 0.364 0.026 0.303 14.194 0.000 0.314 0.415
## height 0.324 0.017 0.232 19.477 0.000 0.291 0.356
## thigh.girth 0.262 0.053 0.086 4.934 0.000 0.158 0.367
## forearm.girth 0.476 0.098 0.100 4.877 0.000 0.284 0.668
## calf.girth 0.451 0.065 0.093 6.938 0.000 0.323 0.578
## chest.girth 0.216 0.032 0.162 6.710 0.000 0.153 0.279
## hip.girth 0.294 0.041 0.144 7.111 0.000 0.212 0.375
## knee.diam 0.549 0.129 0.055 4.240 0.000 0.294 0.803
## age -0.053 0.013 -0.039 -4.147 0.000 -0.079 -0.028
## chest.depth 0.279 0.076 0.053 3.665 0.000 0.129 0.428
## -------------------------------------------------------------------------------------------------
##
##
##
## Stepwise Selection: Step 11
##
## - knee.girth added
##
## Model Summary
## -------------------------------------------------------------
## R 0.988 RMSE 2.118
## R-Squared 0.975 Coef. Var 3.038
## Adj. R-Squared 0.975 MSE 4.486
## Pred R-Squared 0.974 MAE 1.597
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70367.485 11 6397.044 1425.923 0.0000
## Residual 1767.581 394 4.486
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -119.942 2.670 -44.923 0.000 -125.192 -114.693
## waist.girth 0.358 0.026 0.297 13.955 0.000 0.307 0.408
## height 0.315 0.017 0.226 18.671 0.000 0.282 0.348
## thigh.girth 0.244 0.053 0.080 4.575 0.000 0.139 0.349
## forearm.girth 0.461 0.097 0.097 4.745 0.000 0.270 0.652
## calf.girth 0.380 0.070 0.079 5.403 0.000 0.242 0.519
## chest.girth 0.226 0.032 0.170 7.017 0.000 0.163 0.290
## hip.girth 0.277 0.042 0.136 6.676 0.000 0.196 0.359
## knee.diam 0.464 0.133 0.046 3.494 0.001 0.203 0.726
## age -0.053 0.013 -0.038 -4.114 0.000 -0.078 -0.027
## chest.depth 0.273 0.076 0.052 3.613 0.000 0.124 0.422
## knee.girth 0.215 0.086 0.041 2.500 0.013 0.046 0.384
## -------------------------------------------------------------------------------------------------
##
##
##
## Model Summary
## -------------------------------------------------------------
## R 0.988 RMSE 2.118
## R-Squared 0.975 Coef. Var 3.038
## Adj. R-Squared 0.975 MSE 4.486
## Pred R-Squared 0.974 MAE 1.597
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70367.485 11 6397.044 1425.923 0.0000
## Residual 1767.581 394 4.486
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -119.942 2.670 -44.923 0.000 -125.192 -114.693
## waist.girth 0.358 0.026 0.297 13.955 0.000 0.307 0.408
## height 0.315 0.017 0.226 18.671 0.000 0.282 0.348
## thigh.girth 0.244 0.053 0.080 4.575 0.000 0.139 0.349
## forearm.girth 0.461 0.097 0.097 4.745 0.000 0.270 0.652
## calf.girth 0.380 0.070 0.079 5.403 0.000 0.242 0.519
## chest.girth 0.226 0.032 0.170 7.017 0.000 0.163 0.290
## hip.girth 0.277 0.042 0.136 6.676 0.000 0.196 0.359
## knee.diam 0.464 0.133 0.046 3.494 0.001 0.203 0.726
## age -0.053 0.013 -0.038 -4.114 0.000 -0.078 -0.027
## chest.depth 0.273 0.076 0.052 3.613 0.000 0.124 0.422
## knee.girth 0.215 0.086 0.041 2.500 0.013 0.046 0.384
## -------------------------------------------------------------------------------------------------
##
##
##
## No more variables to be added/removed.
##
##
## Final Model Output
## ------------------
##
## Model Summary
## -------------------------------------------------------------
## R 0.988 RMSE 2.118
## R-Squared 0.975 Coef. Var 3.038
## Adj. R-Squared 0.975 MSE 4.486
## Pred R-Squared 0.974 MAE 1.597
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------------
## Regression 70367.485 11 6397.044 1425.923 0.0000
## Residual 1767.581 394 4.486
## Total 72135.066 405
## ------------------------------------------------------------------------
##
## Parameter Estimates
## -------------------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -------------------------------------------------------------------------------------------------
## (Intercept) -119.942 2.670 -44.923 0.000 -125.192 -114.693
## waist.girth 0.358 0.026 0.297 13.955 0.000 0.307 0.408
## height 0.315 0.017 0.226 18.671 0.000 0.282 0.348
## thigh.girth 0.244 0.053 0.080 4.575 0.000 0.139 0.349
## forearm.girth 0.461 0.097 0.097 4.745 0.000 0.270 0.652
## calf.girth 0.380 0.070 0.079 5.403 0.000 0.242 0.519
## chest.girth 0.226 0.032 0.170 7.017 0.000 0.163 0.290
## hip.girth 0.277 0.042 0.136 6.676 0.000 0.196 0.359
## knee.diam 0.464 0.133 0.046 3.494 0.001 0.203 0.726
## age -0.053 0.013 -0.038 -4.114 0.000 -0.078 -0.027
## chest.depth 0.273 0.076 0.052 3.613 0.000 0.124 0.422
## knee.girth 0.215 0.086 0.041 2.500 0.013 0.046 0.384
## -------------------------------------------------------------------------------------------------
modelolm2 = modelolm2$model
coef.estimados2 = summary(modelolm2)[["coefficients"]][1:12]
coef.estimados2
## [1] -119.94238480 0.35764567 0.31508021 0.24398655 0.46092806
## [6] 0.38040510 0.22623013 0.27722863 0.46439092 -0.05257939
## [11] 0.27296379 0.21472081
summary(modelolm2)
##
## Call:
## lm(formula = paste(response, "~", paste(preds, collapse = " + ")),
## data = l)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.4622 -1.3170 0.0429 1.1664 8.4828
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -119.94238 2.66995 -44.923 < 2e-16 ***
## waist.girth 0.35765 0.02563 13.955 < 2e-16 ***
## height 0.31508 0.01688 18.671 < 2e-16 ***
## thigh.girth 0.24399 0.05333 4.575 6.39e-06 ***
## forearm.girth 0.46093 0.09715 4.745 2.93e-06 ***
## calf.girth 0.38041 0.07040 5.403 1.14e-07 ***
## chest.girth 0.22623 0.03224 7.017 9.93e-12 ***
## hip.girth 0.27723 0.04153 6.676 8.36e-11 ***
## knee.diam 0.46439 0.13290 3.494 0.000529 ***
## age -0.05258 0.01278 -4.114 4.73e-05 ***
## chest.depth 0.27296 0.07556 3.613 0.000342 ***
## knee.girth 0.21472 0.08590 2.500 0.012839 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.118 on 394 degrees of freedom
## Multiple R-squared: 0.9755, Adjusted R-squared: 0.9748
## F-statistic: 1426 on 11 and 394 DF, p-value: < 2.2e-16
Validación del modelo de regresión multiple utilizando el método de selección de variables mixed selection
Análisis de los residuos
residuosmodelo2=modelolm2$residuals
valores.ajustados2=modelolm2$fitted.values
residuos2_sd=(residuosmodelo2-mean(residuosmodelo2))/sd(residuosmodelo2)
plot(valores.ajustados2, residuos2_sd, main="Gráfico dispersión de residuos - mixed selection", xlab = "Valores ajustados", ylab = "Residuos estandarizados", col = 'red')
Entender la normalidad de residuos con gráfico de histograma incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection.
x=seq(-4,4,0.01)
hist(residuos2_sd, col = "yellow", main="Histograma de residuos - mixed selection", xlab="Residuos",prob = TRUE, ylim = c(0,0.45))
theo.res=dnorm(x, mean = 0, sd = 1)
lines(theo.res ~ x, col="orange", lwd = 2 )
lines(density(residuos2_sd), col="violet", lwd = 2)
Entender la normalidad de residuos con gráfico de QQ-plot incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection
qqnorm(residuos2_sd, main = 'QQ plot residuos - mixed selection')
qqline(residuos2_sd, col="yellow", lwd = 2)
Valores calculados
prediccion2=predict(modelolm2, data_test)
prediccion2
## 5 8 11 18 23 26 28 37
## 80.72743 79.24969 79.95961 66.83213 67.33634 89.48429 73.07341 69.40112
## 51 52 72 76 81 82 101 103
## 75.27207 82.32266 77.85605 65.78213 96.03548 80.70151 86.45037 56.68141
## 107 113 115 119 121 124 131 136
## 83.78599 63.10515 83.11556 81.51716 81.30201 107.30961 75.92296 80.34579
## 142 149 156 165 180 181 182 189
## 88.54618 74.04851 66.59301 67.89705 81.54746 70.03948 82.76415 78.32543
## 191 209 213 214 219 220 228 248
## 79.67837 73.32619 93.50596 69.31488 79.25658 81.44547 78.08806 51.70696
## 250 253 254 256 261 262 269 279
## 48.20772 56.53656 44.27263 70.34666 40.34998 49.44525 83.52371 54.91052
## 295 304 318 320 323 332 343 348
## 50.81201 63.48092 45.82615 48.78875 54.47768 52.29242 47.90619 53.58749
## 352 353 360 366 369 371 377 381
## 59.45335 58.94962 54.43594 42.40387 62.86626 56.58972 56.67717 39.74312
## 389 396 399 400 402 404 407 408
## 52.94583 65.40099 55.52300 63.22358 71.75722 54.26886 86.43317 54.60946
## 411 413 417 419 423 426 428 430
## 77.61650 66.86771 59.56761 59.18733 63.50211 56.83988 78.47048 54.29735
## 435 443 457 458 459 464 465 467
## 58.14458 61.71876 79.97678 69.09143 59.03228 49.83376 64.46797 67.59804
## 468 472 479 483 484 495 496 500
## 64.42073 55.63807 72.86264 61.82624 56.12825 56.60151 62.66825 68.62638
## 501 502 503 504 507
## 62.26284 74.90940 70.61341 55.54792 70.89471
Valores verdaderos de datos de testeo
data_test[,1]
## [1] 78.8 78.4 76.6 70.0 66.2 89.6 76.4 67.2 75.6 86.2 78.9 63.9
## [13] 93.0 80.9 86.4 53.9 83.2 65.0 84.1 82.7 79.5 116.4 75.0 76.4
## [25] 86.4 72.7 68.6 65.9 80.5 70.0 81.8 73.6 82.7 72.3 91.1 67.3
## [37] 76.6 85.0 77.3 51.6 49.2 59.0 47.6 66.8 42.0 50.0 82.5 55.0
## [49] 50.2 60.7 48.7 50.0 55.7 52.8 48.6 53.6 58.4 56.2 51.8 45.0
## [61] 60.2 58.8 54.4 43.2 54.6 63.6 56.8 64.1 72.3 55.9 84.5 55.9
## [73] 76.4 65.9 58.6 59.1 60.0 54.1 75.9 57.3 58.6 62.0 80.9 70.5
## [85] 60.9 52.7 62.7 66.4 67.3 57.7 72.3 63.6 53.4 57.3 64.1 68.2
## [97] 61.4 76.8 71.8 55.5 67.3
Cálculo error total método mixed selection
Error2=sum((data_test[,1]-prediccion2)^2)
Error2
## [1] 493.5445
Cálculo error medio
ME2.test = mean((data_test[,1]-prediccion2)^2)
ME2.test
## [1] 4.886579
Cálculo error cuadrático medio
ME2C.test = mean((residuos2_sd)^2)
ME2C.test
## [1] 0.9975369
plot(data_test[,1], prediccion2, main = 'Predicción valores verdaderos vs calculados - mixed selection' , xlab = "Valores verdaderos - weight",
ylab = "Valores calculados - weight", col = "red")
abline(0,1, col = "yellow", lwd = 2)
Estudiar el comando pcr() del paquete pls.
Realizar el modelo de regresión múltiple tomando las componentes principales del conjunto de variables explicativas
modelolm3 = pcr(weight~., data = data_training, scale = TRUE)
summary(modelolm3)
## Data: X dimension: 406 23
## Y dimension: 406 1
## Fit method: svdpc
## Number of components considered: 23
## TRAINING: % variance explained
## 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
## X 60.60 71.61 77.19 81.79 84.95 86.90 88.66 90.07
## weight 93.57 94.29 94.32 94.92 95.91 96.16 96.18 96.22
## 9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps
## X 91.43 92.68 93.82 94.8 95.68 96.42 97.11
## weight 96.61 96.71 96.72 96.8 96.87 96.90 96.91
## 16 comps 17 comps 18 comps 19 comps 20 comps 21 comps 22 comps
## X 97.71 98.23 98.67 99.05 99.39 99.64 99.83
## weight 97.32 97.43 97.52 97.61 97.64 97.64 97.64
## 23 comps
## X 100.00
## weight 97.65
Cargas de las primeras trece componentes, opte por las primeras 13 ya que con esta llego al 95% de variabilidad
modelolm3$loadings[,1]
## biacromial pelvic.breadth bitrochanteric chest.depth chest.diam
## -0.21032753 -0.13388929 -0.18091096 -0.21269802 -0.22926149
## elbow.diam wrist.diam knee.diam ankle.diam shoulder.girth
## -0.23317205 -0.22389980 -0.21600375 -0.21327140 -0.24254593
## chest.girth waist.girth navel.girth hip.girth thigh.girth
## -0.24407644 -0.23582105 -0.18316191 -0.18964057 -0.12644436
## bicep.girth forearm.girth knee.girth calf.girth ankle.girth
## -0.23980088 -0.24409088 -0.21190311 -0.20314335 -0.21612029
## wrist.girth age height
## -0.23790957 -0.07430121 -0.19764948
coef(modelolm3, intercept = TRUE, ncomp = 13)
## , , 13 comps
##
## weight
## (Intercept) -122.16079039
## biacromial 0.56549094
## pelvic.breadth 0.25760855
## bitrochanteric -0.25466220
## chest.depth 1.52779938
## chest.diam 1.13388545
## elbow.diam 0.50846417
## wrist.diam 0.46329245
## knee.diam -0.03418391
## ankle.diam 0.21734385
## shoulder.girth 1.08100745
## chest.girth 1.13542875
## waist.girth 1.33782447
## navel.girth 1.24795181
## hip.girth 1.26289524
## thigh.girth 1.40420794
## bicep.girth 0.49869093
## forearm.girth 0.42438275
## knee.girth 1.40056835
## calf.girth 0.55131043
## ankle.girth -0.12412805
## wrist.girth 0.04528131
## age -0.42755690
## height 2.12424903
Validación del modelo de regresión multiple tomando los componentes principales del conjunto de varialbes explicativas
residuosmodelo3= residuals(modelolm3)
residuosmodelo3
## , , 1 comps
##
## weight
## 225 0.76999003
## 31 -1.61414021
## 290 3.51931070
## 174 -0.41364923
## 505 -3.45560446
## 274 -1.16562918
## 493 3.28417841
## 440 2.74599687
## 385 4.53672223
## 196 -3.17368294
## 68 -2.02891085
## 55 0.36392400
## 310 4.43429804
## 319 1.90363676
## 79 -0.12328796
## 238 -6.42347837
## 43 -0.73819440
## 370 4.06071248
## 362 3.79749967
## 301 1.34931288
## 65 -0.64075607
## 382 1.57668989
## 16 -0.69453779
## 355 -2.39689067
## 89 1.34344039
## 277 -0.53158845
## 498 1.55298172
## 134 0.29377543
## 152 2.44058709
## 282 1.47636113
## 112 2.57922933
## 147 -3.81198432
## 42 2.00412425
## 489 3.62967740
## 330 -1.60774475
## 415 -4.64188080
## 207 -2.82131154
## 212 7.76583531
## 78 -2.34475807
## 99 1.59326083
## 376 0.33874016
## 163 -6.89676735
## 243 3.21484641
## 391 0.36321209
## 221 11.90461891
## 86 0.19602948
## 144 1.01011852
## 327 3.60969232
## 359 7.07353469
## 200 0.01851722
## 58 -6.51062098
## 241 -9.64543767
## 25 -1.81075499
## 45 -1.55684617
## 263 -0.39382731
## 183 0.73122277
## 487 0.54724155
## 326 -1.33725294
## 494 -3.34544430
## 349 5.19206176
## 442 -0.86316825
## 234 -5.17936497
## 95 6.07110770
## 271 3.87599001
## 345 -1.80878883
## 40 -2.89317626
## 206 -0.86509221
## 185 4.16856478
## 1 -1.62092175
## 322 -5.08076823
## 333 0.37519498
## 188 -0.19559103
## 427 -1.46605347
## 469 -0.37784577
## 438 -3.56525869
## 85 0.59960707
## 311 -0.91565190
## 167 2.83815078
## 71 -5.82846519
## 46 -1.32979728
## 281 0.87260828
## 193 -3.83615532
## 218 -2.69927133
## 194 6.66874496
## 133 2.72940432
## 216 -2.39956617
## 244 5.17967622
## 392 2.29987879
## 20 -2.58998033
## 92 1.28011873
## 286 3.40652255
## 334 -0.98323102
## 98 0.88578570
## 298 -1.23061681
## 410 4.17575006
## 291 0.61024653
## 49 4.46250345
## 97 0.02650534
## 66 -7.48600224
## 109 -0.91692308
## 104 1.10233469
## 434 2.06552961
## 153 4.24324457
## 88 -0.69415023
## 158 0.15776974
## 324 -1.18835224
## 491 -1.22256777
## 60 -2.59643945
## 264 2.39606696
## 422 0.51543224
## 375 2.01914212
## 108 -2.70364687
## 266 7.17884250
## 157 -3.02062729
## 187 -1.63511794
## 466 8.61459342
## 19 -7.84838372
## 418 -1.47706930
## 33 -4.95909171
## 429 -2.33272847
## 151 -1.80727541
## 368 2.32947718
## 63 -4.13640404
## 120 -0.91127275
## 474 6.50797265
## 354 2.09199637
## 265 -0.66794054
## 96 -2.36995772
## 454 -8.76359149
## 453 1.97883240
## 395 1.28201523
## 222 3.70253250
## 361 0.27898074
## 424 -3.96951246
## 171 0.82862132
## 313 2.74691890
## 293 -0.36448110
## 273 -1.27795296
## 409 -2.79460121
## 471 1.40017495
## 54 4.82949886
## 154 -0.99607076
## 47 5.62148711
## 235 0.06339252
## 24 3.25207494
## 249 -0.07489862
## 69 6.96287896
## 233 1.73522174
## 38 -4.90971487
## 335 4.41700837
## 433 -3.05885563
## 125 -0.19050074
## 192 5.94733678
## 126 3.64916359
## 30 -0.39793976
## 401 -5.16859740
## 170 -5.55619065
## 114 -1.83342096
## 145 2.66703078
## 197 -5.59415915
## 476 3.92868815
## 146 2.76226323
## 53 -6.52767492
## 384 5.38108836
## 247 3.74251270
## 118 -1.25982169
## 386 -0.89086238
## 331 1.21331311
## 398 -0.70004692
## 159 8.04798443
## 123 -0.53755219
## 300 -2.63373062
## 283 0.41911623
## 230 2.78044533
## 437 -2.48182663
## 94 0.34423628
## 137 -0.12688816
## 190 -2.31019643
## 229 -1.34381792
## 15 -2.12951461
## 284 1.93592373
## 122 -2.79145703
## 75 -6.55371783
## 268 0.49870937
## 226 -3.40894195
## 480 0.20020589
## 251 0.45464871
## 208 1.30625119
## 176 -1.29255512
## 232 1.35331603
## 164 -5.40844380
## 485 6.15923991
## 227 -1.81033130
## 337 0.08530359
## 179 -1.91758504
## 342 1.64556242
## 100 -0.96324576
## 460 8.35485363
## 470 -1.06954570
## 117 -2.72561575
## 270 2.37698783
## 357 -0.73489869
## 215 -7.23218379
## 44 -2.65075820
## 4 -1.91905425
## 140 -8.91954480
## 14 1.11448521
## 482 9.31736164
## 308 -2.75362752
## 365 2.71884500
## 364 0.53634208
## 90 -1.91310902
## 444 -1.92205639
## 350 3.01530458
## 239 -0.16486107
## 91 -3.09783404
## 172 -3.57027269
## 106 -3.79358122
## 9 -4.54135267
## 374 2.44678751
## 169 3.97537204
## 447 -3.14577013
## 473 0.54985810
## 358 0.43061043
## 383 -1.23851676
## 73 -1.69986897
## 461 -0.28824248
## 278 -1.14591548
## 344 0.33258386
## 378 5.45561153
## 347 0.07638332
## 201 -5.84909983
## 356 4.11172777
## 317 -1.58474506
## 450 -4.79583009
## 210 1.75804546
## 105 0.18465700
## 173 -2.44656953
## 425 2.06482017
## 414 -4.57968224
## 205 -0.12006328
## 186 5.08768282
## 388 -1.22546809
## 387 3.83568779
## 237 -1.45527130
## 346 -2.03476567
## 236 -4.49495053
## 285 0.12364003
## 48 -0.12312329
## 416 -4.89076741
## 130 -2.69200807
## 17 4.98855823
## 412 -2.42888008
## 141 14.00151346
## 160 -2.60424913
## 259 -0.12755541
## 380 0.14835149
## 379 2.49252477
## 61 -2.39408419
## 110 -2.62262852
## 83 2.24344171
## 287 -3.15246506
## 84 -3.21797667
## 340 -2.41451761
## 451 2.22226950
## 486 -2.57552086
## 363 0.94451063
## 3 3.06483027
## 306 3.20664000
## 316 -1.48219626
## 13 0.08025394
## 341 -0.64042927
## 27 -1.73097606
## 36 -4.58687104
## 223 0.16040887
## 138 -0.12006728
## 431 -2.44705374
## 240 1.78126776
## 490 2.22551868
## 446 -6.14180892
## 488 2.42404025
## 155 1.65957498
## 143 0.44156976
## 312 1.34294825
## 294 0.18074078
## 305 1.28468744
## 127 -0.26417085
## 111 -2.06435399
## 455 -2.30018454
## 393 5.93333761
## 289 -5.20331120
## 257 -2.19107792
## 12 -0.55078388
## 432 -2.25981365
## 77 2.08797329
## 184 0.76255734
## 87 -6.06053198
## 296 5.83976914
## 74 -3.25195550
## 231 -3.78029985
## 59 -3.30106641
## 439 -0.21497656
## 224 3.71069139
## 492 -0.15730569
## 309 1.78877443
## 421 -0.82690101
## 452 -2.99058537
## 10 -0.20416979
## 307 -0.03648486
## 499 1.14494569
## 57 -3.92417122
## 397 -4.14432075
## 328 -3.11375232
## 39 -1.29610539
## 260 2.45827359
## 394 0.40585328
## 93 -0.68462517
## 329 1.65006253
## 302 -0.37883385
## 132 -3.23392837
## 477 3.44736568
## 135 1.38600456
## 242 2.35986000
## 2 -5.74757734
## 178 3.84468270
## 62 -2.87236807
## 445 1.64477102
## 403 -2.49356527
## 336 5.99899043
## 50 -0.55166181
## 139 -1.23847047
## 116 1.95057558
## 276 -0.09467187
## 150 1.20894322
## 129 0.09074971
## 21 2.92892149
## 448 -3.82969082
## 280 5.64964749
## 288 1.77940658
## 177 2.91591349
## 390 -0.12630214
## 204 4.64380062
## 338 1.52021474
## 303 -1.08003723
## 148 4.40881611
## 29 -1.88927502
## 128 2.39044784
## 161 5.11609466
## 22 -3.06348595
## 246 -5.23762247
## 162 -3.01664713
## 406 0.02636195
## 339 -1.74667546
## 497 1.45295768
## 202 5.40263964
## 441 -3.54590477
## 325 -6.47931410
## 32 -2.34572233
## 211 -5.82506877
## 275 1.26841009
## 506 0.23861102
## 255 -0.42456484
## 267 1.16280303
## 420 2.03300847
## 168 1.11796688
## 245 -4.57292946
## 463 0.45507790
## 373 0.28394419
## 67 1.22027943
## 217 -4.42868060
## 64 -2.95214452
## 198 7.56214315
## 456 -5.45217876
## 405 1.02653445
## 203 -2.79983578
## 175 -1.43430156
## 299 6.59613095
## 7 -5.03412849
## 258 4.55989125
## 6 -1.47790794
## 481 0.86218549
## 478 3.81944875
## 297 -1.33994288
## 80 1.54632101
## 321 -1.78268741
## 252 -0.93812258
## 195 1.57886624
## 272 0.90241257
## 449 1.66940019
## 199 6.10146925
## 166 0.58739608
## 372 -0.15347195
## 41 3.22432693
## 315 1.82806077
## 292 3.85923465
## 56 -1.81298722
## 367 0.49982567
## 475 5.80708554
## 314 2.89233863
## 351 3.57166574
## 462 0.44309231
## 34 0.72254969
## 35 -1.98864525
## 70 -2.74797389
## 102 -1.72286941
## 436 -2.68953046
##
## , , 2 comps
##
## weight
## 225 1.591393632
## 31 -0.956807410
## 290 3.375719522
## 174 0.484237951
## 505 -2.318963754
## 274 -2.040402660
## 493 2.997409202
## 440 1.693565237
## 385 5.905877472
## 196 -3.530273208
## 68 -2.237076959
## 55 1.990070713
## 310 3.369394421
## 319 2.396433147
## 79 0.665485034
## 238 -4.319928595
## 43 -0.335106490
## 370 4.698482529
## 362 3.294690130
## 301 2.781692080
## 65 0.245675918
## 382 1.113981447
## 16 0.319576034
## 355 -3.160254325
## 89 2.460835397
## 277 0.227200696
## 498 2.001058775
## 134 -0.928518658
## 152 4.154607527
## 282 1.497289595
## 112 3.306164435
## 147 -2.737888614
## 42 2.172395979
## 489 3.105622731
## 330 -1.406083286
## 415 -5.606740802
## 207 -2.059333523
## 212 7.459063527
## 78 -1.506367614
## 99 1.971569763
## 376 0.401384822
## 163 -6.652527584
## 243 4.514336133
## 391 0.545093059
## 221 11.769697027
## 86 0.557349338
## 144 1.198871697
## 327 3.223350701
## 359 4.349406529
## 200 0.852495726
## 58 -5.721924908
## 241 -6.877485688
## 25 -0.946453182
## 45 -1.615319179
## 263 -0.840600987
## 183 1.594801675
## 487 -0.835989323
## 326 -2.122588295
## 494 -2.785863924
## 349 1.748613412
## 442 -3.952726541
## 234 -4.524598012
## 95 5.283842971
## 271 1.902496620
## 345 -2.285525718
## 40 -1.152097085
## 206 0.856549369
## 185 4.200491161
## 1 -0.235505273
## 322 -6.378840127
## 333 0.692189769
## 188 0.810248020
## 427 -0.539703178
## 469 -0.792292665
## 438 -5.841274165
## 85 0.933922962
## 311 -2.437058865
## 167 0.257010574
## 71 -5.700460952
## 46 -0.782566606
## 281 0.545855465
## 193 -3.227671167
## 218 -3.544074464
## 194 6.093996406
## 133 3.019739739
## 216 -1.983835750
## 244 3.911838698
## 392 2.306478710
## 20 -2.397104296
## 92 1.931377869
## 286 1.950701561
## 334 -1.301058409
## 98 1.587824329
## 298 -1.179561830
## 410 3.051978844
## 291 1.581070608
## 49 5.103998437
## 97 1.152546551
## 66 -7.395015330
## 109 -0.101133449
## 104 2.084179840
## 434 3.419929376
## 153 5.673961106
## 88 -0.485548738
## 158 1.062091951
## 324 -1.671862368
## 491 -3.240044427
## 60 -1.970612300
## 264 2.738373663
## 422 0.126321290
## 375 1.654071407
## 108 -1.734943596
## 266 6.854360201
## 157 -0.800296076
## 187 -1.672395015
## 466 6.422156632
## 19 -6.817368156
## 418 -2.645921417
## 33 -3.840059128
## 429 -2.547330608
## 151 -0.373625623
## 368 2.670869743
## 63 -2.247808842
## 120 1.112002703
## 474 1.540956632
## 354 0.967740624
## 265 -1.901175425
## 96 -2.140545614
## 454 -9.272375219
## 453 0.094511201
## 395 0.175833726
## 222 6.262309800
## 361 0.534088546
## 424 -4.231601271
## 171 0.276284367
## 313 2.558992816
## 293 -0.649309632
## 273 -1.215819485
## 409 -2.741327176
## 471 0.740109642
## 54 5.206034019
## 154 -0.369981076
## 47 5.745753598
## 235 1.811261987
## 24 3.157827304
## 249 -0.386804355
## 69 5.764065457
## 233 3.145029341
## 38 -4.423965160
## 335 4.413453748
## 433 -3.854116770
## 125 -0.156401343
## 192 6.909807530
## 126 4.284916184
## 30 0.384284546
## 401 -4.711158672
## 170 -5.060666672
## 114 -2.539585604
## 145 1.873844562
## 197 -4.607053891
## 476 1.803192592
## 146 3.151171466
## 53 -5.503464584
## 384 3.453284786
## 247 3.779388152
## 118 -1.267397235
## 386 -0.609167476
## 331 1.266010294
## 398 -2.588908021
## 159 7.261987453
## 123 0.496387086
## 300 -2.535221713
## 283 1.575008303
## 230 3.158998786
## 437 -2.966246018
## 94 1.118782709
## 137 0.584124637
## 190 -1.210801410
## 229 -0.058124302
## 15 -1.298065371
## 284 0.183021417
## 122 -2.138033941
## 75 -4.881098004
## 268 0.206168113
## 226 -3.238549896
## 480 0.388660709
## 251 -1.216423392
## 208 1.759402119
## 176 -1.262655831
## 232 1.855864202
## 164 -4.192987418
## 485 5.714566996
## 227 -1.412462859
## 337 -0.425003234
## 179 -1.661206365
## 342 2.210377349
## 100 -2.572742196
## 460 7.101954998
## 470 -2.657957642
## 117 -1.359185144
## 270 2.160845272
## 357 -0.944142248
## 215 -7.911921380
## 44 -1.079786633
## 4 -0.947791278
## 140 -6.698826316
## 14 1.258142200
## 482 7.730076268
## 308 -2.097106618
## 365 3.123270201
## 364 -0.033633446
## 90 -0.445636718
## 444 -3.066966085
## 350 3.106665943
## 239 1.330872679
## 91 -2.234085620
## 172 -2.236015031
## 106 -2.873759857
## 9 -2.598974851
## 374 1.300485008
## 169 2.970341781
## 447 -3.578642628
## 473 0.266705681
## 358 0.106833875
## 383 -0.821201473
## 73 -1.513375068
## 461 -0.266186520
## 278 -1.493815849
## 344 0.392777960
## 378 4.992197940
## 347 0.038641391
## 201 -4.355926462
## 356 2.448810688
## 317 -1.242173889
## 450 -4.584295980
## 210 1.427837386
## 105 2.965657025
## 173 -1.268033590
## 425 -0.836369689
## 414 -6.447676986
## 205 -0.276020394
## 186 4.673172515
## 388 -0.960707876
## 387 3.037828407
## 237 -1.431672075
## 346 -1.866742992
## 236 -3.274752063
## 285 0.512860040
## 48 -0.635606499
## 416 -5.324982642
## 130 -1.705576226
## 17 4.174812630
## 412 -3.340140166
## 141 13.807186123
## 160 -1.343938092
## 259 0.306002290
## 380 0.328560154
## 379 2.291338368
## 61 -1.322375990
## 110 -0.196728801
## 83 3.403954523
## 287 -2.996256233
## 84 -2.069825339
## 340 -2.777481153
## 451 2.238252243
## 486 -2.724966117
## 363 1.194842372
## 3 3.794604234
## 306 2.416440769
## 316 -2.675532900
## 13 0.272643766
## 341 0.257915434
## 27 -2.503664343
## 36 -3.052414850
## 223 1.846408175
## 138 -0.541571734
## 431 -3.944026502
## 240 2.131869688
## 490 2.557252112
## 446 -6.705987954
## 488 2.435338666
## 155 0.914274891
## 143 1.705373947
## 312 -0.373235548
## 294 0.005103727
## 305 0.957401529
## 127 0.917117720
## 111 -1.234324497
## 455 -2.101503022
## 393 4.000965191
## 289 -5.397356958
## 257 -3.719281665
## 12 0.734087757
## 432 -3.948605141
## 77 2.606957558
## 184 1.198154790
## 87 -4.296087332
## 296 4.866360543
## 74 -1.394051671
## 231 -3.775559180
## 59 -3.976879264
## 439 -0.075472155
## 224 3.335523944
## 492 -0.623743249
## 309 -0.171990731
## 421 -2.251546044
## 452 -3.277967077
## 10 0.411150139
## 307 -0.415576607
## 499 -1.478209227
## 57 -3.473318259
## 397 -4.493980203
## 328 -3.771908988
## 39 -0.350829398
## 260 1.806048352
## 394 -0.262862432
## 93 0.572107509
## 329 1.688235208
## 302 -1.151114264
## 132 -2.088529000
## 477 0.018831697
## 135 3.334481691
## 242 3.859031568
## 2 -4.610245215
## 178 3.130429973
## 62 -3.291264492
## 445 1.444826780
## 403 -2.439658304
## 336 4.896404582
## 50 1.538409951
## 139 0.595996930
## 116 3.768598095
## 276 -1.146246934
## 150 2.480858761
## 129 -0.818119898
## 21 3.499919000
## 448 -6.400208911
## 280 3.856397275
## 288 1.071657804
## 177 3.068186241
## 390 -0.046405303
## 204 4.940358755
## 338 -0.301091137
## 303 -0.801812383
## 148 4.780306895
## 29 -1.047450608
## 128 2.479558692
## 161 3.609229834
## 22 -1.984616916
## 246 -5.208574355
## 162 -3.184342465
## 406 -2.498393084
## 339 -2.053688515
## 497 1.077429599
## 202 4.804418755
## 441 -5.462013726
## 325 -6.036955783
## 32 -0.146742644
## 211 -5.304072902
## 275 0.885148398
## 506 -0.954861995
## 255 -2.113171945
## 267 0.307095744
## 420 0.018653643
## 168 2.311404040
## 245 -4.049554115
## 463 -1.786043415
## 373 -0.303572043
## 67 2.084311868
## 217 -4.469203853
## 64 -1.300448921
## 198 5.114557693
## 456 -6.832840416
## 405 -1.067744824
## 203 -1.473774781
## 175 -1.234603041
## 299 4.237653932
## 7 -4.174449163
## 258 4.333187686
## 6 -0.216320728
## 481 -0.529973617
## 478 3.062242389
## 297 -2.443360044
## 80 1.983842875
## 321 -2.465559691
## 252 -1.374822656
## 195 1.639386853
## 272 -0.721437632
## 449 1.216973666
## 199 5.959373858
## 166 0.192454991
## 372 0.330682970
## 41 3.133809156
## 315 -0.716654310
## 292 3.249187526
## 56 -0.088541913
## 367 1.291713177
## 475 6.383003031
## 314 3.549519160
## 351 1.849211020
## 462 -0.156911599
## 34 0.271072208
## 35 -1.112801681
## 70 -1.361382586
## 102 -0.528441744
## 436 -4.353316843
##
## , , 3 comps
##
## weight
## 225 1.806948131
## 31 -1.058068873
## 290 3.368827394
## 174 0.681411244
## 505 -2.330446783
## 274 -2.239199812
## 493 2.889289706
## 440 1.809346896
## 385 5.931089035
## 196 -2.940428571
## 68 -2.295686946
## 55 2.246140730
## 310 3.354860888
## 319 2.614480407
## 79 0.549560731
## 238 -4.301315645
## 43 -0.616933195
## 370 4.667826698
## 362 3.120083105
## 301 2.693019160
## 65 0.110903643
## 382 1.196738815
## 16 0.104778787
## 355 -3.291672450
## 89 2.463824702
## 277 0.142863201
## 498 1.776822022
## 134 -1.132356995
## 152 4.217853892
## 282 1.557265590
## 112 3.377311399
## 147 -2.720357368
## 42 1.912427905
## 489 3.292236451
## 330 -1.600928493
## 415 -5.858732593
## 207 -1.553545302
## 212 7.306913352
## 78 -1.480125736
## 99 1.759768175
## 376 0.238744192
## 163 -6.347714924
## 243 5.059656305
## 391 0.688929474
## 221 11.987334683
## 86 0.698277636
## 144 1.527450592
## 327 2.818949912
## 359 3.972106025
## 200 1.326934574
## 58 -5.485391220
## 241 -6.809252832
## 25 -1.283939758
## 45 -1.698976311
## 263 -0.922494298
## 183 1.475431541
## 487 -0.962390285
## 326 -1.976699680
## 494 -2.739377608
## 349 1.354597837
## 442 -4.044923793
## 234 -4.031299402
## 95 5.346877091
## 271 1.602628039
## 345 -2.272150518
## 40 -1.485000728
## 206 0.688063948
## 185 4.141026440
## 1 -0.460526509
## 322 -6.252641812
## 333 0.374351786
## 188 1.319175628
## 427 -0.685158174
## 469 -0.978762009
## 438 -5.782348519
## 85 1.070627722
## 311 -2.939408601
## 167 0.435517361
## 71 -5.685668823
## 46 -1.142370322
## 281 0.515920427
## 193 -2.915617778
## 218 -3.482308254
## 194 6.651478642
## 133 3.353410681
## 216 -1.724887173
## 244 3.959724659
## 392 2.187313161
## 20 -2.776901555
## 92 2.146653634
## 286 1.704245844
## 334 -1.067865860
## 98 1.431671209
## 298 -1.352344978
## 410 2.939148993
## 291 1.562358259
## 49 5.020035263
## 97 0.991498776
## 66 -6.913622053
## 109 -0.219680325
## 104 2.199447933
## 434 3.549483694
## 153 5.650064721
## 88 -0.571663059
## 158 1.047100505
## 324 -1.644205701
## 491 -3.002651138
## 60 -1.537580528
## 264 2.829722127
## 422 0.139882183
## 375 1.872343658
## 108 -1.785794938
## 266 6.799290160
## 157 -0.775571050
## 187 -1.187716152
## 466 6.400489087
## 19 -6.865671186
## 418 -2.265555737
## 33 -3.945294566
## 429 -2.546528165
## 151 -0.146715185
## 368 2.459495269
## 63 -2.155872509
## 120 1.162236385
## 474 1.354855415
## 354 0.536505268
## 265 -1.987050389
## 96 -2.094518055
## 454 -9.036470553
## 453 0.330861477
## 395 0.240259998
## 222 6.645529980
## 361 0.308529019
## 424 -3.991726107
## 171 0.496479187
## 313 2.606941177
## 293 -0.836272798
## 273 -1.207373835
## 409 -2.853371967
## 471 0.637839454
## 54 5.120530741
## 154 -0.305302581
## 47 5.474429155
## 235 1.816328419
## 24 3.074426379
## 249 -0.880373845
## 69 5.860001665
## 233 3.475412607
## 38 -4.599153994
## 335 4.430026490
## 433 -3.931423644
## 125 0.055833908
## 192 6.963273911
## 126 4.253591262
## 30 0.351663223
## 401 -4.516461422
## 170 -5.039782038
## 114 -2.378420032
## 145 2.138151569
## 197 -4.801415886
## 476 1.865491479
## 146 3.188271627
## 53 -5.515271417
## 384 3.157148702
## 247 3.762601352
## 118 -1.366662424
## 386 -0.870793119
## 331 0.985957693
## 398 -2.331329103
## 159 7.527429551
## 123 0.542441272
## 300 -2.544881370
## 283 1.414311551
## 230 3.330879899
## 437 -2.656148582
## 94 0.911118914
## 137 0.673939636
## 190 -0.900597495
## 229 0.080931688
## 15 -1.268463955
## 284 0.260699397
## 122 -2.324670290
## 75 -5.019174337
## 268 0.245936851
## 226 -2.871060918
## 480 0.494757378
## 251 -1.312824065
## 208 1.564081850
## 176 -1.486023991
## 232 2.353411891
## 164 -4.069971922
## 485 5.829777950
## 227 -1.041074157
## 337 -0.613040871
## 179 -1.869761701
## 342 2.218351962
## 100 -2.560646999
## 460 7.121514279
## 470 -2.882446908
## 117 -1.341755691
## 270 2.216883666
## 357 -1.291570132
## 215 -8.188366913
## 44 -1.062303591
## 4 -1.086345683
## 140 -6.859649344
## 14 1.262496163
## 482 8.296431602
## 308 -1.854213999
## 365 2.993726543
## 364 -0.382258637
## 90 -0.485245400
## 444 -2.854094792
## 350 3.087831801
## 239 1.181475834
## 91 -2.303383882
## 172 -2.377131459
## 106 -2.957211613
## 9 -2.810676728
## 374 1.539592773
## 169 2.918264313
## 447 -3.320230368
## 473 0.303042454
## 358 0.036745708
## 383 -0.703280200
## 73 -1.676129587
## 461 -0.332362979
## 278 -1.162832651
## 344 0.257015939
## 378 4.931725815
## 347 -0.003767639
## 201 -4.275230352
## 356 2.159281093
## 317 -1.014417188
## 450 -4.590815284
## 210 1.564133055
## 105 2.755015645
## 173 -1.243288216
## 425 -0.831006014
## 414 -5.724851663
## 205 -0.315513179
## 186 5.178670979
## 388 -1.065224987
## 387 3.160886123
## 237 -1.215257012
## 346 -2.167713024
## 236 -3.302823788
## 285 0.488210346
## 48 -0.937243201
## 416 -5.119511916
## 130 -1.838135523
## 17 3.888269444
## 412 -3.283478710
## 141 13.607463727
## 160 -1.196359656
## 259 0.162487874
## 380 0.152560439
## 379 2.181637762
## 61 -1.425570677
## 110 -0.267360601
## 83 3.341192376
## 287 -3.168816310
## 84 -1.958540339
## 340 -2.688978390
## 451 2.124113662
## 486 -2.635718028
## 363 1.198069360
## 3 3.730231633
## 306 2.728836244
## 316 -2.926483722
## 13 -0.091557964
## 341 0.218496177
## 27 -2.720957884
## 36 -3.201212647
## 223 1.841382259
## 138 -0.116045856
## 431 -3.889473236
## 240 2.418450174
## 490 2.603480125
## 446 -6.402037904
## 488 2.176910902
## 155 0.719225345
## 143 1.658226725
## 312 -0.167253106
## 294 -0.248062660
## 305 0.758066716
## 127 0.785845968
## 111 -1.364658098
## 455 -1.960968568
## 393 3.670995468
## 289 -5.516034682
## 257 -3.506850107
## 12 0.427298935
## 432 -3.806440930
## 77 2.590594839
## 184 1.441767450
## 87 -4.580183127
## 296 4.860941204
## 74 -1.572024058
## 231 -3.048422906
## 59 -3.926837691
## 439 0.047817921
## 224 3.516472963
## 492 -0.793072363
## 309 -0.458458840
## 421 -1.920468057
## 452 -3.356344592
## 10 0.100015160
## 307 -0.540205072
## 499 -1.633198659
## 57 -3.009536158
## 397 -4.248651038
## 328 -4.280632141
## 39 -0.505805666
## 260 1.749391492
## 394 -0.297017223
## 93 0.649106001
## 329 1.462001492
## 302 -1.301190151
## 132 -1.813822001
## 477 0.110259483
## 135 3.398618809
## 242 3.841248874
## 2 -4.780994790
## 178 3.406054155
## 62 -2.981348954
## 445 1.780023184
## 403 -2.269769009
## 336 4.646090873
## 50 1.665823787
## 139 0.600387303
## 116 4.092410203
## 276 -1.284177427
## 150 2.380749998
## 129 -0.446096860
## 21 3.497473825
## 448 -6.595041570
## 280 3.569568565
## 288 0.913466385
## 177 3.233723111
## 390 -0.156989488
## 204 4.876499340
## 338 -0.425275219
## 303 -0.927940331
## 148 4.830963924
## 29 -1.220372358
## 128 2.442156992
## 161 3.886966193
## 22 -2.200342746
## 246 -5.443666435
## 162 -3.098154837
## 406 -2.354140154
## 339 -2.159188189
## 497 0.986086216
## 202 5.411900100
## 441 -4.946994382
## 325 -5.547501218
## 32 -0.287263850
## 211 -5.484319047
## 275 0.918020059
## 506 -1.030188293
## 255 -2.421157405
## 267 0.171841123
## 420 0.110134686
## 168 2.287114706
## 245 -4.328097072
## 463 -1.765983491
## 373 -0.457523938
## 67 1.986101322
## 217 -4.352862337
## 64 -1.354868663
## 198 4.886976516
## 456 -6.257707953
## 405 -0.743434068
## 203 -1.005486518
## 175 -1.443500196
## 299 4.177882349
## 7 -4.460495771
## 258 4.490530996
## 6 -0.420902943
## 481 -0.450274614
## 478 3.049750885
## 297 -2.305721608
## 80 1.803688287
## 321 -2.821606528
## 252 -1.308864797
## 195 1.875433719
## 272 -1.063808708
## 449 1.632112218
## 199 5.873064275
## 166 -0.133035922
## 372 0.212886657
## 41 3.007665535
## 315 -0.500293392
## 292 3.059865509
## 56 -0.269698087
## 367 0.892334478
## 475 6.511182572
## 314 3.385050838
## 351 1.599732621
## 462 -0.382186773
## 34 0.035806052
## 35 -1.244520800
## 70 -1.166415348
## 102 -0.786316812
## 436 -4.171834851
##
## , , 4 comps
##
## weight
## 225 0.28677181
## 31 1.10193717
## 290 4.11064526
## 174 0.33118966
## 505 -3.06854663
## 274 -0.98797646
## 493 2.29089366
## 440 3.04172233
## 385 3.62353541
## 196 -2.32590657
## 68 -2.96581871
## 55 2.10547097
## 310 3.12257308
## 319 3.58857246
## 79 1.89757629
## 238 -3.96037676
## 43 -1.05155932
## 370 2.95691046
## 362 2.65471845
## 301 1.50070726
## 65 1.69216435
## 382 1.02531145
## 16 0.33350442
## 355 -3.79626037
## 89 2.47888425
## 277 0.70882058
## 498 0.95551838
## 134 -3.46675906
## 152 4.62385688
## 282 1.58386797
## 112 3.51121815
## 147 -1.17242538
## 42 -0.30376608
## 489 2.87475029
## 330 -1.29220814
## 415 -4.29714721
## 207 -0.92931842
## 212 7.20069978
## 78 -1.55043778
## 99 1.40816580
## 376 -0.70166566
## 163 -5.68437351
## 243 4.78232051
## 391 1.70649700
## 221 10.53958611
## 86 0.72486335
## 144 0.08571525
## 327 2.77462398
## 359 2.93968915
## 200 1.15711164
## 58 -4.12832194
## 241 -7.82862559
## 25 -1.87629879
## 45 -1.10351731
## 263 -1.34980662
## 183 0.65358389
## 487 -0.87438682
## 326 -2.32400691
## 494 -3.31662590
## 349 -1.18611409
## 442 -3.94519207
## 234 -4.85888685
## 95 5.69792994
## 271 2.16421331
## 345 -2.24264320
## 40 -0.35380782
## 206 -0.30367661
## 185 3.56198865
## 1 0.10825186
## 322 -4.46554213
## 333 0.10365739
## 188 1.52668258
## 427 -1.17218117
## 469 0.78422209
## 438 -4.46302602
## 85 1.26060325
## 311 -1.98114454
## 167 0.52724633
## 71 -6.34837505
## 46 -0.70890945
## 281 1.73428031
## 193 -2.18943941
## 218 -2.63283671
## 194 5.56899711
## 133 3.14550883
## 216 -2.02545723
## 244 5.65086265
## 392 -0.20867376
## 20 -2.48382485
## 92 2.03337110
## 286 0.63647720
## 334 -2.08611984
## 98 1.41193914
## 298 -0.56643664
## 410 2.59947906
## 291 0.85774861
## 49 2.78087328
## 97 0.41096288
## 66 -5.66649235
## 109 0.26405032
## 104 2.76618964
## 434 1.87328419
## 153 4.99254168
## 88 -1.46350750
## 158 0.33098096
## 324 -1.10673719
## 491 -3.00626376
## 60 -0.53701725
## 264 3.92515737
## 422 0.27183225
## 375 -0.48561870
## 108 -1.38470073
## 266 6.47851338
## 157 -0.54107354
## 187 -1.20429219
## 466 5.56789251
## 19 -6.00938403
## 418 -3.91276196
## 33 -0.57331916
## 429 -0.71702043
## 151 -0.94010798
## 368 1.79524506
## 63 -2.06764801
## 120 2.14863790
## 474 0.93731767
## 354 1.70115648
## 265 -1.28148100
## 96 -1.47779110
## 454 -7.95494292
## 453 -1.51627505
## 395 -0.80853378
## 222 5.96467814
## 361 -0.27759490
## 424 -3.70656475
## 171 -1.02650657
## 313 3.24472208
## 293 0.09712875
## 273 0.81183028
## 409 -3.10830222
## 471 2.20375773
## 54 3.80068847
## 154 0.03129462
## 47 5.90743798
## 235 1.58243640
## 24 2.93610293
## 249 -0.28185959
## 69 5.00671725
## 233 3.91072139
## 38 -4.08530026
## 335 3.59105255
## 433 -1.80176883
## 125 -1.86195809
## 192 6.49273942
## 126 4.91754198
## 30 1.34405710
## 401 -4.07027058
## 170 -5.50593704
## 114 -2.95922641
## 145 2.99757621
## 197 -4.31195334
## 476 1.96636930
## 146 2.44176345
## 53 -5.64292636
## 384 1.62820097
## 247 4.34827506
## 118 -1.53846035
## 386 -2.21227954
## 331 -1.85909522
## 398 -2.30316247
## 159 6.53269082
## 123 0.79911709
## 300 -2.10760918
## 283 -0.10716391
## 230 2.81014235
## 437 -2.20492851
## 94 2.02835295
## 137 0.68851965
## 190 0.85426945
## 229 -0.98248570
## 15 -2.19238961
## 284 0.78920498
## 122 -1.34256317
## 75 -5.11585150
## 268 0.55297882
## 226 -3.66247729
## 480 0.24620573
## 251 -1.97731463
## 208 1.36150205
## 176 -0.21784062
## 232 1.03343578
## 164 -4.99067976
## 485 5.09923923
## 227 -1.52278111
## 337 0.14203107
## 179 -2.06787187
## 342 0.61721933
## 100 -3.79851053
## 460 7.06935163
## 470 -2.95792659
## 117 -1.09667017
## 270 2.84940067
## 357 -2.58114637
## 215 -7.11525067
## 44 -1.28466906
## 4 1.61619324
## 140 -9.28427509
## 14 -0.03714837
## 482 6.38388368
## 308 -0.93553813
## 365 0.81307572
## 364 0.16226174
## 90 -0.32302014
## 444 -1.27368474
## 350 3.44728449
## 239 0.30107726
## 91 -0.85068674
## 172 -1.49897594
## 106 -4.58384640
## 9 -1.59012199
## 374 1.09616497
## 169 1.48928111
## 447 -2.07917493
## 473 -0.54090541
## 358 -0.52681963
## 383 -0.40913214
## 73 -2.14590068
## 461 0.67408266
## 278 -0.96508066
## 344 -0.30862915
## 378 2.88414414
## 347 -1.90972855
## 201 -3.24234665
## 356 1.55897635
## 317 0.54974686
## 450 -4.63272742
## 210 1.81246472
## 105 1.26658980
## 173 -2.36839925
## 425 -0.05303814
## 414 -5.47991813
## 205 0.25588029
## 186 5.39988780
## 388 -1.09343837
## 387 2.12217519
## 237 -2.78398050
## 346 -2.50124654
## 236 -3.97827950
## 285 -0.26004435
## 48 -1.00441335
## 416 -2.09588041
## 130 -1.03863556
## 17 4.92038488
## 412 -2.68429602
## 141 12.00918126
## 160 0.41401131
## 259 1.19527509
## 380 -0.72526961
## 379 1.83628201
## 61 -0.30794783
## 110 -1.39550830
## 83 3.42615349
## 287 -2.36336378
## 84 0.04273065
## 340 -2.50065316
## 451 1.38601355
## 486 -1.83847180
## 363 0.21885509
## 3 4.31333535
## 306 3.78994887
## 316 -1.37456626
## 13 1.79612079
## 341 -0.34100280
## 27 -1.54629750
## 36 -2.94335874
## 223 1.04779830
## 138 -0.93888525
## 431 -2.08813250
## 240 2.07912628
## 490 3.10577864
## 446 -5.30209163
## 488 1.95626876
## 155 -0.04750297
## 143 2.41989955
## 312 -0.44403330
## 294 -0.53520167
## 305 1.47254125
## 127 3.20747341
## 111 -1.52235518
## 455 -1.68808107
## 393 4.14765560
## 289 -5.11972051
## 257 -4.45013235
## 12 0.65379550
## 432 -3.00277283
## 77 2.63423702
## 184 2.01649255
## 87 -5.45614048
## 296 4.43945700
## 74 -2.12516166
## 231 -3.76008690
## 59 -3.72615122
## 439 0.53760462
## 224 1.93696241
## 492 -1.34462424
## 309 -0.67404338
## 421 -2.59300141
## 452 -3.99963582
## 10 0.89343227
## 307 0.83903044
## 499 -2.61825897
## 57 -1.74148590
## 397 -3.96662626
## 328 -3.67109589
## 39 -0.36012366
## 260 2.98082030
## 394 -0.56490499
## 93 -0.68772193
## 329 1.02708331
## 302 -0.84712580
## 132 -2.18545810
## 477 -1.64498052
## 135 3.50240508
## 242 3.14128238
## 2 -3.30981797
## 178 3.07721517
## 62 -0.55106272
## 445 1.05578946
## 403 -1.21380035
## 336 5.23838754
## 50 0.56867788
## 139 0.28041442
## 116 5.63744195
## 276 -0.29602036
## 150 1.07826217
## 129 -1.89925468
## 21 2.46472819
## 448 -6.23910908
## 280 3.34478485
## 288 1.34603211
## 177 4.54895559
## 390 -1.12207653
## 204 5.67828561
## 338 -1.32204514
## 303 0.14282756
## 148 4.87741416
## 29 -1.84590343
## 128 1.50064132
## 161 2.43389039
## 22 -1.76719205
## 246 -5.62028005
## 162 -2.00885487
## 406 -0.57805382
## 339 -0.96405479
## 497 2.79600022
## 202 5.80794009
## 441 -3.75743884
## 325 -4.26819156
## 32 -1.86429999
## 211 -6.08732362
## 275 2.10246105
## 506 -0.28904320
## 255 -1.69370796
## 267 1.01961330
## 420 0.97925911
## 168 1.52971680
## 245 -5.09326838
## 463 -2.23399291
## 373 -0.86163620
## 67 2.06109569
## 217 -4.10273853
## 64 -0.15324572
## 198 2.90735651
## 456 -4.86699474
## 405 -2.13734498
## 203 -2.43104009
## 175 -1.16273912
## 299 2.85160663
## 7 -4.13396855
## 258 6.03990389
## 6 -0.72877053
## 481 -2.27972181
## 478 2.58594073
## 297 -2.95991383
## 80 2.85340212
## 321 -2.71533987
## 252 -1.93851819
## 195 0.88817979
## 272 -0.54109342
## 449 2.42587127
## 199 5.43741377
## 166 0.71462079
## 372 -0.13521615
## 41 2.55389217
## 315 0.23578061
## 292 2.47620459
## 56 -0.39210028
## 367 -0.20829763
## 475 6.55099014
## 314 3.62044823
## 351 0.50330847
## 462 0.70272146
## 34 2.35409720
## 35 -2.35903587
## 70 -0.88856829
## 102 0.68425556
## 436 -2.81220765
##
## , , 5 comps
##
## weight
## 225 1.27890359
## 31 -0.98691654
## 290 2.12025549
## 174 -0.13562982
## 505 0.08413725
## 274 -1.57290478
## 493 1.39660971
## 440 4.34285816
## 385 4.99041543
## 196 -0.86232230
## 68 -3.68830252
## 55 0.11318685
## 310 2.49911573
## 319 3.14598236
## 79 0.31196942
## 238 -4.20087944
## 43 0.03775177
## 370 4.63109395
## 362 1.82092053
## 301 2.49813646
## 65 1.22823818
## 382 -0.17754393
## 16 -0.73021326
## 355 -4.20964622
## 89 -0.05832861
## 277 1.02105688
## 498 2.20051219
## 134 -2.81987594
## 152 4.90249008
## 282 1.01129491
## 112 0.60311290
## 147 -0.01298120
## 42 -1.51919059
## 489 1.98109076
## 330 -0.73545179
## 415 -4.90304406
## 207 2.12780619
## 212 6.32387139
## 78 -2.14615395
## 99 0.55407853
## 376 -0.33196521
## 163 -2.52145333
## 243 4.70974618
## 391 1.24470095
## 221 8.98870047
## 86 0.63786699
## 144 1.00691205
## 327 2.93992176
## 359 4.83850455
## 200 -0.04470559
## 58 -2.04761767
## 241 -6.41480596
## 25 -1.58320614
## 45 -1.56817976
## 263 -0.88801099
## 183 -0.32835782
## 487 -1.81368359
## 326 -1.88656371
## 494 -1.23949418
## 349 0.59548817
## 442 -5.55558927
## 234 -2.11175262
## 95 4.21452014
## 271 1.83947462
## 345 -1.64119874
## 40 1.28861825
## 206 -0.47514359
## 185 1.32551162
## 1 0.17172536
## 322 -1.97178710
## 333 1.08394259
## 188 1.56544004
## 427 -0.06391429
## 469 2.89657068
## 438 -4.74782949
## 85 0.06951976
## 311 -1.24412537
## 167 -0.42511749
## 71 -4.90555029
## 46 0.78404491
## 281 1.67962868
## 193 -3.95215412
## 218 1.22170378
## 194 3.70870517
## 133 3.97396581
## 216 -2.29864063
## 244 3.16563476
## 392 -0.58916486
## 20 -1.74448592
## 92 2.09246099
## 286 0.26994815
## 334 0.60004881
## 98 -0.62642930
## 298 -1.14879878
## 410 0.87340574
## 291 0.81098203
## 49 2.24612544
## 97 -0.66271473
## 66 -1.70976964
## 109 1.04357669
## 104 2.54662954
## 434 3.33511676
## 153 5.78040134
## 88 -1.95381763
## 158 2.07184384
## 324 -2.51423036
## 491 0.69253241
## 60 0.22020436
## 264 2.36136654
## 422 -0.09867313
## 375 -1.54408925
## 108 -1.75850869
## 266 5.41522773
## 157 -1.25116599
## 187 0.60717477
## 466 5.65560005
## 19 -5.35171426
## 418 -4.29092779
## 33 -2.11725162
## 429 -1.54707871
## 151 0.87193876
## 368 2.26162809
## 63 -1.35363375
## 120 0.89251138
## 474 3.31183936
## 354 2.21288276
## 265 0.30866329
## 96 -0.51919859
## 454 -6.30767689
## 453 -2.33843045
## 395 -1.10791112
## 222 3.86655806
## 361 1.07452026
## 424 -2.45940993
## 171 -1.83535491
## 313 1.52501997
## 293 -0.08544204
## 273 1.38494455
## 409 -3.22167454
## 471 1.61053491
## 54 1.84670857
## 154 -0.74694687
## 47 6.06567335
## 235 2.68252971
## 24 0.92754199
## 249 1.76500919
## 69 1.73429761
## 233 3.03713134
## 38 -3.09072513
## 335 2.26194864
## 433 -2.57311565
## 125 -2.45714711
## 192 4.14358681
## 126 4.82095248
## 30 -0.24658708
## 401 -4.40660236
## 170 -6.61315367
## 114 -3.09644171
## 145 3.08726635
## 197 -4.35632905
## 476 3.68105099
## 146 3.64938017
## 53 -4.52604587
## 384 1.17778727
## 247 5.46419636
## 118 -2.16122040
## 386 -2.29180770
## 331 -1.87652696
## 398 -1.44783202
## 159 5.65044108
## 123 -1.08865741
## 300 -1.30385080
## 283 0.43541986
## 230 4.18202674
## 437 -2.63045008
## 94 0.75796843
## 137 1.30603382
## 190 0.13692757
## 229 0.73799251
## 15 -4.08039779
## 284 -0.80481931
## 122 -0.06759575
## 75 -6.26881878
## 268 -0.16999980
## 226 -2.79368061
## 480 -1.90001635
## 251 -1.58393720
## 208 1.82370781
## 176 1.19462521
## 232 0.11694683
## 164 -2.80518638
## 485 4.86785052
## 227 1.63898314
## 337 0.24677090
## 179 0.20622796
## 342 0.45023269
## 100 -2.10021138
## 460 5.77559592
## 470 -2.60557184
## 117 0.37182821
## 270 0.93186388
## 357 -2.27826323
## 215 -5.66539783
## 44 0.14984291
## 4 0.61678304
## 140 -8.75294305
## 14 -1.78504721
## 482 3.20999879
## 308 -0.39032452
## 365 -0.59595089
## 364 1.97002279
## 90 -0.58307411
## 444 -0.50952731
## 350 2.07787374
## 239 0.42028614
## 91 -1.60227624
## 172 0.11021375
## 106 -4.81007427
## 9 -1.78291312
## 374 0.18404035
## 169 0.71765125
## 447 -1.80878373
## 473 0.49797649
## 358 -0.84762337
## 383 -1.99975222
## 73 -2.43348940
## 461 0.49097989
## 278 0.84981051
## 344 -0.98312334
## 378 1.10642153
## 347 -2.76602259
## 201 -4.41805388
## 356 0.88826964
## 317 2.20543603
## 450 -5.98363353
## 210 1.63972526
## 105 2.27479988
## 173 -3.38949036
## 425 1.57850979
## 414 -4.15978047
## 205 2.46007364
## 186 4.87420083
## 388 0.54227156
## 387 1.09809960
## 237 -2.43480770
## 346 -1.86874193
## 236 -4.64050710
## 285 0.86500814
## 48 -2.53190151
## 416 -3.16937340
## 130 -1.26686948
## 17 6.01564313
## 412 -3.67501323
## 141 10.39942910
## 160 1.41822103
## 259 1.74707999
## 380 -0.10791062
## 379 1.15828012
## 61 0.55520214
## 110 -0.79855199
## 83 2.03740666
## 287 -1.73591218
## 84 0.43406279
## 340 0.01193566
## 451 1.37982665
## 486 -2.66942711
## 363 0.43988227
## 3 2.93162612
## 306 2.71077745
## 316 -1.73681465
## 13 1.05385370
## 341 -0.22975155
## 27 -3.88414065
## 36 -2.56822517
## 223 2.13366881
## 138 -0.37044797
## 431 -1.23175834
## 240 2.86905843
## 490 3.04926655
## 446 -5.96439062
## 488 1.77890722
## 155 1.80985055
## 143 3.59948668
## 312 0.74961486
## 294 -0.19892402
## 305 1.11338123
## 127 4.00651224
## 111 -0.59886143
## 455 -2.56107954
## 393 4.06341464
## 289 -4.65770999
## 257 -3.99587413
## 12 1.07979539
## 432 -4.78199410
## 77 1.54175081
## 184 1.42325714
## 87 -6.00967850
## 296 3.30345028
## 74 -0.66362631
## 231 -1.99733994
## 59 -1.69218494
## 439 2.62570315
## 224 0.66164883
## 492 -0.46134905
## 309 -1.70390007
## 421 -3.60277215
## 452 -2.69552296
## 10 0.61187935
## 307 -0.17341535
## 499 -0.39168828
## 57 -0.52158020
## 397 -3.36932099
## 328 0.01150033
## 39 0.08521400
## 260 1.29112618
## 394 -1.84014350
## 93 -1.89578562
## 329 0.84059513
## 302 -1.30304190
## 132 -0.02992747
## 477 -1.87346468
## 135 3.10801340
## 242 3.18562061
## 2 -2.99065341
## 178 0.19825890
## 62 -0.56132707
## 445 0.24604964
## 403 -0.31999311
## 336 4.76311793
## 50 0.71571951
## 139 0.82632921
## 116 2.00640626
## 276 -1.92084104
## 150 1.79168966
## 129 -3.09644113
## 21 0.25200248
## 448 -3.57475800
## 280 2.19209946
## 288 0.62606852
## 177 3.44343314
## 390 0.00217430
## 204 4.27062626
## 338 -1.80558942
## 303 0.74380208
## 148 3.69859726
## 29 -1.09293985
## 128 2.08720616
## 161 2.07642453
## 22 -3.11316706
## 246 -3.49190913
## 162 -3.49453111
## 406 -2.03915617
## 339 0.08094243
## 497 1.97563288
## 202 6.36267755
## 441 -3.85469767
## 325 -2.15469911
## 32 -1.60505253
## 211 -3.69543564
## 275 3.08050200
## 506 -0.01873378
## 255 -1.18615035
## 267 -0.06933762
## 420 -1.05393715
## 168 -0.26589408
## 245 -4.49687551
## 463 -1.49634163
## 373 -0.06508462
## 67 0.61916596
## 217 -2.78796504
## 64 -0.53316744
## 198 0.60123406
## 456 -2.43872857
## 405 -1.02872528
## 203 -3.58079228
## 175 -0.40885897
## 299 1.00312885
## 7 -4.23061857
## 258 4.52909110
## 6 -2.14147774
## 481 -0.10448926
## 478 1.91905180
## 297 -1.20372367
## 80 1.49041068
## 321 -0.83046805
## 252 -3.85550314
## 195 2.11166369
## 272 -0.32837374
## 449 0.73377402
## 199 2.65498310
## 166 -0.87571731
## 372 -1.59129077
## 41 0.79579497
## 315 0.89488827
## 292 2.48561496
## 56 0.03838927
## 367 1.60129841
## 475 6.03829927
## 314 3.99380664
## 351 0.22148963
## 462 1.30130863
## 34 2.24750573
## 35 -3.21902965
## 70 -1.28457504
## 102 1.42207719
## 436 -4.09511555
##
## , , 6 comps
##
## weight
## 225 0.33968451
## 31 -0.70102940
## 290 2.91261145
## 174 -0.75907931
## 505 -0.20648104
## 274 -2.10737258
## 493 1.52118712
## 440 3.50337905
## 385 4.52914359
## 196 -2.23190012
## 68 -3.27264424
## 55 0.52780275
## 310 2.33511410
## 319 3.31294469
## 79 0.23071247
## 238 -5.10528830
## 43 0.58423257
## 370 4.20780784
## 362 0.93806460
## 301 2.15285985
## 65 1.42445729
## 382 -0.58789943
## 16 -1.10569650
## 355 -4.15203768
## 89 -0.31071824
## 277 0.53898534
## 498 1.68754831
## 134 -2.64961855
## 152 4.12066890
## 282 0.73398175
## 112 0.72059361
## 147 0.58707740
## 42 -0.09886259
## 489 2.18924614
## 330 -0.59640816
## 415 -4.61419346
## 207 2.75425480
## 212 5.93343848
## 78 -2.65763620
## 99 0.90167500
## 376 -1.01341172
## 163 -3.17832791
## 243 4.91843651
## 391 0.84424551
## 221 9.22558328
## 86 0.34309908
## 144 -0.28959148
## 327 2.50378954
## 359 6.37574754
## 200 0.05207341
## 58 -2.25534500
## 241 -6.02074882
## 25 -0.42171539
## 45 -0.68768415
## 263 -0.66384283
## 183 -0.07600796
## 487 -1.80084603
## 326 -1.61956634
## 494 -1.05815066
## 349 2.36724505
## 442 -6.28612136
## 234 -1.82973474
## 95 3.62968598
## 271 2.41169258
## 345 -2.03938454
## 40 2.15108506
## 206 -0.15418440
## 185 -0.21897871
## 1 -0.26654521
## 322 -1.10262377
## 333 0.86630371
## 188 1.37280641
## 427 -0.19915025
## 469 2.71079908
## 438 -5.58783883
## 85 0.24876808
## 311 -0.72943391
## 167 -0.43074997
## 71 -4.73076458
## 46 2.05090765
## 281 2.19421445
## 193 -3.68963970
## 218 -0.59189094
## 194 3.12040006
## 133 2.45537817
## 216 -1.49724711
## 244 2.51992174
## 392 -1.13557088
## 20 -1.93510971
## 92 2.55579500
## 286 0.63462916
## 334 0.38179315
## 98 -1.75570517
## 298 -0.49675394
## 410 1.36553677
## 291 1.16249403
## 49 2.56224840
## 97 -0.37196156
## 66 -0.84658502
## 109 0.66746658
## 104 3.01841830
## 434 2.46300443
## 153 6.10404748
## 88 -1.33089032
## 158 1.73855352
## 324 -2.04198667
## 491 0.46350600
## 60 1.30040836
## 264 2.31118550
## 422 -0.32301733
## 375 -1.90895362
## 108 -1.42657604
## 266 5.38189591
## 157 -0.99591765
## 187 0.03171902
## 466 5.73752053
## 19 -4.86888628
## 418 -4.16091573
## 33 -1.72392179
## 429 -1.58661716
## 151 1.01295520
## 368 1.67765412
## 63 -0.39359586
## 120 1.33953126
## 474 4.55270094
## 354 0.90204397
## 265 -0.27175349
## 96 -0.84592048
## 454 -6.02350672
## 453 -1.59127560
## 395 -0.50635474
## 222 5.08146610
## 361 1.51528968
## 424 -2.73347043
## 171 -1.48121513
## 313 2.25316497
## 293 0.72872019
## 273 1.07668515
## 409 -3.51117907
## 471 1.01154631
## 54 2.60587258
## 154 -0.68580154
## 47 5.78305293
## 235 3.15750909
## 24 1.42776119
## 249 1.42239211
## 69 0.86839267
## 233 3.25866993
## 38 -3.46916130
## 335 1.79346549
## 433 -2.62002244
## 125 -2.27899977
## 192 5.02262487
## 126 4.80465572
## 30 -0.54098004
## 401 -4.27620829
## 170 -6.70044146
## 114 -3.36440102
## 145 2.91624121
## 197 -5.25977637
## 476 4.18685932
## 146 2.76777741
## 53 -2.93968777
## 384 0.71999839
## 247 4.82375957
## 118 -1.66048556
## 386 -2.10802781
## 331 -0.77856738
## 398 -0.96013239
## 159 4.21264073
## 123 -0.27941430
## 300 -1.21222864
## 283 0.62659230
## 230 4.23846983
## 437 -2.21691494
## 94 0.59467182
## 137 1.29808934
## 190 0.34983635
## 229 1.06218182
## 15 -4.27751852
## 284 -0.99971770
## 122 -0.45041914
## 75 -5.19239756
## 268 -0.64171676
## 226 -2.79659965
## 480 -2.55527784
## 251 -1.98308204
## 208 2.26828144
## 176 -1.24491195
## 232 0.48735795
## 164 -3.32381652
## 485 4.12854725
## 227 1.50734444
## 337 -0.08594908
## 179 -0.72898238
## 342 0.34214337
## 100 -2.54312483
## 460 5.56531686
## 470 -2.71288838
## 117 0.04321703
## 270 1.47673943
## 357 -2.21194203
## 215 -5.88696787
## 44 1.03190051
## 4 0.66268061
## 140 -9.01464384
## 14 -1.83081283
## 482 3.99309164
## 308 0.80235763
## 365 -0.90596451
## 364 1.40056369
## 90 -0.46580147
## 444 -0.05308713
## 350 1.84388330
## 239 0.81999090
## 91 -0.82167862
## 172 0.77552237
## 106 -4.62891400
## 9 -1.25900013
## 374 0.38129679
## 169 -1.06336561
## 447 -1.57803679
## 473 0.16133684
## 358 -1.64568993
## 383 -1.93816512
## 73 -1.96951320
## 461 0.39209037
## 278 0.44487652
## 344 -1.38803525
## 378 0.54548459
## 347 -2.71500721
## 201 -5.66087685
## 356 1.16770698
## 317 3.26197020
## 450 -6.44457619
## 210 1.69022458
## 105 1.51353476
## 173 -4.93844629
## 425 0.44771327
## 414 -3.68217695
## 205 3.21536528
## 186 3.36985511
## 388 0.27936346
## 387 1.48353836
## 237 -2.02597320
## 346 -3.25006189
## 236 -4.12769174
## 285 0.65023664
## 48 -1.61904001
## 416 -2.72629023
## 130 -1.42884379
## 17 6.05394198
## 412 -3.15628630
## 141 9.46546625
## 160 1.35931898
## 259 1.63096058
## 380 -0.19784223
## 379 1.07402700
## 61 1.02594946
## 110 0.49411120
## 83 1.52399438
## 287 -1.52219571
## 84 0.13128088
## 340 0.64131722
## 451 1.46092927
## 486 -3.03354932
## 363 -0.02206352
## 3 2.74401974
## 306 2.83311171
## 316 -2.07209766
## 13 0.23302412
## 341 -0.37615902
## 27 -3.65270975
## 36 -2.90432727
## 223 0.75528168
## 138 0.16890917
## 431 -0.70499468
## 240 2.60392322
## 490 2.03449406
## 446 -4.94093348
## 488 0.92236731
## 155 2.16496958
## 143 2.46040875
## 312 0.92787221
## 294 -0.36851310
## 305 1.40657289
## 127 2.02902185
## 111 -0.09362620
## 455 -1.84060873
## 393 3.63437781
## 289 -4.28217409
## 257 -2.53385738
## 12 1.59300002
## 432 -4.63388215
## 77 1.30752028
## 184 1.44028092
## 87 -4.98269211
## 296 3.07354966
## 74 -1.31285254
## 231 -2.21395063
## 59 -1.08155603
## 439 1.94065410
## 224 -0.14840878
## 492 -0.80248753
## 309 -0.42204385
## 421 -3.39262444
## 452 -2.79756230
## 10 1.27758812
## 307 -0.10708869
## 499 0.40060649
## 57 -0.72031117
## 397 -2.52083908
## 328 1.32620607
## 39 -0.02955054
## 260 0.73802527
## 394 -2.46854675
## 93 -1.11922822
## 329 0.85109662
## 302 -0.65797003
## 132 -0.31084732
## 477 -3.09600255
## 135 1.36172152
## 242 3.33689292
## 2 -2.50787311
## 178 0.40695835
## 62 0.31082657
## 445 0.89330355
## 403 -0.36942322
## 336 4.30082876
## 50 0.98248723
## 139 0.30676328
## 116 3.37457783
## 276 -1.39956416
## 150 2.74192404
## 129 -1.67496395
## 21 0.34747723
## 448 -2.42512632
## 280 2.16949621
## 288 1.04404427
## 177 3.70555960
## 390 0.01930083
## 204 4.68827599
## 338 -2.10459843
## 303 1.16643954
## 148 3.40813462
## 29 -1.05125070
## 128 2.62853189
## 161 0.89128070
## 22 -2.32527556
## 246 -4.21994106
## 162 -5.02002702
## 406 -2.34177299
## 339 -0.32754443
## 497 1.89206424
## 202 4.52931319
## 441 -3.41236452
## 325 -1.27908781
## 32 -2.19598019
## 211 -2.83445900
## 275 2.52187205
## 506 -0.05321822
## 255 -0.62664241
## 267 0.64368533
## 420 -2.04076899
## 168 1.06648302
## 245 -4.60763815
## 463 -0.99892980
## 373 -0.07353719
## 67 1.11591323
## 217 -2.70318334
## 64 0.78946617
## 198 0.57039931
## 456 -1.24439034
## 405 -0.04772308
## 203 -3.02036686
## 175 -1.06517630
## 299 0.75489736
## 7 -3.20000977
## 258 4.03271376
## 6 -2.40641570
## 481 -1.20542051
## 478 2.01004415
## 297 -1.15684011
## 80 0.86654602
## 321 0.43231592
## 252 -3.68320346
## 195 1.01427466
## 272 -0.19340195
## 449 0.72456341
## 199 2.16606721
## 166 -2.03714144
## 372 -1.41637163
## 41 0.48819362
## 315 1.41066480
## 292 1.94905098
## 56 1.01292086
## 367 1.33856517
## 475 5.27569779
## 314 3.54271843
## 351 0.11610016
## 462 0.42856221
## 34 1.02425273
## 35 -3.08331593
## 70 -1.19393446
## 102 1.64649072
## 436 -3.25396793
##
## , , 7 comps
##
## weight
## 225 0.481330803
## 31 -0.675804240
## 290 2.687139660
## 174 -0.813828074
## 505 -0.550777669
## 274 -1.917653179
## 493 1.553736612
## 440 3.690454213
## 385 4.574395472
## 196 -2.356646827
## 68 -3.110420578
## 55 0.424666470
## 310 2.225693984
## 319 3.191996080
## 79 0.382693325
## 238 -5.197414240
## 43 0.370137856
## 370 4.228462551
## 362 0.947497802
## 301 2.137300083
## 65 1.251518215
## 382 -0.552294020
## 16 -0.919860883
## 355 -4.131310027
## 89 0.081342840
## 277 0.388168050
## 498 1.556706561
## 134 -2.726332279
## 152 3.912431062
## 282 0.656546303
## 112 0.682929640
## 147 0.470391509
## 42 -0.140641898
## 489 2.080462709
## 330 -0.737389810
## 415 -4.707662777
## 207 3.098873471
## 212 5.949923360
## 78 -2.792678650
## 99 1.058559927
## 376 -0.793935764
## 163 -3.018870017
## 243 5.049378698
## 391 1.036123581
## 221 8.984455384
## 86 0.764372628
## 144 -0.349173768
## 327 2.551794945
## 359 6.720750921
## 200 0.132543113
## 58 -2.237112465
## 241 -6.230622429
## 25 -0.159192863
## 45 -0.795716198
## 263 -0.331468207
## 183 -0.193110781
## 487 -1.903436760
## 326 -1.300151228
## 494 -1.001438740
## 349 2.458506771
## 442 -6.633544000
## 234 -1.853836516
## 95 3.833236620
## 271 2.616484360
## 345 -2.051314258
## 40 1.921150850
## 206 -0.077832366
## 185 -0.239228261
## 1 -0.057188103
## 322 -1.046080445
## 333 1.320323017
## 188 1.596255084
## 427 -0.410140216
## 469 2.621495743
## 438 -5.445873526
## 85 0.322087987
## 311 -0.584618098
## 167 -0.595012175
## 71 -4.603429982
## 46 1.796717719
## 281 2.355962286
## 193 -3.591553075
## 218 -0.797202901
## 194 3.256129923
## 133 2.376096497
## 216 -1.387067742
## 244 2.385616039
## 392 -1.077224360
## 20 -1.759219158
## 92 2.916948727
## 286 0.381904033
## 334 0.596144859
## 98 -1.396712205
## 298 -0.758855009
## 410 1.397083634
## 291 0.730508654
## 49 2.253707031
## 97 -0.209025702
## 66 -0.824107098
## 109 0.262530617
## 104 3.254364447
## 434 2.233690689
## 153 5.932536724
## 88 -1.113397035
## 158 1.866724538
## 324 -1.997349814
## 491 0.578724437
## 60 1.491120145
## 264 2.169240293
## 422 -0.570344788
## 375 -1.536452266
## 108 -1.478795515
## 266 5.401329389
## 157 -1.151254609
## 187 -0.197720123
## 466 5.339078889
## 19 -4.949767637
## 418 -4.199676686
## 33 -1.638386191
## 429 -1.558848932
## 151 1.086015417
## 368 1.718634968
## 63 -0.127767572
## 120 1.517556233
## 474 4.575987982
## 354 0.842656186
## 265 -0.200393721
## 96 -0.700976721
## 454 -5.864212235
## 453 -1.464027030
## 395 -0.631657867
## 222 5.192198828
## 361 1.585961991
## 424 -2.835948970
## 171 -1.318933440
## 313 2.361647929
## 293 0.567192049
## 273 1.129390530
## 409 -3.527087779
## 471 0.770158147
## 54 2.543923236
## 154 -0.828685624
## 47 5.570018205
## 235 2.818432440
## 24 1.717933479
## 249 1.525187091
## 69 1.015176189
## 233 3.207899162
## 38 -3.525249566
## 335 1.791896260
## 433 -2.618583627
## 125 -2.351235783
## 192 4.699998869
## 126 4.593684525
## 30 -0.559537417
## 401 -4.479865108
## 170 -6.707346299
## 114 -3.285401729
## 145 3.145116107
## 197 -5.340951473
## 476 3.923751480
## 146 2.699697786
## 53 -2.917400225
## 384 0.788964788
## 247 4.922021535
## 118 -1.723925741
## 386 -2.154982239
## 331 -0.420232384
## 398 -1.169195964
## 159 4.449335486
## 123 -0.386027683
## 300 -1.444648706
## 283 0.764475657
## 230 4.055741877
## 437 -2.474307895
## 94 1.000598298
## 137 1.098918835
## 190 0.426895434
## 229 1.183654054
## 15 -4.444694245
## 284 -1.017460254
## 122 -0.278514163
## 75 -5.150689779
## 268 -0.633737962
## 226 -2.770852323
## 480 -2.532230653
## 251 -2.112739123
## 208 1.940987329
## 176 -1.114922745
## 232 0.440993608
## 164 -3.219857392
## 485 3.990606558
## 227 1.641618282
## 337 -0.081578976
## 179 -0.725060302
## 342 0.251128158
## 100 -2.242345155
## 460 5.344220700
## 470 -2.750122196
## 117 0.001162436
## 270 1.494177766
## 357 -2.008988065
## 215 -5.778897397
## 44 0.848485962
## 4 0.691483941
## 140 -9.082091314
## 14 -1.872664662
## 482 3.840027202
## 308 0.967110560
## 365 -0.475207677
## 364 1.533149765
## 90 -0.202810778
## 444 -0.272844806
## 350 1.799066128
## 239 0.633102622
## 91 -0.729600228
## 172 0.743109792
## 106 -4.750581587
## 9 -0.917339500
## 374 0.406283964
## 169 -0.989126012
## 447 -1.785222354
## 473 0.100424051
## 358 -1.449947934
## 383 -1.895672418
## 73 -1.664339564
## 461 0.390096249
## 278 0.508060097
## 344 -1.287619042
## 378 0.634510028
## 347 -2.656300304
## 201 -5.748338924
## 356 1.313838622
## 317 3.238970013
## 450 -6.659954336
## 210 1.844002529
## 105 1.800243210
## 173 -5.064928647
## 425 0.679531187
## 414 -3.533214624
## 205 3.006873311
## 186 3.607969558
## 388 0.385922107
## 387 1.532186366
## 237 -2.309502325
## 346 -2.991806613
## 236 -4.407051151
## 285 0.906069365
## 48 -1.848962789
## 416 -2.706244463
## 130 -1.534902258
## 17 5.765254242
## 412 -3.226320431
## 141 9.341002329
## 160 1.231727053
## 259 1.683536062
## 380 -0.082425836
## 379 0.865501268
## 61 0.645077315
## 110 0.317314852
## 83 1.763165167
## 287 -1.721229320
## 84 0.197040710
## 340 0.884799756
## 451 1.353729871
## 486 -2.895049554
## 363 -0.011553957
## 3 2.875025518
## 306 2.907848741
## 316 -2.078140307
## 13 0.383870006
## 341 -0.121294906
## 27 -3.491528342
## 36 -2.915614360
## 223 0.712473417
## 138 0.019939229
## 431 -0.828925981
## 240 2.425310570
## 490 1.762498098
## 446 -5.115200293
## 488 0.798535824
## 155 1.955814557
## 143 2.404165843
## 312 1.027596218
## 294 -0.440462895
## 305 1.672041143
## 127 1.647381781
## 111 -0.606123028
## 455 -1.770136253
## 393 3.530500272
## 289 -4.509482485
## 257 -2.513750598
## 12 1.428700459
## 432 -4.579377892
## 77 1.473057303
## 184 1.578505430
## 87 -4.861069563
## 296 2.734495424
## 74 -1.276376320
## 231 -2.103492767
## 59 -0.915753675
## 439 2.000033664
## 224 -0.045943615
## 492 -0.957784227
## 309 -0.363881251
## 421 -3.414314403
## 452 -3.088080556
## 10 1.087346597
## 307 0.109344160
## 499 0.185683297
## 57 -0.625823413
## 397 -2.485432342
## 328 1.664024266
## 39 -0.386429606
## 260 0.959429861
## 394 -2.387725655
## 93 -0.995961977
## 329 1.042015301
## 302 -0.747835156
## 132 -0.412392909
## 477 -3.481064601
## 135 0.961440088
## 242 3.130062299
## 2 -2.346735274
## 178 0.328344959
## 62 0.366782850
## 445 0.670993064
## 403 -0.371199635
## 336 4.218655913
## 50 0.857728322
## 139 0.245900292
## 116 3.183897224
## 276 -1.184011074
## 150 2.595406037
## 129 -1.474771760
## 21 0.415921804
## 448 -2.241595739
## 280 2.229129335
## 288 0.961379352
## 177 3.750966445
## 390 -0.035141667
## 204 5.022482317
## 338 -2.451612413
## 303 1.207702779
## 148 3.329610589
## 29 -0.896390348
## 128 2.611611242
## 161 1.128691011
## 22 -2.269154990
## 246 -3.903297434
## 162 -4.860290184
## 406 -2.222396444
## 339 -0.348021324
## 497 1.834488361
## 202 4.415045729
## 441 -3.400814577
## 325 -1.465870932
## 32 -2.184466117
## 211 -2.649102313
## 275 2.676499652
## 506 0.098288090
## 255 -0.850173192
## 267 0.703290264
## 420 -2.342000422
## 168 1.005602837
## 245 -4.927379732
## 463 -1.087083694
## 373 -0.070086997
## 67 1.165183139
## 217 -2.523624471
## 64 0.639836240
## 198 0.565000503
## 456 -1.164509122
## 405 -0.093679596
## 203 -2.968421286
## 175 -1.082038763
## 299 0.517641543
## 7 -3.274702432
## 258 4.308005183
## 6 -2.199184091
## 481 -1.284790216
## 478 2.029660417
## 297 -1.281306348
## 80 0.801671041
## 321 0.408600995
## 252 -3.668198769
## 195 1.009710711
## 272 -0.115614781
## 449 0.664380687
## 199 1.932586774
## 166 -1.835873549
## 372 -1.215684535
## 41 0.245743131
## 315 1.453550295
## 292 1.909293101
## 56 1.103557471
## 367 1.614251850
## 475 5.401307371
## 314 3.718503394
## 351 0.027941014
## 462 0.192804916
## 34 0.789770629
## 35 -3.017046406
## 70 -1.083624615
## 102 1.706637361
## 436 -3.344529859
##
## , , 8 comps
##
## weight
## 225 0.428002871
## 31 -0.641063187
## 290 2.740704826
## 174 -1.123904048
## 505 -1.073691340
## 274 -1.770454795
## 493 2.073662604
## 440 3.478903779
## 385 5.212612878
## 196 -2.177991301
## 68 -3.260174767
## 55 0.458069120
## 310 2.477858526
## 319 2.868131028
## 79 0.150931957
## 238 -4.865703878
## 43 0.372645182
## 370 4.379006070
## 362 0.354449018
## 301 1.998550796
## 65 1.166420207
## 382 -0.530482243
## 16 -1.071846153
## 355 -4.151632389
## 89 0.121136318
## 277 0.292628113
## 498 1.397740754
## 134 -2.718981246
## 152 4.035568770
## 282 0.769866152
## 112 0.551094687
## 147 0.520894037
## 42 -0.265071654
## 489 1.994493710
## 330 -0.806216106
## 415 -4.526177353
## 207 2.641958963
## 212 5.903283106
## 78 -3.757017404
## 99 0.763810181
## 376 -0.344428601
## 163 -2.963782727
## 243 4.917097760
## 391 0.635706672
## 221 9.151607537
## 86 0.458917162
## 144 -0.053261396
## 327 2.637234081
## 359 6.042717362
## 200 0.157249390
## 58 -2.357776468
## 241 -5.860765207
## 25 -0.274025144
## 45 -0.928290271
## 263 -0.288861086
## 183 0.148640176
## 487 -1.993690462
## 326 -0.621845583
## 494 -1.038039372
## 349 2.315425685
## 442 -6.499728140
## 234 -2.000073710
## 95 3.754586163
## 271 2.429258312
## 345 -2.285543246
## 40 1.924435882
## 206 -0.236654910
## 185 -0.299290661
## 1 0.154760023
## 322 -1.087070240
## 333 1.703299051
## 188 1.662840695
## 427 0.027232838
## 469 2.588300599
## 438 -5.412446208
## 85 -0.052853192
## 311 -0.253878605
## 167 -1.232676244
## 71 -5.049817565
## 46 1.896574836
## 281 2.531360746
## 193 -3.260227713
## 218 -0.650252379
## 194 3.210500180
## 133 2.041868828
## 216 -1.433944666
## 244 2.549771735
## 392 -1.448598455
## 20 -1.681608322
## 92 2.498322005
## 286 0.538621802
## 334 0.660516485
## 98 -1.420734253
## 298 -0.575752274
## 410 1.472168512
## 291 0.599240477
## 49 2.336400024
## 97 -0.522319073
## 66 -1.048988559
## 109 -0.098987711
## 104 3.118001526
## 434 2.543800463
## 153 5.625089615
## 88 -1.324695323
## 158 1.792833664
## 324 -2.226711557
## 491 -0.003569948
## 60 1.414766942
## 264 2.299665461
## 422 -0.298725758
## 375 -2.032100841
## 108 -1.277868847
## 266 5.488608710
## 157 -1.245314180
## 187 0.086240591
## 466 5.189676890
## 19 -5.186928845
## 418 -4.220607220
## 33 -1.570377494
## 429 -1.394229699
## 151 1.155202954
## 368 1.822814055
## 63 -0.065077172
## 120 1.671310960
## 474 4.249008924
## 354 0.360011754
## 265 0.002018011
## 96 -1.259637280
## 454 -5.683843716
## 453 -1.129927751
## 395 -0.845318137
## 222 5.386346830
## 361 1.764244035
## 424 -2.715017573
## 171 -1.276265888
## 313 2.228477681
## 293 0.740613976
## 273 1.107721826
## 409 -3.204190843
## 471 0.926574164
## 54 2.443523113
## 154 -0.990112657
## 47 5.852405217
## 235 2.972981222
## 24 1.679292695
## 249 1.043529198
## 69 0.820006754
## 233 3.552626872
## 38 -3.614865094
## 335 1.616765995
## 433 -2.288998103
## 125 -2.261955586
## 192 4.620700111
## 126 4.724273576
## 30 -0.444230906
## 401 -4.656194554
## 170 -6.745531432
## 114 -3.269484374
## 145 3.387619090
## 197 -4.919613450
## 476 3.945304957
## 146 2.824635875
## 53 -2.802657599
## 384 -0.026885691
## 247 5.185058985
## 118 -1.898991857
## 386 -1.866631778
## 331 0.666718241
## 398 -1.087372839
## 159 4.710622071
## 123 -0.494230491
## 300 -1.479733519
## 283 0.987094238
## 230 3.943099732
## 437 -2.503454712
## 94 0.349819607
## 137 1.147203732
## 190 0.720288712
## 229 1.467968060
## 15 -4.263531470
## 284 -0.933497370
## 122 -0.171989902
## 75 -4.803991391
## 268 -0.253648774
## 226 -2.849167296
## 480 -2.706461028
## 251 -2.075303413
## 208 1.709942692
## 176 -0.969784489
## 232 0.715918862
## 164 -3.185858928
## 485 4.130574763
## 227 1.939051535
## 337 -0.078828262
## 179 -0.170526515
## 342 -0.078875969
## 100 -2.321678840
## 460 5.466217331
## 470 -2.604689755
## 117 -0.175581003
## 270 1.584230432
## 357 -1.757775674
## 215 -5.313395362
## 44 0.876790775
## 4 0.633584518
## 140 -9.046468511
## 14 -2.169105973
## 482 3.701495178
## 308 0.992556441
## 365 -0.429022699
## 364 1.599612609
## 90 -0.431972740
## 444 -0.556815645
## 350 1.483311305
## 239 1.095444448
## 91 -0.963086538
## 172 0.936780659
## 106 -4.929801304
## 9 -0.804575396
## 374 0.207714479
## 169 -1.103725450
## 447 -1.944050364
## 473 0.080391284
## 358 -1.406110631
## 383 -2.195333978
## 73 -2.122433847
## 461 0.435563038
## 278 0.255477634
## 344 -1.227821387
## 378 0.342504458
## 347 -2.435470645
## 201 -5.438458678
## 356 1.180666833
## 317 3.206064025
## 450 -6.687503534
## 210 1.890787619
## 105 2.042811555
## 173 -5.192495469
## 425 0.517546587
## 414 -3.580521841
## 205 2.982849761
## 186 3.822637746
## 388 0.197489230
## 387 1.522868487
## 237 -2.048109116
## 346 -2.853289651
## 236 -4.064909684
## 285 1.020962184
## 48 -1.884098011
## 416 -2.155883855
## 130 -1.599758672
## 17 5.673657580
## 412 -3.726748138
## 141 8.915231382
## 160 1.500412168
## 259 1.971159309
## 380 0.223679009
## 379 0.482185982
## 61 0.092628674
## 110 0.432749582
## 83 1.511213266
## 287 -1.450715650
## 84 0.131302932
## 340 1.175031389
## 451 1.304359357
## 486 -2.648010471
## 363 -0.242705631
## 3 2.638902696
## 306 2.629472372
## 316 -1.743741623
## 13 0.588966503
## 341 -0.235831986
## 27 -3.463386636
## 36 -2.727947380
## 223 1.126210176
## 138 -0.075048187
## 431 -0.665304541
## 240 2.689489296
## 490 1.393700947
## 446 -5.088127749
## 488 0.404864136
## 155 1.888734909
## 143 2.368056946
## 312 0.551554929
## 294 -0.328860341
## 305 1.782853550
## 127 1.744699976
## 111 -0.738273270
## 455 -1.920457702
## 393 2.916701236
## 289 -4.902695820
## 257 -2.370321232
## 12 1.063831999
## 432 -4.232646775
## 77 1.311803553
## 184 1.375648875
## 87 -5.134380029
## 296 2.911281684
## 74 -1.249051492
## 231 -1.937821093
## 59 -1.153877767
## 439 2.343685293
## 224 -0.223803327
## 492 -0.440442453
## 309 -0.205200740
## 421 -3.293033951
## 452 -2.397753525
## 10 0.807956035
## 307 0.068031310
## 499 0.160888675
## 57 -0.755608389
## 397 -2.385482903
## 328 1.822946915
## 39 -0.375219160
## 260 0.632743498
## 394 -2.297159528
## 93 -1.269869090
## 329 1.291502846
## 302 -0.524708509
## 132 -0.608040800
## 477 -3.679793974
## 135 0.847349487
## 242 3.678037873
## 2 -2.036138996
## 178 0.202252743
## 62 0.464253637
## 445 0.725655270
## 403 -0.175345390
## 336 4.446562086
## 50 0.869796841
## 139 -0.329868556
## 116 3.091210595
## 276 -0.983211939
## 150 2.433286025
## 129 -1.343433367
## 21 0.190589341
## 448 -1.858702959
## 280 2.055950471
## 288 0.909270265
## 177 3.757613727
## 390 -0.620505491
## 204 5.194929582
## 338 -2.577161387
## 303 1.549426138
## 148 3.740627037
## 29 -1.185206973
## 128 2.066366486
## 161 0.880401356
## 22 -2.158976864
## 246 -3.826229011
## 162 -4.591610803
## 406 -1.549104774
## 339 -0.521164676
## 497 1.971083803
## 202 4.234960443
## 441 -3.545337130
## 325 -1.647179012
## 32 -2.405140768
## 211 -2.806962279
## 275 2.241997432
## 506 0.127930845
## 255 -1.015515323
## 267 0.496083603
## 420 -2.102635652
## 168 0.876770464
## 245 -5.304473521
## 463 -0.511636940
## 373 0.337853903
## 67 1.226587184
## 217 -2.584899697
## 64 0.843762219
## 198 1.805345948
## 456 -0.953971899
## 405 0.009671283
## 203 -2.767512025
## 175 -0.609296214
## 299 0.686317668
## 7 -3.578223452
## 258 4.313806881
## 6 -2.082967908
## 481 -1.413030616
## 478 2.087778014
## 297 -1.277015339
## 80 0.876241522
## 321 0.579341054
## 252 -3.806739117
## 195 1.451467682
## 272 -0.257652668
## 449 1.053960113
## 199 2.398892308
## 166 -1.833026230
## 372 -1.386908855
## 41 0.137579272
## 315 1.556322071
## 292 1.920189252
## 56 0.766810498
## 367 1.904731319
## 475 4.992700748
## 314 3.459549877
## 351 0.465314464
## 462 -0.039104020
## 34 0.240875263
## 35 -3.050329174
## 70 -1.294414662
## 102 1.534087067
## 436 -3.197136750
##
## , , 9 comps
##
## weight
## 225 -0.25378476
## 31 -0.98512755
## 290 2.28126678
## 174 -0.80347325
## 505 -0.62171105
## 274 -2.98103386
## 493 2.34004697
## 440 2.87641945
## 385 3.78600056
## 196 -1.95316164
## 68 -1.86008400
## 55 1.34404488
## 310 1.95365379
## 319 2.37638233
## 79 -0.56590100
## 238 -4.41878987
## 43 0.80312889
## 370 3.59579658
## 362 0.24160943
## 301 3.34336069
## 65 1.49330395
## 382 -0.60865942
## 16 -1.93860942
## 355 -4.88484614
## 89 0.52195248
## 277 1.11051787
## 498 1.00500103
## 134 -2.62256199
## 152 3.97175098
## 282 1.89271184
## 112 0.33873291
## 147 0.76435447
## 42 -0.55368806
## 489 1.97674496
## 330 -1.44883728
## 415 -4.20285082
## 207 2.98078950
## 212 5.16569065
## 78 -3.93991443
## 99 0.37187680
## 376 -0.88954069
## 163 -1.50686250
## 243 3.74270535
## 391 -0.46977006
## 221 9.58664189
## 86 -0.14291166
## 144 0.10739218
## 327 1.68703012
## 359 5.80752683
## 200 -0.20513155
## 58 -3.26497504
## 241 -5.40622476
## 25 0.79868080
## 45 -0.24694420
## 263 1.02366386
## 183 -0.88815872
## 487 -1.12136163
## 326 -0.70068744
## 494 0.68913689
## 349 0.24965547
## 442 -7.69222302
## 234 -2.29622042
## 95 2.33855031
## 271 2.55619217
## 345 -1.02924929
## 40 1.92905330
## 206 -0.60475890
## 185 -0.88681302
## 1 0.97270876
## 322 -1.22992119
## 333 1.16592458
## 188 1.00533890
## 427 0.19207683
## 469 3.61637232
## 438 -4.44836184
## 85 0.21547269
## 311 0.10415431
## 167 -0.32198882
## 71 -4.89467137
## 46 1.07166828
## 281 3.68747638
## 193 -2.27553399
## 218 0.53617004
## 194 2.52326349
## 133 2.41060454
## 216 -1.24817900
## 244 0.85399268
## 392 -1.38466507
## 20 0.35811090
## 92 2.08047681
## 286 1.36404628
## 334 0.90051943
## 98 -2.05885581
## 298 -0.34747584
## 410 0.71977525
## 291 0.42089697
## 49 1.94268000
## 97 0.39434053
## 66 -1.35694284
## 109 -1.01246573
## 104 2.54304277
## 434 1.78899241
## 153 5.76411048
## 88 -1.60349477
## 158 2.52083962
## 324 -0.43824116
## 491 0.28449939
## 60 1.27202900
## 264 2.03542763
## 422 -0.47131214
## 375 -0.20097423
## 108 0.29473110
## 266 5.96531709
## 157 -0.79945849
## 187 -0.28208551
## 466 5.35577404
## 19 -5.09860396
## 418 -4.94537128
## 33 -1.91989025
## 429 -0.60393242
## 151 0.74690275
## 368 1.40959036
## 63 0.52048825
## 120 1.55275394
## 474 3.46108181
## 354 -0.20854098
## 265 -0.59087267
## 96 -1.45792965
## 454 -5.19816643
## 453 -0.89871767
## 395 -1.80895120
## 222 2.74820256
## 361 2.22255965
## 424 -2.07239259
## 171 -1.38081873
## 313 2.18866482
## 293 1.91754653
## 273 0.64230349
## 409 -3.04269735
## 471 0.37815965
## 54 2.27829292
## 154 -1.31310146
## 47 3.83663192
## 235 1.99440506
## 24 2.65031085
## 249 0.71085082
## 69 1.05311527
## 233 2.57915064
## 38 -3.20595695
## 335 1.76470589
## 433 -1.48935882
## 125 -1.63589103
## 192 5.37059010
## 126 4.17682354
## 30 -0.67257541
## 401 -3.54763841
## 170 -4.88938349
## 114 -1.07308148
## 145 2.77027144
## 197 -3.85699265
## 476 3.61423059
## 146 3.29067044
## 53 -1.95317601
## 384 -0.41452148
## 247 5.89325724
## 118 -1.29724725
## 386 -2.08773367
## 331 -1.24075556
## 398 -1.37750138
## 159 5.00895557
## 123 -0.63558017
## 300 -1.32892193
## 283 0.08252916
## 230 2.07671879
## 437 -2.16539272
## 94 1.00398151
## 137 1.74309543
## 190 0.32984618
## 229 1.41859233
## 15 -4.13995858
## 284 -0.52729880
## 122 1.33334976
## 75 -5.03671145
## 268 1.25878666
## 226 -3.50268861
## 480 -1.76709884
## 251 -1.26631440
## 208 0.37540681
## 176 1.38793275
## 232 -0.29609803
## 164 -2.78203426
## 485 5.42898136
## 227 0.60310927
## 337 -0.73939896
## 179 -0.64816674
## 342 -1.01392070
## 100 -3.12740211
## 460 3.75842853
## 470 -2.67905035
## 117 0.80504085
## 270 1.25547380
## 357 -1.79411810
## 215 -4.67755951
## 44 0.91056557
## 4 0.28483557
## 140 -8.31846209
## 14 -2.60337171
## 482 5.25989977
## 308 2.12257966
## 365 -0.56448865
## 364 1.81887544
## 90 0.31345332
## 444 -1.72439783
## 350 1.30530659
## 239 1.82238808
## 91 -0.46667470
## 172 1.37180037
## 106 -4.34177849
## 9 -0.50125727
## 374 0.51515485
## 169 0.19982640
## 447 -2.26921616
## 473 1.13250931
## 358 -1.79548110
## 383 -1.26874967
## 73 -1.78949772
## 461 -0.36052283
## 278 -0.14656918
## 344 -1.00397366
## 378 -0.02847525
## 347 -3.00639113
## 201 -5.25970031
## 356 0.93483240
## 317 2.00344201
## 450 -5.77694269
## 210 1.94249851
## 105 0.83786126
## 173 -5.76680352
## 425 0.91164572
## 414 -3.59090596
## 205 1.35357196
## 186 3.75100345
## 388 -0.18758233
## 387 1.10283882
## 237 -2.21877581
## 346 -4.77711983
## 236 -4.80888620
## 285 1.69287967
## 48 0.37710828
## 416 -1.97122299
## 130 -0.48852317
## 17 4.29796451
## 412 -3.12186170
## 141 7.01884529
## 160 1.59068358
## 259 1.25734306
## 380 0.49442378
## 379 -0.28507841
## 61 -0.34334456
## 110 1.06447612
## 83 0.52891730
## 287 -1.84734420
## 84 -0.31962414
## 340 0.41015144
## 451 2.08732510
## 486 -1.33768861
## 363 0.11327657
## 3 1.18673725
## 306 2.95999456
## 316 -1.71525095
## 13 0.21481611
## 341 -0.08925139
## 27 -2.47472136
## 36 -2.81160441
## 223 0.98065414
## 138 0.52682107
## 431 -0.40050239
## 240 3.62781795
## 490 0.79959512
## 446 -5.42382642
## 488 0.81394118
## 155 2.49482259
## 143 2.17402643
## 312 1.52416932
## 294 -0.69441895
## 305 1.37079230
## 127 2.26197752
## 111 1.32299244
## 455 -0.58683401
## 393 1.90416696
## 289 -4.82297955
## 257 -2.37778684
## 12 2.14326872
## 432 -3.23184874
## 77 1.31408450
## 184 1.50148515
## 87 -5.53354055
## 296 3.26024176
## 74 -1.53499419
## 231 -2.48353080
## 59 -0.67692761
## 439 1.97541801
## 224 -0.69693161
## 492 0.66564013
## 309 0.03397455
## 421 -3.54247341
## 452 -2.11796813
## 10 -1.00676229
## 307 0.59833393
## 499 1.20172535
## 57 -0.80807229
## 397 -2.10565017
## 328 0.19655107
## 39 0.02817774
## 260 0.65962807
## 394 -2.01251910
## 93 -0.25103813
## 329 1.72704273
## 302 -0.27136297
## 132 -1.37100997
## 477 -3.66436803
## 135 -0.92980441
## 242 3.78131963
## 2 -0.26290077
## 178 -0.52636129
## 62 -0.03574018
## 445 -0.16558163
## 403 0.08445260
## 336 4.02110977
## 50 1.12242997
## 139 -0.44598698
## 116 1.02830400
## 276 -0.92042296
## 150 3.04229485
## 129 -0.15840640
## 21 -0.25304651
## 448 -2.71990418
## 280 1.46370782
## 288 -0.32885839
## 177 3.74044541
## 390 -0.74147916
## 204 2.98225146
## 338 -3.21750714
## 303 1.62164074
## 148 2.93866608
## 29 -0.42776851
## 128 2.81937345
## 161 1.45889491
## 22 -2.29377610
## 246 -2.98394832
## 162 -4.33450309
## 406 -1.24672964
## 339 -0.35974417
## 497 1.88126716
## 202 3.87154063
## 441 -3.65659317
## 325 -0.81266316
## 32 -3.31401679
## 211 -2.09300845
## 275 1.38969880
## 506 0.07688722
## 255 -0.97201453
## 267 0.35358858
## 420 -1.35983859
## 168 1.51727794
## 245 -5.48101659
## 463 0.54939715
## 373 -1.32199246
## 67 1.88583764
## 217 -3.93967944
## 64 1.18567267
## 198 2.53113469
## 456 -2.27261049
## 405 -0.41599274
## 203 -1.47192936
## 175 -0.68964235
## 299 1.09931330
## 7 -3.35997304
## 258 3.94235966
## 6 -2.07462094
## 481 -1.03194237
## 478 1.89840511
## 297 -0.77186476
## 80 -0.92607041
## 321 1.22954963
## 252 -2.58705291
## 195 2.68351895
## 272 -0.37132540
## 449 0.64061411
## 199 2.55216264
## 166 -0.71816892
## 372 -1.25595393
## 41 -0.22007293
## 315 -0.32326351
## 292 3.10605004
## 56 1.49528408
## 367 0.12185590
## 475 3.28294872
## 314 3.80075552
## 351 -0.84046639
## 462 0.07597955
## 34 -0.40392538
## 35 -4.06483658
## 70 -2.11844808
## 102 2.03072868
## 436 -2.66053984
##
## , , 10 comps
##
## weight
## 225 0.47972068
## 31 -0.80252045
## 290 2.14944179
## 174 -0.87005333
## 505 -1.25315107
## 274 -2.77829570
## 493 2.57877784
## 440 3.01001830
## 385 3.63731378
## 196 -1.30263035
## 68 -1.24198484
## 55 1.55271275
## 310 2.73379831
## 319 2.41911190
## 79 -0.29255650
## 238 -4.09302402
## 43 1.20339575
## 370 4.11181767
## 362 -0.01940350
## 301 3.28240335
## 65 2.11734412
## 382 -0.76861623
## 16 -2.19535697
## 355 -5.08947480
## 89 0.80227177
## 277 1.42902828
## 498 0.55989685
## 134 -3.27449839
## 152 4.18425831
## 282 2.00826154
## 112 -0.40782466
## 147 0.15080303
## 42 0.57034203
## 489 1.66239661
## 330 -1.37203545
## 415 -3.52072110
## 207 2.24727947
## 212 3.81314767
## 78 -3.41771081
## 99 -0.27716863
## 376 -0.75395088
## 163 -1.23925768
## 243 3.89158023
## 391 -0.38383674
## 221 8.75684716
## 86 0.39632166
## 144 0.88076918
## 327 2.32811118
## 359 5.08173650
## 200 0.07952636
## 58 -2.76750083
## 241 -5.23829650
## 25 1.38800688
## 45 -0.23629087
## 263 1.46333017
## 183 -1.32743946
## 487 -1.14716035
## 326 -1.20102102
## 494 0.34708173
## 349 0.46797955
## 442 -7.90872252
## 234 -2.36302781
## 95 2.24162973
## 271 2.43542885
## 345 -1.24817751
## 40 2.23161936
## 206 -0.10990423
## 185 -0.54541836
## 1 1.03412476
## 322 -0.37925061
## 333 1.49576994
## 188 1.34153764
## 427 -0.33854294
## 469 3.37712934
## 438 -4.47896240
## 85 0.76612781
## 311 0.47469696
## 167 -0.60280568
## 71 -4.96423162
## 46 1.06920938
## 281 3.51908457
## 193 -2.34239246
## 218 -0.45290531
## 194 2.14073588
## 133 2.05593651
## 216 -1.60104150
## 244 0.65540259
## 392 -1.12263933
## 20 0.41091605
## 92 2.55660466
## 286 1.47692721
## 334 0.74246006
## 98 -1.95807184
## 298 -0.57069450
## 410 0.29776341
## 291 0.51216865
## 49 2.18225018
## 97 0.17759963
## 66 -1.23925145
## 109 -1.96393887
## 104 2.45784031
## 434 2.37459123
## 153 6.03711138
## 88 -1.67102262
## 158 1.98026878
## 324 -0.31481488
## 491 0.81305021
## 60 1.56870269
## 264 1.56597739
## 422 -0.41361025
## 375 -0.37334060
## 108 0.34916212
## 266 6.57350558
## 157 -0.61932599
## 187 -0.36506661
## 466 4.64291056
## 19 -4.73397011
## 418 -5.47416791
## 33 -2.11765756
## 429 -1.19082047
## 151 1.05459455
## 368 1.37051788
## 63 0.59535645
## 120 0.77334249
## 474 3.09943897
## 354 -0.48668830
## 265 0.06425267
## 96 -1.54337250
## 454 -4.82258443
## 453 -1.30981096
## 395 -2.30063472
## 222 1.71159454
## 361 1.68507922
## 424 -1.84450967
## 171 -1.31939659
## 313 2.70213516
## 293 2.24837247
## 273 0.50248920
## 409 -3.17231028
## 471 0.57937934
## 54 2.37146487
## 154 -1.13955252
## 47 4.28002694
## 235 2.18859246
## 24 3.22680438
## 249 0.72308757
## 69 1.29134941
## 233 2.09781808
## 38 -3.10405963
## 335 2.14439440
## 433 -1.07354680
## 125 -1.14488169
## 192 6.02219153
## 126 3.77235712
## 30 -0.84483113
## 401 -3.65447399
## 170 -4.74202195
## 114 -1.18101199
## 145 2.59760953
## 197 -3.91185966
## 476 4.01360048
## 146 2.87978073
## 53 -1.57586771
## 384 -0.13986721
## 247 6.10374777
## 118 -2.07023974
## 386 -2.31595411
## 331 -1.51377135
## 398 -1.03714897
## 159 5.36064118
## 123 -0.41166769
## 300 -0.39759216
## 283 0.05773014
## 230 1.62795628
## 437 -1.95359758
## 94 0.82281284
## 137 2.02976150
## 190 0.01017109
## 229 1.09591702
## 15 -3.25885165
## 284 -0.11121413
## 122 1.05536487
## 75 -4.77988009
## 268 1.45145945
## 226 -3.54028000
## 480 -2.34100397
## 251 -1.22623041
## 208 0.60865975
## 176 1.15201151
## 232 0.07481217
## 164 -3.16650121
## 485 4.98122862
## 227 0.02149109
## 337 -0.59427057
## 179 -0.72092915
## 342 -1.22443676
## 100 -2.85644787
## 460 3.97634503
## 470 -2.55761909
## 117 1.16940299
## 270 0.60760440
## 357 -2.37707236
## 215 -4.21566657
## 44 0.76497887
## 4 -0.10033078
## 140 -8.45751880
## 14 -2.20397455
## 482 4.66511914
## 308 2.03247621
## 365 -0.31383779
## 364 2.25347674
## 90 -0.01913180
## 444 -1.63229839
## 350 0.91324618
## 239 1.85041028
## 91 0.07207084
## 172 0.67157607
## 106 -4.42881159
## 9 -0.23593406
## 374 0.12354446
## 169 0.46529526
## 447 -2.10247349
## 473 1.53732324
## 358 -1.79451511
## 383 -1.17384204
## 73 -2.08244404
## 461 -0.51123031
## 278 0.20498004
## 344 -0.67993777
## 378 -0.35718568
## 347 -3.15143854
## 201 -5.77125384
## 356 1.28392664
## 317 2.15055815
## 450 -5.39832810
## 210 1.40859587
## 105 0.69304035
## 173 -5.07309647
## 425 0.75337707
## 414 -3.24471385
## 205 1.31143066
## 186 3.92489009
## 388 -0.30649330
## 387 1.09004251
## 237 -2.37700862
## 346 -4.49282146
## 236 -4.45090678
## 285 1.43411081
## 48 0.39961677
## 416 -2.15296246
## 130 -0.32220584
## 17 4.44480156
## 412 -3.78084979
## 141 6.32786365
## 160 1.56715423
## 259 1.42770525
## 380 0.25690463
## 379 -0.04942292
## 61 -0.55289421
## 110 1.26892802
## 83 0.43679519
## 287 -1.84117158
## 84 -0.40946486
## 340 0.46901300
## 451 2.00942596
## 486 -1.95275965
## 363 -0.49630059
## 3 1.26478201
## 306 3.13914877
## 316 -2.32625423
## 13 -0.18072340
## 341 0.16387834
## 27 -2.56823918
## 36 -3.20385826
## 223 0.05995240
## 138 0.20132907
## 431 -0.02970882
## 240 4.07325530
## 490 0.43687431
## 446 -5.00235101
## 488 0.17455841
## 155 1.33793367
## 143 1.87817512
## 312 1.65488366
## 294 -0.45028517
## 305 1.46955628
## 127 1.67796835
## 111 1.37497521
## 455 -0.60959316
## 393 2.00794556
## 289 -4.65035190
## 257 -3.01273281
## 12 2.02379751
## 432 -3.74218380
## 77 1.34493463
## 184 1.68576147
## 87 -5.64063719
## 296 2.90408854
## 74 -2.04792955
## 231 -1.78623454
## 59 -0.18276979
## 439 2.18705335
## 224 0.27029410
## 492 0.78868188
## 309 0.13581287
## 421 -3.99517742
## 452 -2.25344258
## 10 -0.22352839
## 307 0.48271322
## 499 1.30328949
## 57 -0.71205151
## 397 -2.06551394
## 328 -0.52422661
## 39 -0.25752477
## 260 0.31350262
## 394 -1.11874902
## 93 -0.62945114
## 329 1.84694690
## 302 0.46820431
## 132 -2.38051040
## 477 -3.04932398
## 135 -0.99216712
## 242 3.86283081
## 2 -0.81950156
## 178 -0.57026553
## 62 -0.09992744
## 445 -0.58701571
## 403 -0.36113319
## 336 4.29507429
## 50 1.40343089
## 139 -0.91725220
## 116 1.22626454
## 276 -0.51938401
## 150 2.75258380
## 129 -0.07364222
## 21 -1.07698922
## 448 -3.21398280
## 280 1.00880149
## 288 -0.32043959
## 177 3.10367294
## 390 -0.71742265
## 204 2.61988035
## 338 -3.53390258
## 303 1.97642268
## 148 2.58485440
## 29 -0.77011764
## 128 2.24431466
## 161 1.43962285
## 22 -2.20669110
## 246 -2.88767984
## 162 -4.29097893
## 406 -0.87836996
## 339 -0.70915191
## 497 1.28154939
## 202 4.20233846
## 441 -3.22756744
## 325 -1.21127667
## 32 -2.48023478
## 211 -1.88840019
## 275 0.78627873
## 506 -0.28489639
## 255 -0.72174493
## 267 0.65118052
## 420 -1.97875119
## 168 1.45564593
## 245 -4.55200255
## 463 0.26022034
## 373 -1.79379968
## 67 1.56842688
## 217 -4.04871693
## 64 1.20016907
## 198 2.18624088
## 456 -1.74510824
## 405 -0.44676929
## 203 -0.88514475
## 175 0.75706941
## 299 0.94209674
## 7 -2.50363598
## 258 4.13305857
## 6 -2.27686988
## 481 -0.62856122
## 478 1.87804453
## 297 -0.38480280
## 80 -0.38794823
## 321 1.66605416
## 252 -2.50863677
## 195 2.87079581
## 272 0.24021076
## 449 0.27792883
## 199 3.14269426
## 166 -0.55869109
## 372 -1.63828546
## 41 0.02837986
## 315 -0.11139469
## 292 3.01963518
## 56 2.10925989
## 367 0.24788025
## 475 3.67841014
## 314 3.28601089
## 351 -1.27169325
## 462 0.08318154
## 34 0.15777102
## 35 -3.58055624
## 70 -2.37629958
## 102 1.99396048
## 436 -2.73511610
##
## , , 11 comps
##
## weight
## 225 0.327814286
## 31 -0.675675716
## 290 2.174746693
## 174 -0.741555413
## 505 -1.382749496
## 274 -2.833225462
## 493 2.595662703
## 440 3.195423073
## 385 3.716094882
## 196 -1.268943293
## 68 -1.363604601
## 55 1.422407139
## 310 2.871457075
## 319 2.533078480
## 79 -0.213201322
## 238 -3.934906748
## 43 1.202488767
## 370 4.217366720
## 362 -0.074387153
## 301 3.556547440
## 65 1.916702466
## 382 -0.667683657
## 16 -2.170434142
## 355 -4.960339522
## 89 0.658046187
## 277 1.394978114
## 498 0.464605968
## 134 -3.170740627
## 152 4.108791806
## 282 2.026278953
## 112 -0.350088829
## 147 0.096649705
## 42 0.428266538
## 489 1.438127638
## 330 -1.459452844
## 415 -3.526121785
## 207 2.301293249
## 212 4.032779723
## 78 -3.333680630
## 99 0.073568003
## 376 -0.820553664
## 163 -1.490056645
## 243 3.639839230
## 391 -0.386529374
## 221 8.832401877
## 86 0.245080148
## 144 0.747105895
## 327 2.131871944
## 359 4.807630683
## 200 -0.091179399
## 58 -2.611188426
## 241 -5.336135480
## 25 1.165918978
## 45 -0.231739475
## 263 1.780158091
## 183 -1.308213758
## 487 -1.152306355
## 326 -1.391424733
## 494 0.106733827
## 349 1.011942157
## 442 -7.984607419
## 234 -1.971117099
## 95 2.259859336
## 271 2.411510289
## 345 -1.195141595
## 40 2.079703980
## 206 -0.153958463
## 185 -0.354671633
## 1 1.143279607
## 322 -0.314072082
## 333 1.607189662
## 188 1.089878213
## 427 -0.401934114
## 469 3.385053651
## 438 -4.042045300
## 85 0.588242806
## 311 0.718707320
## 167 -0.756227315
## 71 -4.790703120
## 46 1.095323036
## 281 3.526597118
## 193 -2.331714159
## 218 -0.519139958
## 194 2.208801650
## 133 2.411049390
## 216 -1.463878978
## 244 1.149889875
## 392 -1.198576912
## 20 0.591937215
## 92 2.607342404
## 286 1.508795564
## 334 0.696989553
## 98 -1.759928774
## 298 -0.712085180
## 410 0.151288322
## 291 0.452206708
## 49 2.119786640
## 97 0.003380939
## 66 -1.286587505
## 109 -2.210825878
## 104 2.280767494
## 434 2.510549748
## 153 5.863089487
## 88 -1.690242117
## 158 2.261048161
## 324 -0.182781030
## 491 0.286908365
## 60 1.494487789
## 264 1.305753880
## 422 -0.109966958
## 375 -0.341103069
## 108 0.528997467
## 266 6.816323159
## 157 -0.543872762
## 187 -0.222099506
## 466 4.697580457
## 19 -4.742268653
## 418 -5.453345759
## 33 -1.972619561
## 429 -1.111785754
## 151 0.911452567
## 368 1.151112818
## 63 0.780805426
## 120 0.593302855
## 474 2.567421226
## 354 -0.626539356
## 265 -0.124962344
## 96 -1.510708360
## 454 -4.764922490
## 453 -1.231490688
## 395 -2.363943691
## 222 1.772088249
## 361 1.383704454
## 424 -1.669403051
## 171 -1.133804508
## 313 2.822098729
## 293 2.075018947
## 273 0.334272103
## 409 -3.203797007
## 471 0.519600322
## 54 2.424970629
## 154 -1.230529703
## 47 4.368949950
## 235 1.960205307
## 24 3.457940813
## 249 0.741773920
## 69 0.804331094
## 233 2.155340364
## 38 -3.056870667
## 335 2.224987905
## 433 -1.206884240
## 125 -1.185229455
## 192 6.058027117
## 126 3.220944927
## 30 -0.851929473
## 401 -3.422938419
## 170 -4.774659100
## 114 -1.220492175
## 145 2.503676267
## 197 -4.199224940
## 476 3.563257258
## 146 2.868318961
## 53 -1.500032647
## 384 -0.031688968
## 247 6.266720809
## 118 -1.796258059
## 386 -2.560593390
## 331 -1.270263530
## 398 -1.090927973
## 159 5.028891613
## 123 -0.552631422
## 300 -0.361092143
## 283 0.021183626
## 230 1.402313222
## 437 -2.008229796
## 94 0.802473531
## 137 1.955368358
## 190 -0.015928640
## 229 1.252960970
## 15 -3.248226859
## 284 -0.395383492
## 122 1.031430646
## 75 -4.870349734
## 268 1.376114061
## 226 -3.640202225
## 480 -2.385383045
## 251 -1.000183112
## 208 0.488132864
## 176 1.213265861
## 232 0.084046611
## 164 -3.231268215
## 485 5.081820257
## 227 -0.067156331
## 337 -0.709343980
## 179 -0.384470122
## 342 -1.348155298
## 100 -2.547687841
## 460 4.002685458
## 470 -2.616296467
## 117 1.223959474
## 270 0.498510922
## 357 -2.493909175
## 215 -4.327794715
## 44 0.967440644
## 4 -0.039368699
## 140 -8.445445790
## 14 -2.305340654
## 482 4.677685875
## 308 2.220434213
## 365 -0.570934697
## 364 2.181719630
## 90 0.057985824
## 444 -1.866523864
## 350 0.780796255
## 239 1.971257678
## 91 -0.058547215
## 172 0.630413018
## 106 -4.429729971
## 9 -0.514291922
## 374 0.072401291
## 169 0.539884322
## 447 -2.110325293
## 473 1.350213653
## 358 -2.056717083
## 383 -1.058956446
## 73 -1.869427290
## 461 -0.507722622
## 278 0.487340392
## 344 -0.839520601
## 378 -0.415331098
## 347 -3.275828480
## 201 -5.685836152
## 356 1.066660792
## 317 2.268873103
## 450 -5.200593832
## 210 1.402360518
## 105 0.656532795
## 173 -5.118396151
## 425 0.130986444
## 414 -2.997229642
## 205 1.381312670
## 186 3.997443001
## 388 -0.398705867
## 387 1.165745957
## 237 -2.344155385
## 346 -4.322425293
## 236 -4.328165122
## 285 1.402203976
## 48 0.490619786
## 416 -2.097622774
## 130 -0.260100742
## 17 4.358420083
## 412 -3.679942991
## 141 6.535553131
## 160 1.556490402
## 259 1.419964267
## 380 0.157893975
## 379 -0.036023963
## 61 -0.216247971
## 110 1.043658551
## 83 0.494652871
## 287 -1.751540723
## 84 -0.471787780
## 340 0.544072798
## 451 2.150689114
## 486 -2.048329925
## 363 -0.510756377
## 3 1.235177242
## 306 3.222922166
## 316 -2.485940779
## 13 -0.074050662
## 341 0.060859601
## 27 -2.320720303
## 36 -3.358031011
## 223 -0.188064227
## 138 0.138189094
## 431 -0.195540423
## 240 4.350551261
## 490 0.194635262
## 446 -4.644857044
## 488 0.470555109
## 155 1.531084997
## 143 1.736948148
## 312 1.640904812
## 294 -0.368662450
## 305 1.690507015
## 127 1.664050758
## 111 1.297298541
## 455 -0.697080078
## 393 1.953337762
## 289 -4.810036767
## 257 -3.150856156
## 12 2.010356990
## 432 -3.526923310
## 77 1.340074861
## 184 1.780260530
## 87 -5.929165498
## 296 2.932296034
## 74 -2.269418393
## 231 -2.000292769
## 59 0.212187316
## 439 2.340108427
## 224 0.206729610
## 492 0.406493450
## 309 0.133558458
## 421 -3.822684827
## 452 -2.287240559
## 10 -0.163456936
## 307 0.608819115
## 499 0.804203298
## 57 -0.565432223
## 397 -1.954300291
## 328 -0.325949381
## 39 -0.266578776
## 260 0.327342368
## 394 -0.981140836
## 93 -0.696590883
## 329 1.800429435
## 302 0.506441743
## 132 -1.949400541
## 477 -2.744767299
## 135 -1.006827786
## 242 3.978150488
## 2 -0.857108142
## 178 -0.697773145
## 62 -0.085718219
## 445 -0.480866550
## 403 -0.259831279
## 336 4.223532368
## 50 1.289456823
## 139 -0.740274995
## 116 1.158080383
## 276 -0.513861425
## 150 2.930227201
## 129 -0.364264891
## 21 -1.137108822
## 448 -3.147522423
## 280 1.131387542
## 288 -0.167579669
## 177 3.060892974
## 390 -0.710186280
## 204 2.673380956
## 338 -3.411436013
## 303 2.110647218
## 148 2.509709125
## 29 -0.878460386
## 128 2.301823563
## 161 1.440281027
## 22 -2.301521763
## 246 -2.729263662
## 162 -4.562409387
## 406 -0.482041360
## 339 -0.786520155
## 497 1.082311439
## 202 4.265433351
## 441 -3.296962554
## 325 -0.991170261
## 32 -2.389846665
## 211 -1.698987914
## 275 0.793475190
## 506 -0.619096094
## 255 -0.767348116
## 267 0.733753590
## 420 -2.042027529
## 168 1.408699402
## 245 -4.116881311
## 463 0.239306914
## 373 -2.014194553
## 67 1.481222656
## 217 -4.127572626
## 64 1.374345024
## 198 2.240434989
## 456 -1.870496803
## 405 -0.310510915
## 203 -1.123087870
## 175 0.755213808
## 299 0.980870696
## 7 -2.689686284
## 258 4.141258251
## 6 -2.364245003
## 481 -0.554982923
## 478 1.781789893
## 297 -0.149092681
## 80 -0.443417173
## 321 2.028343082
## 252 -2.319679223
## 195 2.875311356
## 272 0.362477569
## 449 0.225879611
## 199 3.183557153
## 166 -0.569616552
## 372 -1.537738043
## 41 0.192702275
## 315 -0.296884975
## 292 2.942006249
## 56 2.152159179
## 367 0.466925006
## 475 3.750853744
## 314 3.326318540
## 351 -1.313626086
## 462 -0.021659296
## 34 0.198340907
## 35 -3.763570622
## 70 -2.353002664
## 102 1.943275916
## 436 -2.889302128
##
## , , 12 comps
##
## weight
## 225 -0.02068021
## 31 -0.96060411
## 290 2.00709504
## 174 -1.02254421
## 505 -1.71253024
## 274 -2.57717358
## 493 3.26243008
## 440 3.09125853
## 385 3.65130986
## 196 -1.41070965
## 68 -0.97359236
## 55 1.77487780
## 310 3.12918713
## 319 2.56932418
## 79 -0.05446805
## 238 -4.38780604
## 43 0.64591648
## 370 4.67111118
## 362 -0.04572204
## 301 3.61480763
## 65 1.96609325
## 382 -0.77635557
## 16 -1.45676270
## 355 -4.55143972
## 89 0.42689631
## 277 1.89584352
## 498 0.66199964
## 134 -3.48723674
## 152 3.78480460
## 282 2.74540617
## 112 -0.86897313
## 147 0.37083079
## 42 0.20981760
## 489 1.38217703
## 330 -1.20258611
## 415 -3.75473615
## 207 2.13089639
## 212 4.44635672
## 78 -2.83409586
## 99 -0.04708818
## 376 -1.01544461
## 163 -1.37591317
## 243 3.76767602
## 391 -0.93223892
## 221 9.80629898
## 86 0.05332061
## 144 1.10968589
## 327 1.79817037
## 359 5.66742685
## 200 -0.18859554
## 58 -2.99055657
## 241 -4.99305751
## 25 0.45609952
## 45 -0.82283067
## 263 2.28572332
## 183 -1.24398944
## 487 -0.89588917
## 326 -1.57193005
## 494 0.62086930
## 349 0.74970264
## 442 -8.01130438
## 234 -1.61281678
## 95 2.63145353
## 271 2.31680851
## 345 -0.98125056
## 40 1.83709941
## 206 -0.18019112
## 185 -0.72624052
## 1 1.26134502
## 322 -0.95949320
## 333 1.75970090
## 188 1.44993119
## 427 -0.14789910
## 469 3.49289827
## 438 -3.72252969
## 85 0.64594510
## 311 0.75201002
## 167 -0.49254694
## 71 -4.75820848
## 46 1.29274237
## 281 3.78319145
## 193 -1.77459351
## 218 -0.84748475
## 194 2.73186731
## 133 2.56223843
## 216 -1.62382641
## 244 1.25292972
## 392 -1.54974422
## 20 0.55440949
## 92 1.92616006
## 286 0.89458255
## 334 0.43265920
## 98 -1.28840175
## 298 -0.56306343
## 410 -0.59023627
## 291 0.66713442
## 49 1.14529052
## 97 -0.04404922
## 66 -0.88762594
## 109 -2.52779710
## 104 1.99180243
## 434 2.76021660
## 153 5.59797069
## 88 -2.04263125
## 158 2.08759035
## 324 -0.66417245
## 491 -0.32316504
## 60 1.62306372
## 264 1.35081583
## 422 -0.19884409
## 375 0.05294892
## 108 0.77155410
## 266 6.48093569
## 157 -0.34952650
## 187 -0.29442762
## 466 5.56113068
## 19 -3.61559940
## 418 -5.77924844
## 33 -1.45481506
## 429 -1.12095822
## 151 1.77365545
## 368 1.30710803
## 63 1.08838375
## 120 0.44003215
## 474 3.22960447
## 354 -0.62230688
## 265 0.01387384
## 96 -1.70923727
## 454 -4.64825834
## 453 -1.75558047
## 395 -2.39487109
## 222 1.69832788
## 361 0.70572377
## 424 -2.04080618
## 171 -0.55170557
## 313 2.80176050
## 293 1.98932534
## 273 0.62030557
## 409 -2.37406801
## 471 0.54543295
## 54 1.28960590
## 154 -1.17457180
## 47 4.10095237
## 235 2.00554561
## 24 3.51094056
## 249 0.75932196
## 69 0.18521009
## 233 2.21752364
## 38 -2.77800406
## 335 2.41862615
## 433 -0.86551842
## 125 -0.89181658
## 192 6.09399300
## 126 3.10220132
## 30 -0.17171112
## 401 -3.83124426
## 170 -4.63384514
## 114 -1.12785330
## 145 2.77697704
## 197 -3.98178111
## 476 3.41292866
## 146 2.71204827
## 53 -1.97673052
## 384 0.13642317
## 247 5.59502338
## 118 -1.80504983
## 386 -2.79875258
## 331 -1.51930533
## 398 -1.26386111
## 159 4.57872604
## 123 -0.75737139
## 300 0.12712792
## 283 -0.17322670
## 230 1.19796453
## 437 -2.30402213
## 94 0.59676523
## 137 2.11994451
## 190 -0.34251000
## 229 1.33159697
## 15 -3.33918910
## 284 -0.11279990
## 122 0.99246457
## 75 -5.14781991
## 268 1.44310414
## 226 -3.83145673
## 480 -2.86202916
## 251 -0.63092052
## 208 0.53218534
## 176 0.79254491
## 232 0.40874724
## 164 -3.94756376
## 485 4.73308629
## 227 -0.32600052
## 337 -0.68980879
## 179 0.56559461
## 342 -1.35319238
## 100 -2.55502835
## 460 3.99642101
## 470 -2.68208058
## 117 0.73770209
## 270 0.39632312
## 357 -2.72665358
## 215 -3.37168346
## 44 0.39194736
## 4 0.45767280
## 140 -8.08850724
## 14 -2.35768966
## 482 4.23418438
## 308 2.39874006
## 365 -0.46333760
## 364 1.97580769
## 90 -0.30711820
## 444 -2.03568565
## 350 0.48069651
## 239 1.63374864
## 91 0.19249239
## 172 0.59379952
## 106 -3.90679081
## 9 -0.24036639
## 374 0.18515001
## 169 0.53411042
## 447 -2.59326323
## 473 1.07991620
## 358 -2.09629756
## 383 -0.84175239
## 73 -2.21471483
## 461 -0.18286599
## 278 0.64161134
## 344 -0.39742893
## 378 -0.74788529
## 347 -3.34956076
## 201 -4.95211409
## 356 1.30754946
## 317 1.81177863
## 450 -5.02480577
## 210 1.72777477
## 105 0.95000904
## 173 -4.66081484
## 425 -0.20880400
## 414 -3.07878514
## 205 1.23111706
## 186 4.14264390
## 388 -0.51556786
## 387 1.06715448
## 237 -1.86493503
## 346 -4.33179670
## 236 -4.35967356
## 285 1.26483689
## 48 -0.19322346
## 416 -1.70069183
## 130 -0.75636917
## 17 3.71888812
## 412 -3.44986186
## 141 6.87498290
## 160 1.37955188
## 259 1.18582226
## 380 -0.03846575
## 379 0.22953167
## 61 -0.55278227
## 110 0.90369047
## 83 0.55064634
## 287 -1.21275684
## 84 -0.09848251
## 340 0.05259858
## 451 1.53123905
## 486 -1.98548455
## 363 -0.90225538
## 3 0.73723065
## 306 3.21667129
## 316 -2.23131327
## 13 0.20684822
## 341 0.14432819
## 27 -2.74717829
## 36 -2.55642613
## 223 -0.23653405
## 138 1.00823225
## 431 -0.54347139
## 240 4.17620135
## 490 0.30648774
## 446 -4.60981649
## 488 0.41671704
## 155 1.70915338
## 143 1.38619535
## 312 2.63630827
## 294 -0.73453006
## 305 1.86450772
## 127 1.58658031
## 111 1.18790306
## 455 -0.07015348
## 393 1.84991867
## 289 -4.37019982
## 257 -2.19808779
## 12 1.88985742
## 432 -4.09280232
## 77 1.18103665
## 184 1.23655469
## 87 -5.69912973
## 296 2.72453921
## 74 -2.50602194
## 231 -1.51344535
## 59 -0.04601196
## 439 1.98142475
## 224 0.39319253
## 492 0.59384201
## 309 0.65931570
## 421 -3.92933153
## 452 -1.46503124
## 10 0.09259065
## 307 0.87150247
## 499 1.16513837
## 57 -1.08326966
## 397 -1.97193344
## 328 -0.31334693
## 39 -0.63049511
## 260 0.01113511
## 394 -1.04541227
## 93 -0.24692740
## 329 1.70366876
## 302 0.81128187
## 132 -1.53825127
## 477 -2.29947161
## 135 -0.79732936
## 242 3.81137003
## 2 -0.28634753
## 178 -0.17432211
## 62 -0.35890698
## 445 -0.52376284
## 403 -0.64379504
## 336 4.08317449
## 50 1.00825638
## 139 -1.26829568
## 116 1.37053225
## 276 -0.27727743
## 150 2.58020288
## 129 0.11877406
## 21 -0.69590180
## 448 -3.62513020
## 280 0.94446336
## 288 -0.32534210
## 177 2.51306547
## 390 -0.85765070
## 204 2.91369579
## 338 -3.06568448
## 303 1.43786264
## 148 2.09239572
## 29 -0.48920663
## 128 2.07051354
## 161 1.63926173
## 22 -1.95661534
## 246 -2.77775078
## 162 -4.78683440
## 406 -0.68522154
## 339 -0.44372308
## 497 0.92699006
## 202 4.48131771
## 441 -3.36641839
## 325 -0.69910330
## 32 -2.28868183
## 211 -1.78786454
## 275 0.26982800
## 506 -1.10604023
## 255 -0.40767630
## 267 1.10343867
## 420 -2.55000349
## 168 1.03372685
## 245 -4.01706335
## 463 0.02837310
## 373 -2.14591851
## 67 1.32904339
## 217 -4.03879949
## 64 1.66285238
## 198 1.90978816
## 456 -2.37987992
## 405 -0.11697697
## 203 -1.19938217
## 175 0.84144658
## 299 0.84441346
## 7 -2.93865976
## 258 3.74144587
## 6 -2.46680355
## 481 -0.81013245
## 478 1.33322183
## 297 -0.49715150
## 80 -0.32624816
## 321 2.07470858
## 252 -2.07691651
## 195 2.70294314
## 272 0.67921284
## 449 0.07306921
## 199 2.45677893
## 166 -0.91865687
## 372 -1.57043003
## 41 -0.08182815
## 315 -0.23356253
## 292 2.81469568
## 56 2.41951585
## 367 0.95789411
## 475 3.22703297
## 314 3.29564052
## 351 -1.32146974
## 462 -0.01698365
## 34 0.72104117
## 35 -3.26917508
## 70 -2.29765491
## 102 2.27293240
## 436 -3.02938479
##
## , , 13 comps
##
## weight
## 225 0.41897840
## 31 -1.28487716
## 290 2.24187178
## 174 -1.50676605
## 505 -1.81270839
## 274 -2.76631110
## 493 2.95266273
## 440 2.87869758
## 385 3.56230662
## 196 -1.47170727
## 68 -0.97268121
## 55 1.91488033
## 310 2.78792807
## 319 2.63886774
## 79 0.51446187
## 238 -3.71110541
## 43 0.84883629
## 370 4.52520011
## 362 0.05808325
## 301 3.38202315
## 65 2.26714658
## 382 -1.04424587
## 16 -0.73709845
## 355 -4.48941063
## 89 0.02205468
## 277 2.01152301
## 498 0.28354863
## 134 -3.42263069
## 152 3.96170774
## 282 2.79629824
## 112 -0.83594108
## 147 0.14531138
## 42 0.69965927
## 489 1.09239252
## 330 -1.36335388
## 415 -3.94290846
## 207 2.48715308
## 212 4.30162658
## 78 -2.99011407
## 99 -0.18319622
## 376 -1.29157968
## 163 -2.31864392
## 243 3.65748314
## 391 -0.81060389
## 221 8.80491943
## 86 -0.09133918
## 144 0.63444879
## 327 1.63955750
## 359 5.91211326
## 200 0.05083610
## 58 -3.57133076
## 241 -4.56534242
## 25 0.34021242
## 45 -1.22731129
## 263 2.21522452
## 183 -1.86939896
## 487 -0.97114081
## 326 -1.84771563
## 494 0.35234894
## 349 1.36991854
## 442 -8.42692658
## 234 -2.31497250
## 95 2.51418663
## 271 2.50447505
## 345 -0.81895692
## 40 1.99496330
## 206 -0.33965302
## 185 -0.70766025
## 1 1.69074849
## 322 -0.92280967
## 333 1.66137256
## 188 1.26917734
## 427 -0.40026535
## 469 3.30885281
## 438 -3.59633058
## 85 0.04571427
## 311 0.55085059
## 167 -0.10956312
## 71 -4.10154813
## 46 1.09220989
## 281 3.46157552
## 193 -1.51537218
## 218 -0.94519589
## 194 2.58794650
## 133 2.32955489
## 216 -1.14916291
## 244 1.63471775
## 392 -0.91929056
## 20 0.98059141
## 92 2.10688420
## 286 0.57948415
## 334 0.57039558
## 98 -0.83195742
## 298 -1.05132265
## 410 -0.66975267
## 291 0.53212875
## 49 1.46049198
## 97 0.05528034
## 66 -1.00501249
## 109 -2.79769549
## 104 2.16300920
## 434 3.19049582
## 153 5.42408031
## 88 -2.16688929
## 158 2.01048258
## 324 -0.88927807
## 491 -0.46031664
## 60 1.45916575
## 264 1.20728270
## 422 -0.21078667
## 375 0.26560450
## 108 0.85570090
## 266 6.61592926
## 157 -0.45593731
## 187 -0.43962246
## 466 5.29924515
## 19 -3.61894841
## 418 -5.81756704
## 33 -1.25549898
## 429 -1.15005617
## 151 1.45738688
## 368 1.29526496
## 63 0.89510272
## 120 1.28589542
## 474 3.46802557
## 354 -0.97979601
## 265 0.07889550
## 96 -1.17766548
## 454 -4.40299753
## 453 -1.85050204
## 395 -1.87658864
## 222 2.44447318
## 361 -0.02084751
## 424 -2.07443291
## 171 -0.47408422
## 313 2.79786372
## 293 1.61802322
## 273 0.51940828
## 409 -1.76450861
## 471 0.76522782
## 54 1.42137658
## 154 -1.86778474
## 47 4.55695373
## 235 2.16281779
## 24 3.14147966
## 249 0.90123817
## 69 -0.37848481
## 233 2.19674404
## 38 -2.87571204
## 335 2.25656817
## 433 -0.68814128
## 125 -0.82726614
## 192 6.34232800
## 126 3.19148120
## 30 0.09715961
## 401 -3.78569857
## 170 -4.27884536
## 114 -1.49324352
## 145 2.71822172
## 197 -3.34844975
## 476 3.47286166
## 146 2.82199598
## 53 -1.67716915
## 384 0.07910076
## 247 6.00827120
## 118 -2.10023946
## 386 -3.33025461
## 331 -1.67131127
## 398 -0.71606795
## 159 4.39857279
## 123 -0.73087806
## 300 -0.31504888
## 283 -0.62746167
## 230 0.80391031
## 437 -2.43246566
## 94 0.43585520
## 137 2.39220660
## 190 -0.70447991
## 229 0.91746032
## 15 -3.04188330
## 284 0.18528781
## 122 0.93580733
## 75 -5.12744006
## 268 1.80793151
## 226 -3.12949617
## 480 -3.00054171
## 251 -0.35946863
## 208 0.50717589
## 176 1.29371732
## 232 0.81953439
## 164 -3.59828885
## 485 5.03656862
## 227 -1.03181592
## 337 -0.53386397
## 179 0.93299142
## 342 -1.20833774
## 100 -2.65892569
## 460 4.25759224
## 470 -2.49819820
## 117 0.53666179
## 270 0.88164721
## 357 -2.68092318
## 215 -3.76868085
## 44 0.51153113
## 4 0.82565548
## 140 -7.48401524
## 14 -1.92247082
## 482 3.89789679
## 308 2.26768145
## 365 -0.46491870
## 364 2.00476604
## 90 -0.65919249
## 444 -1.96092024
## 350 0.43171492
## 239 1.98156174
## 91 0.58339389
## 172 0.86876738
## 106 -3.87806719
## 9 0.04214213
## 374 0.26786004
## 169 0.67901269
## 447 -2.36675012
## 473 1.44953168
## 358 -1.73362200
## 383 -0.85486368
## 73 -2.60860007
## 461 -0.46988618
## 278 0.89807010
## 344 -0.45064941
## 378 -0.43418070
## 347 -3.47257829
## 201 -4.64373487
## 356 0.91421046
## 317 1.78658520
## 450 -5.00843351
## 210 1.38613555
## 105 0.51749321
## 173 -4.47427644
## 425 1.07571274
## 414 -2.65023165
## 205 0.96287514
## 186 3.84419636
## 388 -0.63240928
## 387 1.10468329
## 237 -1.81924728
## 346 -5.04886978
## 236 -3.33112613
## 285 1.23605698
## 48 -0.30649767
## 416 -2.01772177
## 130 -0.17704909
## 17 3.41378192
## 412 -3.56642951
## 141 6.81547971
## 160 1.67086345
## 259 1.05678194
## 380 0.42141102
## 379 0.04470530
## 61 -0.79895441
## 110 1.22077102
## 83 0.62295049
## 287 -1.09128198
## 84 -0.56356361
## 340 0.16457479
## 451 1.47079154
## 486 -2.07857959
## 363 -0.72931584
## 3 0.57439785
## 306 3.43325175
## 316 -2.43143623
## 13 0.77298314
## 341 -0.07929999
## 27 -2.58776384
## 36 -2.41371579
## 223 -0.44684879
## 138 1.06370663
## 431 -1.08163183
## 240 4.33785468
## 490 0.07406089
## 446 -4.96066358
## 488 0.17617508
## 155 1.60949054
## 143 1.56119352
## 312 2.94521573
## 294 -0.50949896
## 305 1.32545574
## 127 1.95457906
## 111 1.35984387
## 455 -0.18646032
## 393 1.83655293
## 289 -5.16784200
## 257 -2.07032184
## 12 2.24684728
## 432 -4.28207210
## 77 0.87572354
## 184 1.32932689
## 87 -5.72899878
## 296 2.04686522
## 74 -2.63833529
## 231 -1.38794165
## 59 -0.18898999
## 439 1.70081884
## 224 -0.14439467
## 492 0.45942020
## 309 0.64236946
## 421 -3.61410622
## 452 -1.14374964
## 10 0.07784802
## 307 1.22449189
## 499 2.04678844
## 57 -0.92009249
## 397 -2.26045748
## 328 0.17673294
## 39 -0.72859251
## 260 0.08444186
## 394 -1.47509946
## 93 -0.82908679
## 329 1.11083823
## 302 0.65291107
## 132 -1.58466814
## 477 -2.60964897
## 135 0.01057056
## 242 3.76806133
## 2 -0.15858134
## 178 0.63581909
## 62 -0.77430773
## 445 -0.28234472
## 403 -0.57483242
## 336 3.79673399
## 50 0.81196577
## 139 -1.53921007
## 116 1.07178247
## 276 -0.44381856
## 150 2.42228996
## 129 -0.61830266
## 21 -1.18646471
## 448 -3.47052182
## 280 1.15438014
## 288 -0.05742743
## 177 2.18406950
## 390 -0.80627278
## 204 2.71329491
## 338 -3.12468953
## 303 1.01079268
## 148 2.16161223
## 29 -0.34121022
## 128 2.12580045
## 161 1.56155767
## 22 -1.58741972
## 246 -2.07102999
## 162 -4.18859859
## 406 -0.25653485
## 339 -0.69798100
## 497 0.71669340
## 202 4.01153686
## 441 -3.07726709
## 325 -0.18333880
## 32 -2.36455367
## 211 -2.31229538
## 275 0.03448061
## 506 -0.61111891
## 255 -0.69342124
## 267 0.58411978
## 420 -2.55447367
## 168 0.75477213
## 245 -3.54641061
## 463 0.14641896
## 373 -2.33085205
## 67 0.66925934
## 217 -3.74352844
## 64 2.11011548
## 198 1.96092256
## 456 -2.00358412
## 405 1.24481819
## 203 -1.04239500
## 175 0.14374153
## 299 0.92887245
## 7 -3.00667509
## 258 4.20230632
## 6 -2.73621611
## 481 -0.98848031
## 478 1.37510906
## 297 -0.54048378
## 80 -0.90992094
## 321 1.46607280
## 252 -2.13891286
## 195 2.03843146
## 272 0.80124685
## 449 -0.10625207
## 199 2.39819834
## 166 -0.41486377
## 372 -1.51672711
## 41 -0.55315092
## 315 -0.51469325
## 292 2.99495663
## 56 2.36045541
## 367 0.73971978
## 475 3.15514964
## 314 3.05583791
## 351 -1.27567943
## 462 -0.54696663
## 34 0.86991941
## 35 -2.68334035
## 70 -1.90102986
## 102 2.40421390
## 436 -3.12346067
##
## , , 14 comps
##
## weight
## 225 0.490311080
## 31 -1.407186656
## 290 2.472405279
## 174 -1.391976641
## 505 -1.396695920
## 274 -2.890755989
## 493 3.333565384
## 440 2.139492904
## 385 3.799818917
## 196 -1.193470527
## 68 -0.800221437
## 55 1.623273407
## 310 3.016301069
## 319 2.727197609
## 79 0.377886187
## 238 -3.498435287
## 43 0.668659129
## 370 4.466978082
## 362 0.015809547
## 301 3.346524328
## 65 2.209167391
## 382 -0.689102693
## 16 -0.434563925
## 355 -4.167874890
## 89 -0.026922996
## 277 1.663104197
## 498 0.092816662
## 134 -3.688390113
## 152 4.217964554
## 282 2.793427335
## 112 -0.812562261
## 147 -0.129160090
## 42 1.210424693
## 489 1.457769079
## 330 -1.269160312
## 415 -4.147597077
## 207 2.890080935
## 212 4.057057497
## 78 -3.544911570
## 99 0.026515045
## 376 -1.679702997
## 163 -2.296079550
## 243 3.599822300
## 391 -0.640840663
## 221 8.678360606
## 86 -0.199042975
## 144 0.671379075
## 327 1.441472719
## 359 5.771487643
## 200 -0.116225720
## 58 -3.501125484
## 241 -4.717512452
## 25 0.413689919
## 45 -1.285340318
## 263 1.946593567
## 183 -1.983177702
## 487 -0.931174172
## 326 -1.618169789
## 494 0.680232101
## 349 1.809624595
## 442 -8.397930562
## 234 -2.014379694
## 95 3.057530943
## 271 3.369694931
## 345 -0.366288296
## 40 1.708288989
## 206 -0.380504196
## 185 -0.666529979
## 1 1.893432094
## 322 -0.780361793
## 333 1.521393099
## 188 1.531620443
## 427 -0.465897066
## 469 3.748655925
## 438 -3.573248892
## 85 -0.198797619
## 311 0.765536638
## 167 -0.516233031
## 71 -3.763328748
## 46 1.392496509
## 281 3.316184594
## 193 -1.545694959
## 218 -0.844958191
## 194 2.536987051
## 133 2.171690824
## 216 -1.435895362
## 244 1.339599691
## 392 -0.966072886
## 20 0.756154439
## 92 1.899155899
## 286 0.588807076
## 334 0.471172290
## 98 -0.563505149
## 298 -0.929821086
## 410 -0.812475432
## 291 0.313668281
## 49 1.550702641
## 97 0.107266571
## 66 -0.753166955
## 109 -2.793244115
## 104 2.100905663
## 434 3.011935173
## 153 5.189206826
## 88 -1.647326274
## 158 2.233922207
## 324 -0.792734460
## 491 -0.768104226
## 60 1.574771010
## 264 1.449607970
## 422 -0.158206943
## 375 0.018686350
## 108 0.553031569
## 266 6.545998783
## 157 -0.501298573
## 187 -0.470029330
## 466 5.216942934
## 19 -3.345688215
## 418 -5.874008021
## 33 -1.279130792
## 429 -1.037736404
## 151 1.593209077
## 368 1.272502547
## 63 1.143251309
## 120 1.103847447
## 474 2.768099747
## 354 -0.794728645
## 265 0.252436200
## 96 -1.269822702
## 454 -4.272306265
## 453 -2.143232376
## 395 -1.284523567
## 222 2.832502897
## 361 -0.109823004
## 424 -1.780221836
## 171 -0.648123795
## 313 3.118234540
## 293 1.434944633
## 273 0.426741962
## 409 -1.906177035
## 471 0.850865907
## 54 1.042747891
## 154 -2.161648675
## 47 4.093303118
## 235 2.194962729
## 24 3.023083459
## 249 0.778581012
## 69 -0.170653734
## 233 2.290503647
## 38 -2.929729176
## 335 2.480752446
## 433 -1.027047811
## 125 -0.829507974
## 192 6.502039906
## 126 2.832098736
## 30 -0.024526506
## 401 -4.065465816
## 170 -4.414303288
## 114 -1.251256061
## 145 2.416079967
## 197 -3.652143983
## 476 3.456607764
## 146 2.669786811
## 53 -1.952995129
## 384 -0.117980860
## 247 5.992616277
## 118 -2.153575233
## 386 -3.069221002
## 331 -1.682390971
## 398 -0.948248936
## 159 4.399512112
## 123 -0.569962586
## 300 -0.609751602
## 283 -0.406071612
## 230 0.607247771
## 437 -2.592002941
## 94 0.443131798
## 137 2.802281537
## 190 -0.622729693
## 229 1.009818910
## 15 -3.182441342
## 284 0.534636468
## 122 1.198529583
## 75 -5.100819838
## 268 2.089658486
## 226 -3.410823606
## 480 -2.938617548
## 251 -0.208368000
## 208 0.002263150
## 176 1.580804333
## 232 0.663217259
## 164 -3.872535870
## 485 5.012088725
## 227 -1.503204731
## 337 -0.469115122
## 179 0.626544207
## 342 -1.203085737
## 100 -2.227850444
## 460 4.389498721
## 470 -2.605764532
## 117 0.842426492
## 270 0.521869765
## 357 -2.601259846
## 215 -3.357563452
## 44 0.654986876
## 4 1.062632348
## 140 -7.954010439
## 14 -1.809512843
## 482 3.208563089
## 308 2.430335672
## 365 -0.422421055
## 364 1.870346970
## 90 -0.805204646
## 444 -2.072208189
## 350 0.463273298
## 239 2.313172988
## 91 0.478753264
## 172 0.996772299
## 106 -3.791427343
## 9 0.032351661
## 374 0.519743411
## 169 0.231554975
## 447 -2.649090054
## 473 1.743736473
## 358 -1.498608606
## 383 -0.833375024
## 73 -2.258101827
## 461 -0.198908333
## 278 1.216942194
## 344 -0.384942662
## 378 -0.636733536
## 347 -3.330016483
## 201 -4.821889605
## 356 1.156965988
## 317 1.577558170
## 450 -5.093774945
## 210 0.976374787
## 105 0.427589129
## 173 -4.500180042
## 425 1.128188069
## 414 -2.373009308
## 205 0.862812917
## 186 3.614081729
## 388 -0.260902018
## 387 1.160316597
## 237 -1.751434647
## 346 -4.965831112
## 236 -3.697370631
## 285 1.001781504
## 48 0.114658689
## 416 -2.011594192
## 130 0.165438933
## 17 3.319062696
## 412 -3.639230835
## 141 7.137080962
## 160 1.498790451
## 259 0.799089619
## 380 -0.023305321
## 379 -0.011293034
## 61 -0.692029135
## 110 1.540218098
## 83 0.672119355
## 287 -1.193157323
## 84 -0.670064997
## 340 0.302220575
## 451 1.343953351
## 486 -2.089683131
## 363 -0.643169186
## 3 0.389498132
## 306 3.534472380
## 316 -2.411643079
## 13 0.671948738
## 341 -0.564531294
## 27 -2.573759348
## 36 -2.457115180
## 223 -0.239216030
## 138 1.011832314
## 431 -1.372511689
## 240 4.538756153
## 490 0.413436579
## 446 -4.725954086
## 488 0.504684050
## 155 1.007176027
## 143 1.736905301
## 312 2.381519752
## 294 -0.790672076
## 305 0.980355203
## 127 2.316511673
## 111 1.198074763
## 455 -0.432218113
## 393 1.870997907
## 289 -5.079431758
## 257 -1.854879359
## 12 2.523994722
## 432 -4.239031223
## 77 0.696672506
## 184 1.403366122
## 87 -5.381424468
## 296 2.030852662
## 74 -2.492987163
## 231 -1.007554135
## 59 -0.200312594
## 439 1.585609265
## 224 0.002683441
## 492 0.843942419
## 309 0.607733795
## 421 -3.747814507
## 452 -1.275305444
## 10 -0.018637712
## 307 1.195440919
## 499 2.160542146
## 57 -1.018850737
## 397 -2.475302062
## 328 -0.178900502
## 39 -0.779193458
## 260 -0.069392977
## 394 -1.527600510
## 93 -0.581617459
## 329 1.189468303
## 302 0.496467710
## 132 -1.920197912
## 477 -2.142170438
## 135 0.202917450
## 242 3.352202639
## 2 -0.192445483
## 178 1.257343511
## 62 -0.834851870
## 445 -0.451128369
## 403 -0.635995761
## 336 3.900197638
## 50 0.618750010
## 139 -1.296535313
## 116 1.053263934
## 276 -0.296390297
## 150 2.438868090
## 129 -0.459754931
## 21 -0.920444079
## 448 -3.399397157
## 280 1.114977343
## 288 -0.001277559
## 177 2.202793731
## 390 -0.710204277
## 204 2.580923195
## 338 -3.020115760
## 303 0.641842642
## 148 2.333596979
## 29 -0.737023108
## 128 1.839881986
## 161 1.052281567
## 22 -1.426640975
## 246 -1.892285076
## 162 -4.369651228
## 406 -0.244356571
## 339 -0.223724949
## 497 0.793177442
## 202 3.863342061
## 441 -3.109918030
## 325 0.008760066
## 32 -2.335001235
## 211 -2.357232614
## 275 0.113176291
## 506 -0.637949528
## 255 -0.466654750
## 267 0.398311489
## 420 -2.434408792
## 168 0.579108456
## 245 -3.291860248
## 463 0.655472234
## 373 -2.096749009
## 67 0.638954267
## 217 -4.016415599
## 64 2.102538052
## 198 1.933512263
## 456 -1.753667280
## 405 1.102374940
## 203 -1.191564286
## 175 0.129973208
## 299 0.560961636
## 7 -2.988878683
## 258 4.100470519
## 6 -2.383362542
## 481 -0.789992415
## 478 1.186707165
## 297 -0.625370244
## 80 -0.843305570
## 321 1.598433866
## 252 -2.255986720
## 195 1.828833124
## 272 0.544049167
## 449 -0.084301139
## 199 2.322875009
## 166 -0.456514840
## 372 -1.415153337
## 41 -0.491169426
## 315 -0.188245192
## 292 3.000192054
## 56 2.019760675
## 367 0.377690734
## 475 2.984363671
## 314 2.866386144
## 351 -1.561208669
## 462 -0.446449527
## 34 0.532721066
## 35 -2.601689468
## 70 -1.628582083
## 102 2.016092638
## 436 -3.053918510
##
## , , 15 comps
##
## weight
## 225 0.293796024
## 31 -1.180600343
## 290 2.284125456
## 174 -1.406934481
## 505 -1.324767364
## 274 -2.752707901
## 493 3.481931544
## 440 2.246577047
## 385 3.796420875
## 196 -1.378664475
## 68 -0.857425534
## 55 1.697620101
## 310 2.889181069
## 319 2.840608449
## 79 0.401032019
## 238 -3.517569770
## 43 0.620788732
## 370 4.468241966
## 362 -0.017815898
## 301 3.368459037
## 65 2.181171993
## 382 -0.981094364
## 16 -0.553329481
## 355 -3.966797063
## 89 -0.067206412
## 277 1.752343723
## 498 0.247234343
## 134 -3.857810561
## 152 4.270454130
## 282 2.886720622
## 112 -0.932446851
## 147 -0.127678588
## 42 1.210590355
## 489 1.490595294
## 330 -1.379773912
## 415 -4.142115235
## 207 2.785239848
## 212 3.738754939
## 78 -3.933786392
## 99 0.139520632
## 376 -1.793318093
## 163 -2.236771612
## 243 3.700325361
## 391 -0.678531856
## 221 8.340445214
## 86 -0.484072774
## 144 0.751284558
## 327 1.350502579
## 359 5.469124809
## 200 -0.169655192
## 58 -3.455126526
## 241 -4.780705308
## 25 0.754263326
## 45 -1.114564750
## 263 1.901475422
## 183 -2.186174214
## 487 -1.010081369
## 326 -1.838871597
## 494 0.617713050
## 349 1.845748651
## 442 -8.409891503
## 234 -2.023910391
## 95 3.039891330
## 271 3.284891774
## 345 -0.206813057
## 40 1.876140404
## 206 -0.194070074
## 185 -0.397391404
## 1 2.007519607
## 322 -0.831750589
## 333 1.457335118
## 188 1.626346336
## 427 -0.363113391
## 469 3.604540107
## 438 -3.737811928
## 85 -0.447691168
## 311 0.831956022
## 167 -0.458847770
## 71 -3.524662254
## 46 1.482706409
## 281 3.346419666
## 193 -1.527136003
## 218 -0.752457158
## 194 2.722181738
## 133 2.255724511
## 216 -1.556111733
## 244 1.288896844
## 392 -1.176805036
## 20 0.772080267
## 92 2.117793064
## 286 0.853072905
## 334 0.245976533
## 98 -0.781839366
## 298 -0.882654227
## 410 -0.742846005
## 291 0.370644449
## 49 1.885428995
## 97 0.164659150
## 66 -1.174190425
## 109 -2.639603613
## 104 2.152188455
## 434 2.942115104
## 153 5.047831741
## 88 -1.522903489
## 158 2.505971625
## 324 -0.979471808
## 491 -0.693962186
## 60 1.424870632
## 264 1.490559235
## 422 -0.030619549
## 375 0.073772743
## 108 0.755928953
## 266 6.472375027
## 157 -0.596652458
## 187 -0.292238925
## 466 5.199021499
## 19 -3.280238300
## 418 -5.936421643
## 33 -1.446416130
## 429 -1.201110209
## 151 1.644369481
## 368 1.260587099
## 63 1.329494482
## 120 1.331187501
## 474 3.011825597
## 354 -0.669622045
## 265 0.257797945
## 96 -1.202688867
## 454 -4.376036252
## 453 -2.188712891
## 395 -1.332649008
## 222 2.787706922
## 361 -0.228578406
## 424 -1.784191484
## 171 -0.842504299
## 313 2.898861962
## 293 1.075624157
## 273 0.195218630
## 409 -1.611651938
## 471 0.877832631
## 54 1.009417677
## 154 -2.374685719
## 47 4.100798828
## 235 2.016267873
## 24 3.038112323
## 249 0.687610225
## 69 -0.193675859
## 233 2.439628736
## 38 -2.866679572
## 335 2.406731464
## 433 -1.096853584
## 125 -0.665497947
## 192 6.537140939
## 126 2.781246716
## 30 0.121855239
## 401 -4.155342420
## 170 -4.357669769
## 114 -1.533052724
## 145 2.679512204
## 197 -3.661980376
## 476 3.532664211
## 146 2.564269468
## 53 -2.115428279
## 384 -0.034519221
## 247 6.065166385
## 118 -2.353504991
## 386 -3.093826939
## 331 -1.494957071
## 398 -0.924774037
## 159 4.453577741
## 123 -0.386916748
## 300 -0.776874036
## 283 -0.398437093
## 230 0.536857817
## 437 -2.629079731
## 94 0.665055310
## 137 2.623558712
## 190 -0.330765633
## 229 1.149614175
## 15 -2.997098952
## 284 0.648721579
## 122 1.286171033
## 75 -5.307857491
## 268 2.008173173
## 226 -3.571100440
## 480 -2.543547893
## 251 -0.003637946
## 208 0.027349888
## 176 1.485498133
## 232 0.366669318
## 164 -3.704500236
## 485 4.795565403
## 227 -1.336286857
## 337 -0.500522959
## 179 0.573890393
## 342 -1.075316523
## 100 -2.239553397
## 460 4.475002655
## 470 -2.440765088
## 117 0.606543293
## 270 0.595476012
## 357 -2.764309968
## 215 -3.060334778
## 44 0.459872399
## 4 1.044350950
## 140 -7.832393468
## 14 -1.734514790
## 482 3.171086501
## 308 2.648607333
## 365 -0.637139358
## 364 1.845014372
## 90 -0.734353881
## 444 -2.029670218
## 350 0.400618409
## 239 2.216964932
## 91 0.380951580
## 172 1.113401521
## 106 -3.525531119
## 9 0.125820533
## 374 0.450457908
## 169 0.257944396
## 447 -2.697227602
## 473 1.762939142
## 358 -1.373466300
## 383 -0.821495497
## 73 -1.915265171
## 461 -0.065124472
## 278 1.083729718
## 344 -0.349742427
## 378 -0.513092459
## 347 -3.208036378
## 201 -4.726119876
## 356 1.096567640
## 317 1.719190726
## 450 -4.967779260
## 210 0.704447090
## 105 0.640888209
## 173 -4.428960710
## 425 1.187898183
## 414 -2.513935074
## 205 1.017166801
## 186 3.645741440
## 388 -0.332264780
## 387 1.201451292
## 237 -1.507631482
## 346 -5.102680014
## 236 -3.884327465
## 285 0.979681056
## 48 0.082417198
## 416 -2.110131275
## 130 -0.011216019
## 17 3.315785599
## 412 -3.392335033
## 141 7.021023924
## 160 1.636952414
## 259 0.754365201
## 380 -0.107743767
## 379 -0.114968800
## 61 -0.344735041
## 110 1.474479386
## 83 0.771737883
## 287 -1.417447481
## 84 -0.943731936
## 340 0.028588628
## 451 1.365404812
## 486 -2.292908240
## 363 -0.529235021
## 3 0.041618829
## 306 3.634663559
## 316 -2.635140616
## 13 0.938084416
## 341 -0.875618546
## 27 -2.294884325
## 36 -2.104519691
## 223 -0.170485518
## 138 0.992561710
## 431 -1.645793242
## 240 4.471049926
## 490 0.371578573
## 446 -4.557471404
## 488 0.342534695
## 155 0.989177832
## 143 1.650895795
## 312 2.816893775
## 294 -0.674879579
## 305 1.057431520
## 127 2.181560748
## 111 1.122395961
## 455 -0.551125527
## 393 1.710132087
## 289 -4.929733645
## 257 -1.809716538
## 12 2.625173712
## 432 -4.157110463
## 77 0.767940959
## 184 1.267776274
## 87 -5.505862790
## 296 2.180439498
## 74 -2.738389793
## 231 -0.967846323
## 59 -0.337043631
## 439 1.512406651
## 224 0.192859337
## 492 0.936798568
## 309 0.826096703
## 421 -3.957070276
## 452 -1.329836795
## 10 0.078373161
## 307 1.309684997
## 499 1.995382106
## 57 -0.889132142
## 397 -2.250092278
## 328 -0.281877327
## 39 -1.101743718
## 260 0.015646245
## 394 -1.437856814
## 93 -0.585011043
## 329 1.043510655
## 302 0.435486116
## 132 -2.006328829
## 477 -2.156607370
## 135 0.201951520
## 242 3.566052313
## 2 -0.157036715
## 178 1.083571634
## 62 -0.709229759
## 445 -0.567274959
## 403 -0.629579200
## 336 3.834814459
## 50 0.801342021
## 139 -1.112261157
## 116 1.083388013
## 276 -0.201321482
## 150 2.262743658
## 129 -0.498644642
## 21 -0.861797583
## 448 -3.186705756
## 280 1.006242644
## 288 0.075076091
## 177 2.221368144
## 390 -0.469178659
## 204 2.551008506
## 338 -3.107789260
## 303 0.555540238
## 148 2.212595946
## 29 -0.527952047
## 128 1.703964982
## 161 1.104863772
## 22 -1.493891207
## 246 -2.092144002
## 162 -4.162710992
## 406 -0.358741216
## 339 -0.286045677
## 497 0.807833824
## 202 3.952211399
## 441 -3.056163477
## 325 -0.087742524
## 32 -2.382934604
## 211 -2.278797767
## 275 0.263883689
## 506 -0.608491928
## 255 -0.391992465
## 267 0.254317886
## 420 -2.552321814
## 168 0.201141376
## 245 -3.366982433
## 463 0.475999881
## 373 -2.130149266
## 67 0.474902104
## 217 -4.155331325
## 64 2.230808488
## 198 2.170357545
## 456 -1.493304191
## 405 1.050414640
## 203 -1.182039069
## 175 0.068144864
## 299 0.632988628
## 7 -3.059273789
## 258 4.085757193
## 6 -2.462097300
## 481 -0.742307634
## 478 1.019166973
## 297 -0.512292825
## 80 -0.806233437
## 321 1.769999656
## 252 -2.356282616
## 195 1.945859822
## 272 0.401817517
## 449 0.002193745
## 199 2.189990206
## 166 -0.697102039
## 372 -1.476576558
## 41 -0.561715506
## 315 -0.008851542
## 292 3.111640316
## 56 2.126214093
## 367 0.052393108
## 475 3.150064452
## 314 2.693083444
## 351 -1.585288748
## 462 -0.493563677
## 34 0.580160203
## 35 -2.635773935
## 70 -1.638780996
## 102 2.146772810
## 436 -2.883030540
##
## , , 16 comps
##
## weight
## 225 0.240076020
## 31 0.275536489
## 290 1.313559980
## 174 -1.036074235
## 505 -0.937408992
## 274 -2.340854254
## 493 4.391914575
## 440 3.529889071
## 385 2.879192241
## 196 -0.731550003
## 68 -1.474632094
## 55 1.230987692
## 310 2.603462105
## 319 3.146855411
## 79 1.123284684
## 238 -4.192159795
## 43 0.326674203
## 370 5.267121606
## 362 -0.593069511
## 301 2.815267470
## 65 0.983211711
## 382 -1.573013483
## 16 -0.210849498
## 355 -4.793040531
## 89 -0.037705247
## 277 1.679645258
## 498 0.643569050
## 134 -2.867490237
## 152 3.386070626
## 282 3.038451435
## 112 1.050319417
## 147 -0.282988178
## 42 0.880133813
## 489 2.768580112
## 330 -0.055901866
## 415 -4.351905925
## 207 2.765026220
## 212 4.645186433
## 78 -4.607802222
## 99 -0.390077913
## 376 -1.251105224
## 163 -1.239083370
## 243 3.868077282
## 391 -0.538933251
## 221 6.229644206
## 86 -2.024168633
## 144 0.220892168
## 327 0.536675883
## 359 3.995036214
## 200 0.078011259
## 58 -2.662961257
## 241 -3.776213326
## 25 1.444424491
## 45 -2.415051754
## 263 2.384538405
## 183 -3.665204944
## 487 -0.227448697
## 326 -0.872709000
## 494 1.389251363
## 349 1.249723990
## 442 -7.826214345
## 234 -2.659999376
## 95 2.574508300
## 271 2.406606617
## 345 -0.828022832
## 40 1.138101943
## 206 1.230824817
## 185 0.206169195
## 1 0.963773916
## 322 -1.139042113
## 333 3.101319359
## 188 1.658391540
## 427 0.645010091
## 469 3.098788769
## 438 -4.675409558
## 85 -1.192808250
## 311 2.237098110
## 167 1.129087217
## 71 -2.781505720
## 46 0.594197141
## 281 2.418378797
## 193 -1.143013062
## 218 -1.007722787
## 194 1.480800044
## 133 1.553036552
## 216 -0.896786122
## 244 3.204278086
## 392 -1.702558772
## 20 0.909832894
## 92 2.021578807
## 286 0.334204665
## 334 0.434667677
## 98 -0.405575133
## 298 -0.497183401
## 410 -0.258404494
## 291 0.495878317
## 49 1.330632168
## 97 0.398121449
## 66 0.419717007
## 109 -1.011626372
## 104 2.422999285
## 434 3.793693070
## 153 4.973783792
## 88 -1.040341647
## 158 1.906556365
## 324 -0.866688425
## 491 0.205131992
## 60 1.018562630
## 264 1.496557905
## 422 -1.067875620
## 375 -1.574032855
## 108 0.403868671
## 266 4.038404335
## 157 -0.173459229
## 187 1.269234315
## 466 4.014530598
## 19 -2.036606555
## 418 -5.251002715
## 33 -0.997795800
## 429 -0.662752686
## 151 0.642612449
## 368 1.584331823
## 63 1.741902129
## 120 -0.377356248
## 474 3.859006893
## 354 0.029117348
## 265 0.489749205
## 96 -1.701989526
## 454 -3.356274995
## 453 -3.338471566
## 395 0.324840566
## 222 3.504772115
## 361 -0.454801704
## 424 -1.438954126
## 171 -0.596434873
## 313 3.262497876
## 293 -0.698564579
## 273 -0.393662788
## 409 -0.468906960
## 471 0.834963899
## 54 0.195600906
## 154 -1.433569283
## 47 3.188098717
## 235 1.279630311
## 24 1.234954524
## 249 0.794558414
## 69 0.398017622
## 233 2.019445889
## 38 -3.208548666
## 335 0.837237988
## 433 -2.094122037
## 125 -1.387958281
## 192 6.759428816
## 126 2.643477195
## 30 -0.322610963
## 401 -3.252410531
## 170 -3.654480232
## 114 -1.507546883
## 145 1.954096322
## 197 -3.483462316
## 476 2.702672533
## 146 1.955918958
## 53 -2.195400783
## 384 1.148209500
## 247 4.909893620
## 118 -0.875094566
## 386 -2.238103291
## 331 -1.176595716
## 398 -0.686383436
## 159 5.977985933
## 123 -0.562210570
## 300 -1.077556206
## 283 0.601917495
## 230 -0.908039843
## 437 -2.759246440
## 94 0.122059408
## 137 3.706647944
## 190 -0.216118043
## 229 0.776125649
## 15 -2.016513579
## 284 0.538272210
## 122 1.143471566
## 75 -3.473819354
## 268 2.027002126
## 226 -3.453778285
## 480 -1.282484475
## 251 -0.499004543
## 208 1.363262733
## 176 0.214597990
## 232 0.324451710
## 164 -2.823303823
## 485 4.733994288
## 227 -0.520989227
## 337 -0.834799837
## 179 1.705904982
## 342 -1.874505870
## 100 -3.740286669
## 460 2.924774168
## 470 -2.292484681
## 117 1.467397027
## 270 1.497169537
## 357 -3.071762304
## 215 -4.711823940
## 44 0.697624491
## 4 0.564126516
## 140 -7.647927587
## 14 -2.824470925
## 482 2.130089366
## 308 2.521913358
## 365 0.295046082
## 364 2.307523383
## 90 -0.185293276
## 444 -2.438704106
## 350 0.709344110
## 239 1.689986789
## 91 1.465736955
## 172 -0.764206547
## 106 -2.810371730
## 9 0.476334680
## 374 -0.086232208
## 169 1.333385541
## 447 -2.676198903
## 473 1.085321598
## 358 -1.325673086
## 383 -0.879453258
## 73 -2.541526324
## 461 -1.828484069
## 278 2.343271849
## 344 0.056723274
## 378 -0.746888070
## 347 -3.036729334
## 201 -4.007464801
## 356 2.738834265
## 317 2.258655783
## 450 -3.949168375
## 210 0.488042383
## 105 0.971011498
## 173 -4.178432513
## 425 -0.059773822
## 414 -1.432648419
## 205 1.859441232
## 186 3.177149391
## 388 -0.007052283
## 387 0.865576796
## 237 -2.561611887
## 346 -4.606174546
## 236 -4.271017089
## 285 -0.185120724
## 48 1.180385306
## 416 -1.932664851
## 130 -0.487247207
## 17 2.378389652
## 412 -3.177723424
## 141 7.045257570
## 160 0.742490063
## 259 0.482783521
## 380 1.038551829
## 379 -0.437132384
## 61 -0.129711450
## 110 1.721519794
## 83 0.844758728
## 287 -1.151990840
## 84 -1.732618959
## 340 -0.432643410
## 451 1.012043446
## 486 -1.607188312
## 363 -1.369299318
## 3 -1.351294009
## 306 3.811005915
## 316 -2.393719809
## 13 1.307005620
## 341 -0.081116125
## 27 -2.373134683
## 36 -1.887446186
## 223 0.801309746
## 138 0.483160313
## 431 -2.063053879
## 240 2.578357862
## 490 -0.421347370
## 446 -3.006851687
## 488 0.942293685
## 155 0.422824252
## 143 0.979460623
## 312 1.101821313
## 294 -0.681165194
## 305 0.328529220
## 127 2.069273220
## 111 0.566856638
## 455 0.664169268
## 393 1.029914353
## 289 -3.711828056
## 257 -2.345051237
## 12 3.199458757
## 432 -1.973820869
## 77 -0.766266429
## 184 0.601443852
## 87 -4.355451657
## 296 1.142545451
## 74 -3.142953770
## 231 -1.827856092
## 59 -0.470888761
## 439 0.356723047
## 224 -0.187640521
## 492 1.764196842
## 309 1.431310521
## 421 -2.683871101
## 452 -1.384591591
## 10 0.177579815
## 307 2.632597128
## 499 1.876572541
## 57 -0.146547835
## 397 -2.107476922
## 328 -0.555585626
## 39 -1.493099107
## 260 0.649005308
## 394 -1.107837003
## 93 -0.374444648
## 329 1.263720694
## 302 0.858316603
## 132 -3.252737247
## 477 -0.908918538
## 135 -0.312458282
## 242 3.165589600
## 2 -1.034815197
## 178 0.509589949
## 62 -0.463915136
## 445 0.351958673
## 403 0.203086026
## 336 3.289683827
## 50 0.600746659
## 139 -1.258440695
## 116 -0.529720467
## 276 -1.244262804
## 150 3.329609477
## 129 -1.613107548
## 21 -0.982305336
## 448 -1.409626060
## 280 0.465231173
## 288 0.132285355
## 177 1.083745820
## 390 -0.894343335
## 204 2.183893605
## 338 -1.865289044
## 303 0.555333501
## 148 1.506881905
## 29 -0.859676097
## 128 2.073099223
## 161 2.643013846
## 22 -0.644852921
## 246 -3.294622088
## 162 -3.279403717
## 406 -0.020906016
## 339 -0.798335747
## 497 1.504767962
## 202 4.001137607
## 441 -1.757764146
## 325 0.524704217
## 32 -1.500061908
## 211 -2.598867775
## 275 -1.153943891
## 506 -1.222072788
## 255 0.045370125
## 267 0.933262109
## 420 -2.146505771
## 168 0.187657113
## 245 -2.533383196
## 463 0.071095265
## 373 -2.688741784
## 67 -0.111348304
## 217 -3.192197364
## 64 1.493990066
## 198 1.505570198
## 456 -1.143039958
## 405 0.004937347
## 203 -0.243575008
## 175 -0.303585500
## 299 -0.085617151
## 7 -2.090414806
## 258 3.002684215
## 6 -2.066678095
## 481 -0.412453328
## 478 1.771091209
## 297 -0.810507245
## 80 -1.114263180
## 321 2.423587387
## 252 -2.401742899
## 195 2.179969997
## 272 -0.481981478
## 449 -0.298518742
## 199 2.844177228
## 166 -0.018569508
## 372 -0.191091450
## 41 -2.294969956
## 315 -1.173943768
## 292 2.309158542
## 56 0.887577083
## 367 0.045327310
## 475 1.457295284
## 314 2.012700632
## 351 -2.118294745
## 462 0.056939667
## 34 0.694595259
## 35 -1.681317778
## 70 -1.468074320
## 102 1.687050054
## 436 -2.907144381
##
## , , 17 comps
##
## weight
## 225 -0.23982220
## 31 -0.48456657
## 290 0.29825730
## 174 -0.75634654
## 505 -0.48461351
## 274 -2.67127182
## 493 3.27187728
## 440 4.47748462
## 385 3.18284456
## 196 -1.81746155
## 68 -2.00618124
## 55 0.83741803
## 310 1.99725137
## 319 2.93164160
## 79 0.81066949
## 238 -3.70345022
## 43 -0.14832510
## 370 5.40378873
## 362 0.22987713
## 301 3.19792463
## 65 0.28102869
## 382 -1.44360440
## 16 -0.50939703
## 355 -4.86356657
## 89 0.09513400
## 277 1.86050547
## 498 1.85288373
## 134 -3.42825488
## 152 3.23011869
## 282 2.97837238
## 112 1.36448400
## 147 0.15436019
## 42 0.28182571
## 489 2.53229709
## 330 0.46131213
## 415 -4.05585019
## 207 2.46448020
## 212 4.49398960
## 78 -4.30617932
## 99 -0.19351073
## 376 -1.48510474
## 163 -1.33869211
## 243 4.62363741
## 391 -0.21898034
## 221 5.89421102
## 86 -2.34249030
## 144 -0.19487884
## 327 0.55737798
## 359 4.65870835
## 200 0.72210407
## 58 -2.67546218
## 241 -2.94815151
## 25 1.06862543
## 45 -3.15552964
## 263 1.69188212
## 183 -3.33478362
## 487 -0.03337778
## 326 -0.52665198
## 494 0.95159006
## 349 0.98611144
## 442 -8.16438226
## 234 -2.62057398
## 95 2.10266932
## 271 1.99657126
## 345 -0.97591503
## 40 0.73512361
## 206 1.69978565
## 185 0.74326102
## 1 0.74867325
## 322 -1.07079614
## 333 2.61252570
## 188 2.11982335
## 427 0.84752904
## 469 3.00537943
## 438 -4.63180358
## 85 -1.35068733
## 311 2.04719952
## 167 1.28884366
## 71 -2.86235374
## 46 0.84713020
## 281 2.54969038
## 193 -1.45710949
## 218 -1.40853403
## 194 1.06666619
## 133 1.56117913
## 216 -0.68151473
## 244 2.54622598
## 392 -2.03602846
## 20 0.89260948
## 92 1.49985651
## 286 0.15199523
## 334 0.48445401
## 98 -0.35660546
## 298 -0.89702413
## 410 -0.57708983
## 291 0.71620073
## 49 1.18781429
## 97 0.48956871
## 66 0.96473251
## 109 -1.18863203
## 104 1.88338564
## 434 3.77715572
## 153 4.84386594
## 88 -1.16160528
## 158 1.99237026
## 324 -1.03632174
## 491 -0.12378086
## 60 0.79639867
## 264 1.34438063
## 422 -0.48547479
## 375 -1.57021392
## 108 0.49857466
## 266 3.80054138
## 157 0.39920766
## 187 0.68762361
## 466 4.36380877
## 19 -1.65892570
## 418 -4.90473934
## 33 -0.31873503
## 429 -0.81095322
## 151 0.55528664
## 368 1.36194063
## 63 1.92672809
## 120 -0.57011879
## 474 3.78559235
## 354 0.32854901
## 265 0.69876982
## 96 -1.10381058
## 454 -2.72139387
## 453 -3.71380963
## 395 0.11242812
## 222 3.87181064
## 361 0.31709207
## 424 -0.29099091
## 171 -0.64945741
## 313 2.10870093
## 293 -0.26262319
## 273 -0.40827786
## 409 -0.50598914
## 471 0.64222120
## 54 0.08882747
## 154 -0.88605841
## 47 2.37198449
## 235 2.05094617
## 24 1.77125014
## 249 0.49498090
## 69 1.37481307
## 233 2.63754281
## 38 -3.20949771
## 335 0.64063652
## 433 -1.53658797
## 125 -1.23766119
## 192 7.45341629
## 126 2.41015981
## 30 -0.15792478
## 401 -2.47651384
## 170 -3.93386158
## 114 -2.13353455
## 145 1.53113655
## 197 -3.38897695
## 476 2.29919511
## 146 1.17337480
## 53 -1.71372332
## 384 0.74930611
## 247 4.98056961
## 118 -0.89170562
## 386 -1.83171277
## 331 -0.72896109
## 398 -1.22631002
## 159 5.91515688
## 123 -0.62897739
## 300 -1.01778494
## 283 0.80584343
## 230 -1.19863512
## 437 -2.24044678
## 94 0.19419450
## 137 2.46990791
## 190 0.14641954
## 229 0.44375944
## 15 -1.61163028
## 284 -0.10637035
## 122 1.24809322
## 75 -3.37083056
## 268 1.71069626
## 226 -3.97311120
## 480 -1.15544930
## 251 -0.26394615
## 208 1.41731033
## 176 0.69259493
## 232 0.15651125
## 164 -3.48604488
## 485 4.50454280
## 227 -1.51208180
## 337 -0.73705941
## 179 0.90828649
## 342 -1.09036045
## 100 -3.57069192
## 460 2.76085448
## 470 -2.66338024
## 117 1.19281386
## 270 1.80137410
## 357 -2.64805995
## 215 -3.58791443
## 44 0.19802962
## 4 0.06259986
## 140 -6.88672359
## 14 -3.04398645
## 482 2.30910110
## 308 2.44716920
## 365 1.08988689
## 364 2.18826583
## 90 -0.25914547
## 444 -1.98812889
## 350 0.75299814
## 239 2.06332876
## 91 1.76527337
## 172 -0.40464325
## 106 -3.73837010
## 9 0.32117730
## 374 -0.09086081
## 169 1.16837163
## 447 -1.79650811
## 473 1.45979381
## 358 -1.50932009
## 383 -1.16158909
## 73 -3.01142048
## 461 -1.51384288
## 278 1.98126767
## 344 0.35544302
## 378 -0.34070632
## 347 -2.58423130
## 201 -4.24986782
## 356 2.47850017
## 317 1.87115563
## 450 -3.89963940
## 210 0.12736174
## 105 0.86150356
## 173 -4.19855735
## 425 1.13875091
## 414 -0.78902358
## 205 1.19768929
## 186 2.49336441
## 388 0.46181037
## 387 0.53275602
## 237 -2.48535996
## 346 -3.31366927
## 236 -3.75630978
## 285 -0.20490571
## 48 1.21107266
## 416 -1.90196220
## 130 -0.52324096
## 17 2.32041394
## 412 -2.82803191
## 141 7.59539114
## 160 0.12610920
## 259 0.53555253
## 380 1.14013355
## 379 -0.32247301
## 61 -0.55954514
## 110 2.02447814
## 83 0.69136052
## 287 -1.61860911
## 84 -1.75632784
## 340 -1.07747927
## 451 0.92482895
## 486 -1.60613162
## 363 -1.90473710
## 3 -1.31811106
## 306 4.21306749
## 316 -3.18995617
## 13 1.99357988
## 341 -0.06837122
## 27 -2.28503750
## 36 -2.01721177
## 223 0.53268754
## 138 0.32124438
## 431 -1.93704353
## 240 3.29414629
## 490 -0.45855308
## 446 -2.11171853
## 488 1.66485056
## 155 0.21369541
## 143 0.37257877
## 312 1.53159319
## 294 -1.20043324
## 305 0.11768553
## 127 1.92912916
## 111 0.21150178
## 455 0.93878967
## 393 0.45210788
## 289 -3.60042155
## 257 -1.56051895
## 12 2.69268675
## 432 -2.13406751
## 77 -1.41709160
## 184 1.47375707
## 87 -4.00801111
## 296 1.22281668
## 74 -2.26699862
## 231 -1.91971682
## 59 0.25938968
## 439 0.90917622
## 224 -0.49984408
## 492 1.91070821
## 309 1.44226354
## 421 -3.30410235
## 452 -1.19842887
## 10 0.47945901
## 307 2.43697493
## 499 1.74429768
## 57 -0.57890943
## 397 -1.06001438
## 328 -0.95203998
## 39 -2.25273198
## 260 1.04605936
## 394 -0.80507712
## 93 -0.25288069
## 329 1.08734017
## 302 0.78877004
## 132 -3.59563603
## 477 -0.79043345
## 135 -0.56612685
## 242 3.77990828
## 2 -0.94072490
## 178 0.17186194
## 62 -0.69155701
## 445 0.46541164
## 403 0.42669052
## 336 2.68467432
## 50 1.05407787
## 139 -1.56830166
## 116 -0.98425827
## 276 -1.63535975
## 150 3.17111914
## 129 -1.92802476
## 21 -1.35254477
## 448 -1.13648924
## 280 0.45473026
## 288 -0.31214091
## 177 1.02363677
## 390 -1.11280557
## 204 1.96940461
## 338 -1.80078691
## 303 0.79683384
## 148 0.69180639
## 29 -1.11746036
## 128 2.02632287
## 161 2.26320061
## 22 -0.40080162
## 246 -3.02096801
## 162 -3.81164454
## 406 0.93548378
## 339 -0.74527754
## 497 1.76154664
## 202 3.13420788
## 441 -1.58310651
## 325 0.51909233
## 32 -1.70535933
## 211 -2.62443539
## 275 -1.03789238
## 506 -2.05991725
## 255 0.05980935
## 267 1.03762014
## 420 -1.20722795
## 168 -0.36561210
## 245 -2.10851644
## 463 -0.12174563
## 373 -2.11959928
## 67 -0.28200599
## 217 -2.77775762
## 64 1.07900407
## 198 1.87223850
## 456 -0.65368102
## 405 0.82241851
## 203 -0.41866178
## 175 -0.37446194
## 299 -0.46883597
## 7 -2.17785490
## 258 2.86824590
## 6 -1.96793153
## 481 -0.28100573
## 478 1.70502813
## 297 -0.84343481
## 80 -0.44960040
## 321 2.11584618
## 252 -2.57035636
## 195 2.01552005
## 272 -0.32763615
## 449 -0.20916222
## 199 2.76972042
## 166 0.68971390
## 372 -0.39363260
## 41 -1.94395536
## 315 -1.32520910
## 292 1.73021309
## 56 0.72574880
## 367 -0.40513560
## 475 2.06045560
## 314 2.25244549
## 351 -1.80517513
## 462 0.34648719
## 34 0.98507552
## 35 -1.72407073
## 70 -1.77737481
## 102 0.93245981
## 436 -2.31295602
##
## , , 18 comps
##
## weight
## 225 -0.259366961
## 31 -0.126431076
## 290 0.103752461
## 174 -1.844845876
## 505 -0.071367741
## 274 -2.584866460
## 493 3.197173214
## 440 4.762593311
## 385 3.268702353
## 196 -1.322511475
## 68 -1.308806509
## 55 0.614258997
## 310 2.293308595
## 319 3.347379605
## 79 0.747337234
## 238 -3.216058286
## 43 -0.785334847
## 370 4.556994527
## 362 0.011464274
## 301 2.757481406
## 65 0.536183901
## 382 -1.496967845
## 16 -0.005816167
## 355 -4.406570172
## 89 0.123325513
## 277 1.642305747
## 498 1.535469528
## 134 -3.067735337
## 152 2.631148563
## 282 2.775621954
## 112 0.813574709
## 147 -0.303629692
## 42 -0.669189372
## 489 2.939583004
## 330 -0.218436926
## 415 -3.760395513
## 207 2.118405042
## 212 3.926952556
## 78 -4.576748281
## 99 0.015384294
## 376 -1.193741417
## 163 -1.304357077
## 243 4.026006769
## 391 -0.033775599
## 221 4.957918051
## 86 -2.126166247
## 144 -0.291883053
## 327 0.682755530
## 359 4.245852499
## 200 0.827701787
## 58 -2.580315953
## 241 -2.479984356
## 25 1.496720543
## 45 -2.813138859
## 263 1.199273066
## 183 -3.433278046
## 487 0.102508871
## 326 -0.211463724
## 494 1.456819278
## 349 0.486706754
## 442 -7.959175668
## 234 -1.979289887
## 95 2.188896775
## 271 2.245571999
## 345 -0.506387678
## 40 0.619345782
## 206 1.955529870
## 185 0.448729704
## 1 0.751486943
## 322 -0.846899943
## 333 2.770362144
## 188 2.041748792
## 427 0.945048642
## 469 2.895375336
## 438 -4.631359351
## 85 -1.509569941
## 311 1.593085543
## 167 1.552133667
## 71 -3.317904764
## 46 0.698025798
## 281 2.367192057
## 193 -1.464510921
## 218 -1.279129604
## 194 0.456478549
## 133 1.839890224
## 216 -1.368865714
## 244 2.055214536
## 392 -2.010663798
## 20 1.448138110
## 92 1.957665539
## 286 0.117682504
## 334 0.067187317
## 98 -0.273667636
## 298 -1.269694950
## 410 -0.380692309
## 291 0.817254555
## 49 1.069906885
## 97 0.559547167
## 66 1.097547060
## 109 -1.243372973
## 104 2.037996865
## 434 4.359782517
## 153 4.361948283
## 88 -1.365156376
## 158 1.938617986
## 324 -0.748167510
## 491 0.346565934
## 60 0.452435847
## 264 1.863800858
## 422 -0.719279777
## 375 -1.480993015
## 108 0.678920626
## 266 3.521412287
## 157 -0.128707899
## 187 0.609437620
## 466 4.040762623
## 19 -0.904379874
## 418 -4.851904319
## 33 -0.453351521
## 429 -0.465063641
## 151 0.228990862
## 368 1.144745863
## 63 2.223750982
## 120 -0.337833940
## 474 3.616217105
## 354 0.121840682
## 265 1.242534297
## 96 -1.322157351
## 454 -2.747834390
## 453 -3.210047112
## 395 -0.217673725
## 222 3.478869325
## 361 0.398890362
## 424 0.645899670
## 171 -1.267080147
## 313 2.069393624
## 293 -0.459910638
## 273 -0.297039219
## 409 -0.868871909
## 471 0.433020957
## 54 -0.008228452
## 154 -0.957724803
## 47 2.309523401
## 235 2.918404822
## 24 1.678900036
## 249 0.180555143
## 69 0.861170515
## 233 2.457053588
## 38 -3.860512099
## 335 1.133716781
## 433 -1.155713835
## 125 -1.722877826
## 192 7.519195327
## 126 2.016393106
## 30 -0.155847521
## 401 -1.961983280
## 170 -3.433843865
## 114 -1.686631611
## 145 1.608464272
## 197 -3.387255029
## 476 2.550068510
## 146 1.158434847
## 53 -2.003633619
## 384 0.731309060
## 247 4.763179941
## 118 -0.907700809
## 386 -1.893426840
## 331 -0.225648016
## 398 -1.688776001
## 159 6.243239817
## 123 -0.906777239
## 300 -1.086829450
## 283 1.283939096
## 230 -1.900767476
## 437 -1.805741434
## 94 0.260524149
## 137 2.092668769
## 190 0.781295286
## 229 0.024412666
## 15 -1.134611266
## 284 -0.852354372
## 122 0.659965605
## 75 -3.381690820
## 268 1.170385032
## 226 -4.356263051
## 480 -1.222126144
## 251 -0.557683667
## 208 1.507465758
## 176 0.186699483
## 232 0.421002815
## 164 -3.258177746
## 485 3.867383260
## 227 -2.230873005
## 337 -0.494481898
## 179 1.442325940
## 342 -1.774773786
## 100 -3.573947444
## 460 2.963353559
## 470 -2.035053429
## 117 0.829172387
## 270 1.785837797
## 357 -2.543473793
## 215 -4.390954379
## 44 0.272762303
## 4 -0.196192325
## 140 -5.742436980
## 14 -2.799004624
## 482 2.803850948
## 308 2.604282190
## 365 1.602046467
## 364 2.070022142
## 90 -0.018927653
## 444 -1.939823148
## 350 1.361010149
## 239 2.740538604
## 91 1.734043395
## 172 -0.137024017
## 106 -4.115515145
## 9 -0.417244229
## 374 0.119040903
## 169 1.439535189
## 447 -1.973162316
## 473 1.935832520
## 358 -1.607568110
## 383 -0.969120577
## 73 -3.109495808
## 461 -1.827707863
## 278 1.655454655
## 344 -0.304831744
## 378 -0.201510790
## 347 -2.319893436
## 201 -4.213835127
## 356 1.884070378
## 317 1.835800789
## 450 -3.357623357
## 210 -0.208798741
## 105 0.895528079
## 173 -4.012619299
## 425 1.498423158
## 414 -0.729173066
## 205 1.328305506
## 186 2.627691303
## 388 0.350582459
## 387 0.741977986
## 237 -2.839597116
## 346 -3.008917872
## 236 -3.846612083
## 285 -0.290255052
## 48 0.548597698
## 416 -2.225896187
## 130 0.349195909
## 17 2.444253614
## 412 -2.761686125
## 141 8.127450136
## 160 -0.469142649
## 259 0.721396909
## 380 0.383195294
## 379 -0.435303353
## 61 -0.985449667
## 110 3.016427125
## 83 1.142477954
## 287 -2.117605515
## 84 -1.419834993
## 340 -1.063716466
## 451 0.824328437
## 486 -1.435014001
## 363 -2.321327585
## 3 -0.685874801
## 306 4.399355416
## 316 -2.342073619
## 13 2.142201699
## 341 -0.090764643
## 27 -1.822424330
## 36 -1.034115392
## 223 -0.011904031
## 138 0.656872051
## 431 -1.407436982
## 240 3.624403534
## 490 -0.069143543
## 446 -1.978321054
## 488 2.206186145
## 155 0.496755474
## 143 0.172753065
## 312 1.022933051
## 294 -1.284226395
## 305 0.151677064
## 127 1.474228204
## 111 -0.630367055
## 455 1.774813722
## 393 0.847120146
## 289 -3.949980470
## 257 -2.165044785
## 12 2.498146634
## 432 -2.199550934
## 77 -1.114733895
## 184 0.805069078
## 87 -4.590846011
## 296 1.323035513
## 74 -2.178051660
## 231 -2.430620738
## 59 -0.288468312
## 439 0.710252570
## 224 -0.895997849
## 492 2.166798686
## 309 1.576581753
## 421 -2.681523801
## 452 -0.793356867
## 10 -0.104821411
## 307 1.973020456
## 499 2.045983556
## 57 -0.460721779
## 397 -0.980210990
## 328 -0.407530338
## 39 -2.330200096
## 260 0.788278724
## 394 -1.441392601
## 93 -0.197856665
## 329 0.104242211
## 302 0.234084854
## 132 -2.808690394
## 477 -0.122625132
## 135 -0.784494123
## 242 3.505942154
## 2 -0.872051148
## 178 -0.134357831
## 62 -0.529180973
## 445 0.484326049
## 403 0.219108938
## 336 2.901993967
## 50 0.491934370
## 139 -1.384314977
## 116 -0.285515791
## 276 -1.796614885
## 150 2.922136945
## 129 -1.030997675
## 21 -0.519628977
## 448 -1.089007281
## 280 0.217806040
## 288 -0.017165271
## 177 0.806780223
## 390 -0.858927076
## 204 1.930826073
## 338 -1.926018178
## 303 0.749548024
## 148 0.197805749
## 29 -0.468298878
## 128 1.653605518
## 161 2.033848550
## 22 0.319847911
## 246 -3.138730526
## 162 -3.641374939
## 406 0.782621650
## 339 -0.940128647
## 497 1.559981428
## 202 3.337075592
## 441 -1.727998745
## 325 0.960452022
## 32 -1.862484877
## 211 -2.643356813
## 275 -0.564358715
## 506 -2.032945564
## 255 0.774127832
## 267 1.196725249
## 420 -1.015597932
## 168 -0.203173678
## 245 -2.070418097
## 463 -0.156554320
## 373 -1.945205492
## 67 -0.002418481
## 217 -3.685793874
## 64 1.278883143
## 198 1.131822482
## 456 -0.766971681
## 405 1.245249081
## 203 -0.695886788
## 175 -0.348353946
## 299 -0.522684803
## 7 -1.909686012
## 258 2.150341139
## 6 -2.434296065
## 481 -0.362061914
## 478 1.559080641
## 297 -1.204095028
## 80 -0.290439863
## 321 2.117979513
## 252 -2.669527610
## 195 2.571157890
## 272 -0.081285445
## 449 -0.831538594
## 199 2.951606561
## 166 0.420253065
## 372 -0.290821181
## 41 -1.400360574
## 315 -0.518982029
## 292 1.504727237
## 56 0.761181505
## 367 0.028644300
## 475 2.101437616
## 314 2.019084510
## 351 -1.609068889
## 462 0.044448616
## 34 0.776660434
## 35 -1.350724008
## 70 -1.901763512
## 102 1.322757323
## 436 -2.893700843
##
## , , 19 comps
##
## weight
## 225 0.287576274
## 31 0.151715443
## 290 0.020360150
## 174 -1.642017362
## 505 -0.244023792
## 274 -2.782568658
## 493 2.619402258
## 440 4.277779738
## 385 2.642287329
## 196 -0.994175106
## 68 -1.018578633
## 55 0.524378234
## 310 2.088240648
## 319 3.481276465
## 79 0.692364636
## 238 -1.973484472
## 43 -1.061327739
## 370 4.020468139
## 362 0.062483737
## 301 2.986193167
## 65 0.716750015
## 382 -0.885311899
## 16 -0.647012917
## 355 -3.806807019
## 89 0.062317757
## 277 1.207313678
## 498 1.282888388
## 134 -3.555050418
## 152 2.461913221
## 282 2.160944710
## 112 0.859162740
## 147 -0.308818376
## 42 0.047913639
## 489 2.998667000
## 330 0.219115662
## 415 -3.359773637
## 207 2.275905499
## 212 3.948606837
## 78 -4.435798506
## 99 -0.651999146
## 376 -1.014617887
## 163 -1.163703136
## 243 3.910898238
## 391 -0.273373101
## 221 4.573692997
## 86 -1.517142955
## 144 -0.413849162
## 327 0.748814135
## 359 3.898186820
## 200 0.727171261
## 58 -2.566371723
## 241 -2.201797997
## 25 1.339194403
## 45 -2.850332022
## 263 0.422833045
## 183 -3.235363660
## 487 0.285165263
## 326 -0.283247695
## 494 1.897974905
## 349 -0.157682596
## 442 -8.183768415
## 234 -1.826110735
## 95 2.011706284
## 271 2.473129729
## 345 -0.016681058
## 40 1.113773245
## 206 1.014039513
## 185 0.745962927
## 1 0.563645539
## 322 -0.894768611
## 333 3.098340008
## 188 1.641891347
## 427 1.102443342
## 469 2.481392455
## 438 -3.777729619
## 85 -1.353905620
## 311 1.116385999
## 167 1.605846354
## 71 -3.235130734
## 46 0.438459299
## 281 2.278648542
## 193 -1.820692021
## 218 -1.246553803
## 194 -0.307051802
## 133 1.570894345
## 216 -1.207340598
## 244 2.531078549
## 392 -1.943301171
## 20 1.074130745
## 92 2.094568757
## 286 -0.025429659
## 334 0.431634931
## 98 -0.823418681
## 298 -0.582365669
## 410 -0.668399081
## 291 0.650930513
## 49 0.989037918
## 97 -0.181241901
## 66 0.667494186
## 109 -1.316065622
## 104 1.656710417
## 434 4.355409421
## 153 4.070445986
## 88 -1.487716471
## 158 1.590607729
## 324 -0.923596246
## 491 -0.196688450
## 60 0.340307936
## 264 2.100194721
## 422 -0.426377063
## 375 -1.553583494
## 108 0.438819676
## 266 3.391933775
## 157 0.211380142
## 187 0.357438711
## 466 5.250081952
## 19 -1.257134966
## 418 -5.255528130
## 33 -0.592596616
## 429 -0.608006535
## 151 0.314944041
## 368 0.712987324
## 63 2.162072772
## 120 0.001141274
## 474 5.350533935
## 354 0.637084314
## 265 1.118532560
## 96 -1.587278017
## 454 -2.762004758
## 453 -2.766292159
## 395 -0.540071719
## 222 3.609481182
## 361 0.202583038
## 424 0.672611831
## 171 -0.957808144
## 313 1.928117210
## 293 -0.355723345
## 273 -0.158620530
## 409 -0.647320802
## 471 0.741223329
## 54 0.321070257
## 154 -1.076819599
## 47 1.521007535
## 235 3.539415248
## 24 1.599835432
## 249 0.221216513
## 69 -0.509929740
## 233 2.093073990
## 38 -3.399200951
## 335 0.619725894
## 433 -0.913904028
## 125 -2.221817790
## 192 7.624211298
## 126 2.137357190
## 30 -0.658076796
## 401 -2.068532401
## 170 -2.568900482
## 114 -2.057122855
## 145 1.927076456
## 197 -3.168539955
## 476 2.030214362
## 146 1.491175121
## 53 -1.515186445
## 384 1.095295801
## 247 4.573132437
## 118 -1.244962330
## 386 -1.783587005
## 331 -0.139020135
## 398 -2.180379727
## 159 6.468546702
## 123 -0.752648588
## 300 -0.687471411
## 283 1.189239615
## 230 -2.532122459
## 437 -1.965833586
## 94 0.480993374
## 137 2.125820432
## 190 0.958116752
## 229 0.481506523
## 15 -1.916217861
## 284 -0.123310646
## 122 0.521001340
## 75 -3.053180897
## 268 0.453766885
## 226 -4.075612623
## 480 -0.573747512
## 251 -1.207819630
## 208 0.854138857
## 176 0.308819275
## 232 0.780740492
## 164 -3.671670746
## 485 3.857019662
## 227 -2.223251028
## 337 -0.498765226
## 179 1.148549237
## 342 -1.295660130
## 100 -3.117185216
## 460 2.604048607
## 470 -1.846224555
## 117 1.224389768
## 270 1.149683200
## 357 -2.211045354
## 215 -4.834726111
## 44 -0.097101102
## 4 -0.753488131
## 140 -4.871034188
## 14 -3.224426691
## 482 3.205036816
## 308 2.491605283
## 365 1.070239302
## 364 2.257300505
## 90 0.048962891
## 444 -1.961159600
## 350 1.557750959
## 239 3.542574762
## 91 1.391004530
## 172 0.640902823
## 106 -3.628426910
## 9 -0.295922293
## 374 0.282590743
## 169 1.703254147
## 447 -1.770533386
## 473 1.566333721
## 358 -1.485384481
## 383 -1.043697313
## 73 -3.388866235
## 461 -1.423467035
## 278 1.068874532
## 344 -0.152503534
## 378 -0.790881425
## 347 -1.981845605
## 201 -4.706955413
## 356 2.324011595
## 317 1.625506511
## 450 -2.911774561
## 210 -0.112927117
## 105 0.891942596
## 173 -3.507761759
## 425 1.238398470
## 414 -0.656776352
## 205 0.698961985
## 186 2.074024033
## 388 0.147463016
## 387 0.326661275
## 237 -2.745225110
## 346 -2.448972051
## 236 -4.287366329
## 285 -0.450921212
## 48 0.578718436
## 416 -2.338195354
## 130 0.218109275
## 17 1.638749863
## 412 -1.994160703
## 141 8.450500068
## 160 -0.864471536
## 259 0.954322911
## 380 0.411902834
## 379 -0.630682680
## 61 -1.143978387
## 110 2.825697078
## 83 1.283387668
## 287 -1.757834557
## 84 -1.411598928
## 340 -1.062009700
## 451 0.725833055
## 486 -1.418000414
## 363 -2.060386593
## 3 -1.298173270
## 306 3.963378359
## 316 -2.059053382
## 13 1.700288714
## 341 -0.117677536
## 27 -2.145896228
## 36 -0.898548244
## 223 -0.429351099
## 138 1.075760221
## 431 -1.553360144
## 240 3.907904500
## 490 -0.182355957
## 446 -2.012291097
## 488 2.549786987
## 155 -0.026380768
## 143 0.126056561
## 312 0.628132934
## 294 -1.349447954
## 305 0.544673588
## 127 1.534435626
## 111 -0.680233750
## 455 1.874408526
## 393 1.181293988
## 289 -3.697847204
## 257 -2.281611747
## 12 2.702427782
## 432 -2.052989650
## 77 -0.857395106
## 184 1.487445621
## 87 -4.153238975
## 296 1.366533156
## 74 -2.550521747
## 231 -2.058003449
## 59 -0.544669333
## 439 1.295362757
## 224 -0.306212226
## 492 2.147879304
## 309 1.093078256
## 421 -2.625594033
## 452 -0.619741005
## 10 0.008521640
## 307 2.054863889
## 499 0.926675109
## 57 -0.167615127
## 397 -0.198450185
## 328 -0.160912626
## 39 -2.420778814
## 260 0.669852772
## 394 -1.383921577
## 93 -0.036556504
## 329 0.288617714
## 302 0.438799775
## 132 -3.333905394
## 477 0.279367357
## 135 -0.195380651
## 242 3.605166896
## 2 -1.389878306
## 178 0.341288304
## 62 -1.184368001
## 445 0.573329947
## 403 0.256973500
## 336 2.914883688
## 50 0.350993947
## 139 -1.107929868
## 116 0.219028625
## 276 -2.047778748
## 150 2.497563680
## 129 -1.702285788
## 21 -0.754577538
## 448 -0.711101713
## 280 0.227232249
## 288 0.346661704
## 177 0.669148985
## 390 -0.778726983
## 204 3.008750569
## 338 -2.359264090
## 303 0.821678121
## 148 -0.086080330
## 29 -0.493469251
## 128 1.754925766
## 161 2.413076101
## 22 -0.684696319
## 246 -3.108840148
## 162 -3.068629295
## 406 0.933508070
## 339 -0.873430113
## 497 2.347776344
## 202 2.015620327
## 441 -1.024870532
## 325 0.712720491
## 32 -1.192861948
## 211 -2.271381979
## 275 -0.415058917
## 506 -1.334073101
## 255 0.113603825
## 267 1.145504735
## 420 -1.259673828
## 168 0.154971494
## 245 -2.312887468
## 463 0.164349659
## 373 -1.926584040
## 67 -0.169860195
## 217 -4.063245463
## 64 1.565965381
## 198 0.589724990
## 456 -0.308536629
## 405 1.178344478
## 203 -0.512198049
## 175 -0.011353335
## 299 0.165086107
## 7 -1.916754301
## 258 2.207692281
## 6 -2.619124440
## 481 -0.247903011
## 478 0.998740204
## 297 -1.289662592
## 80 -0.352308681
## 321 2.723884793
## 252 -1.997611855
## 195 2.781899580
## 272 -0.563515811
## 449 -1.087609808
## 199 2.312632095
## 166 0.109149282
## 372 0.094953954
## 41 -2.013049302
## 315 -0.370925630
## 292 1.208053643
## 56 0.056981061
## 367 0.404045402
## 475 2.003418980
## 314 1.913969753
## 351 -1.551856142
## 462 0.333424151
## 34 0.517419706
## 35 -1.255590368
## 70 -1.830426385
## 102 1.691416652
## 436 -3.092111386
##
## , , 20 comps
##
## weight
## 225 0.471947236
## 31 0.283498091
## 290 -0.289537948
## 174 -1.445532704
## 505 -0.285264988
## 274 -2.680896942
## 493 2.428392341
## 440 4.691099687
## 385 2.624113981
## 196 -0.816923189
## 68 -1.029705352
## 55 0.621294938
## 310 2.145353041
## 319 3.298874710
## 79 0.845864553
## 238 -2.546594145
## 43 -1.217862982
## 370 4.444674333
## 362 0.023535399
## 301 2.708686179
## 65 0.656989078
## 382 -1.171340279
## 16 -0.467229666
## 355 -3.646496924
## 89 0.327645351
## 277 1.239953123
## 498 1.529813851
## 134 -3.518762573
## 152 2.099760710
## 282 2.191372944
## 112 1.363618138
## 147 -0.451390246
## 42 0.357794112
## 489 2.687452281
## 330 -0.145983777
## 415 -3.158779202
## 207 2.065774452
## 212 4.020618775
## 78 -4.635383468
## 99 -0.689359378
## 376 -1.313877550
## 163 -1.219165561
## 243 4.095049894
## 391 -0.527348448
## 221 4.721087632
## 86 -1.399531571
## 144 0.293521010
## 327 0.419278539
## 359 4.085243529
## 200 0.565676447
## 58 -2.713649690
## 241 -2.358556495
## 25 1.270462998
## 45 -3.263692260
## 263 0.309873646
## 183 -3.541886646
## 487 0.510975674
## 326 -0.305967468
## 494 2.313242882
## 349 -0.047768837
## 442 -8.032294350
## 234 -1.855098724
## 95 1.797894114
## 271 2.254719476
## 345 0.088766316
## 40 0.897827610
## 206 0.999157788
## 185 1.089818455
## 1 0.679633530
## 322 -0.846542416
## 333 3.076454821
## 188 1.674840990
## 427 1.208265936
## 469 2.461906769
## 438 -3.374821178
## 85 -1.323108984
## 311 0.930997235
## 167 1.476219915
## 71 -3.568638411
## 46 0.338429932
## 281 2.295883706
## 193 -1.856209815
## 218 -1.489745243
## 194 -0.279018729
## 133 1.580749483
## 216 -1.221914030
## 244 2.351383640
## 392 -2.145182481
## 20 0.682321418
## 92 1.930443207
## 286 -0.221066123
## 334 0.391696499
## 98 -0.754249440
## 298 -0.526071774
## 410 -0.333261668
## 291 0.342366240
## 49 0.914403467
## 97 -0.316097162
## 66 0.298447409
## 109 -1.077797885
## 104 1.580708840
## 434 4.358373326
## 153 4.151780934
## 88 -1.331239463
## 158 1.343576157
## 324 -0.689531855
## 491 0.006695875
## 60 0.586191722
## 264 2.059530235
## 422 -0.075883872
## 375 -1.837161928
## 108 0.671717666
## 266 3.291695875
## 157 -0.126323559
## 187 -0.022286094
## 466 5.269185112
## 19 -1.189400941
## 418 -4.792484108
## 33 -0.895531151
## 429 -0.474125742
## 151 0.238575656
## 368 0.871745663
## 63 2.099591310
## 120 0.458823902
## 474 4.955010299
## 354 0.615818188
## 265 1.296064843
## 96 -1.640099839
## 454 -2.446141732
## 453 -2.436860416
## 395 -1.032162782
## 222 4.233785949
## 361 0.107122590
## 424 0.657161481
## 171 -0.901299663
## 313 1.976917143
## 293 -0.783997645
## 273 -0.147668101
## 409 -0.466988807
## 471 0.824111232
## 54 0.626079118
## 154 -1.244553594
## 47 1.422515650
## 235 3.458290683
## 24 1.770205538
## 249 0.512780308
## 69 -0.700569042
## 233 2.163158489
## 38 -3.171379024
## 335 0.738502966
## 433 -0.982059778
## 125 -2.180239079
## 192 7.139911824
## 126 2.136649971
## 30 -0.933886718
## 401 -2.073720518
## 170 -2.621496532
## 114 -2.084191224
## 145 1.582757390
## 197 -2.964292679
## 476 2.173941753
## 146 1.426464598
## 53 -1.395944498
## 384 1.073323339
## 247 4.467920648
## 118 -1.115179277
## 386 -1.929967961
## 331 -0.268508945
## 398 -1.975088433
## 159 6.220037304
## 123 -0.135137772
## 300 -0.664143776
## 283 0.898273023
## 230 -2.513228403
## 437 -2.085027219
## 94 0.498425824
## 137 2.191639382
## 190 0.869216028
## 229 0.496437909
## 15 -1.672789581
## 284 -0.242508913
## 122 0.452697836
## 75 -2.979474617
## 268 0.780649417
## 226 -4.076645298
## 480 -0.416172025
## 251 -1.269428844
## 208 0.546323339
## 176 0.316973810
## 232 1.139561388
## 164 -3.709764098
## 485 3.747886683
## 227 -2.421899140
## 337 -0.380285990
## 179 1.289183400
## 342 -1.377939665
## 100 -2.921941098
## 460 2.591131529
## 470 -1.739270309
## 117 1.425119925
## 270 0.484313371
## 357 -2.304661329
## 215 -4.581244013
## 44 0.078989011
## 4 -0.613298900
## 140 -4.865726049
## 14 -3.207151039
## 482 3.347775001
## 308 2.393276166
## 365 1.177165852
## 364 2.044442570
## 90 0.488389886
## 444 -1.778117665
## 350 1.316162683
## 239 3.641581291
## 91 1.151745072
## 172 0.664662741
## 106 -4.041177810
## 9 -0.158257269
## 374 0.600117551
## 169 1.514733657
## 447 -1.862273916
## 473 1.282021713
## 358 -1.685392807
## 383 -1.123299615
## 73 -3.331869489
## 461 -1.399288554
## 278 0.713430652
## 344 -0.081122667
## 378 -0.754534878
## 347 -2.224612220
## 201 -4.658979871
## 356 1.975425940
## 317 1.576897885
## 450 -2.838338031
## 210 -0.147311560
## 105 0.934758200
## 173 -3.784250921
## 425 1.289646993
## 414 -0.882798917
## 205 0.773975392
## 186 2.084110873
## 388 0.127698199
## 387 0.503794007
## 237 -2.789211679
## 346 -2.372381461
## 236 -4.223723883
## 285 -0.424732249
## 48 0.553272064
## 416 -2.465241235
## 130 0.190452317
## 17 1.711815968
## 412 -1.651947525
## 141 8.570797609
## 160 -0.501566417
## 259 0.598391445
## 380 0.017604117
## 379 -0.743172474
## 61 -1.023235125
## 110 2.863548453
## 83 1.299981478
## 287 -1.775168647
## 84 -1.267688765
## 340 -1.103532699
## 451 0.720595660
## 486 -1.228582093
## 363 -2.130191419
## 3 -1.311433960
## 306 3.977169956
## 316 -1.951431103
## 13 1.631657239
## 341 0.032956244
## 27 -2.043557499
## 36 -0.837564213
## 223 -0.735035445
## 138 0.880787991
## 431 -1.335507463
## 240 3.439256805
## 490 0.116718407
## 446 -1.988407008
## 488 2.831897492
## 155 -0.146834153
## 143 0.219265724
## 312 0.744174779
## 294 -1.448811857
## 305 0.318348675
## 127 1.899775199
## 111 -0.860912726
## 455 1.968666052
## 393 1.297341607
## 289 -3.178447794
## 257 -2.221005419
## 12 2.839602297
## 432 -2.120303851
## 77 -0.330938790
## 184 1.255048865
## 87 -3.823979333
## 296 1.433926696
## 74 -3.051565954
## 231 -2.262496962
## 59 -0.680005137
## 439 1.287763402
## 224 -0.416107733
## 492 1.990277458
## 309 0.958443622
## 421 -2.622182752
## 452 -0.471627763
## 10 0.370421944
## 307 1.599450129
## 499 1.584637986
## 57 -0.134785739
## 397 -0.128244397
## 328 0.092339635
## 39 -2.718702597
## 260 0.450034748
## 394 -1.328232154
## 93 0.303438745
## 329 0.128554599
## 302 -0.027570644
## 132 -3.203569413
## 477 0.299398971
## 135 -0.180655747
## 242 3.551995754
## 2 -0.841526010
## 178 -0.028695749
## 62 -1.181545630
## 445 0.776060076
## 403 0.479473616
## 336 2.755935539
## 50 0.131006733
## 139 -1.244226370
## 116 0.124531173
## 276 -2.149514970
## 150 2.850696866
## 129 -2.099444421
## 21 -1.086547029
## 448 -0.694709852
## 280 0.039454352
## 288 0.185358726
## 177 0.186390475
## 390 -0.844609819
## 204 2.883558143
## 338 -2.485744372
## 303 1.100993752
## 148 -0.169613420
## 29 -0.412049363
## 128 1.477761360
## 161 2.214644793
## 22 -0.861386834
## 246 -3.189074222
## 162 -3.014349358
## 406 0.907927711
## 339 -0.876282763
## 497 2.520880067
## 202 1.963115523
## 441 -0.639763154
## 325 0.689109442
## 32 -1.101514510
## 211 -2.130910327
## 275 -0.234849900
## 506 -1.037183819
## 255 -0.425621257
## 267 0.724173119
## 420 -1.216644892
## 168 0.246487268
## 245 -2.155071196
## 463 0.663577460
## 373 -1.991912816
## 67 -0.081060101
## 217 -4.269675656
## 64 1.479213044
## 198 0.727574730
## 456 -0.351737836
## 405 0.892238194
## 203 -0.230580743
## 175 0.199609957
## 299 0.091533168
## 7 -1.723505050
## 258 2.014978910
## 6 -2.641072471
## 481 0.143022632
## 478 1.522531115
## 297 -0.872274341
## 80 -0.269630382
## 321 2.834943903
## 252 -2.097321659
## 195 2.516880436
## 272 -0.563947905
## 449 -1.141966895
## 199 2.514409304
## 166 0.137290555
## 372 -0.141480715
## 41 -2.177033210
## 315 -0.442104336
## 292 0.816448309
## 56 0.126431932
## 367 0.360252026
## 475 2.097458172
## 314 2.038044031
## 351 -1.472252794
## 462 0.482506273
## 34 0.559378748
## 35 -0.890440299
## 70 -1.850800266
## 102 1.714062422
## 436 -3.111073526
##
## , , 21 comps
##
## weight
## 225 0.472662976
## 31 0.282641359
## 290 -0.289261629
## 174 -1.447783046
## 505 -0.281082405
## 274 -2.682679299
## 493 2.428994067
## 440 4.693314008
## 385 2.622521488
## 196 -0.817914965
## 68 -1.029238588
## 55 0.621983503
## 310 2.145034312
## 319 3.297758189
## 79 0.848124235
## 238 -2.549097076
## 43 -1.217983700
## 370 4.445789892
## 362 0.022478638
## 301 2.705826286
## 65 0.656425734
## 382 -1.172822044
## 16 -0.467069031
## 355 -3.646413927
## 89 0.325053234
## 277 1.237345234
## 498 1.529766339
## 134 -3.519956757
## 152 2.099949209
## 282 2.189891956
## 112 1.360505802
## 147 -0.451308127
## 42 0.355940272
## 489 2.686877929
## 330 -0.145828239
## 415 -3.157422171
## 207 2.062671067
## 212 4.021252160
## 78 -4.636454841
## 99 -0.690782879
## 376 -1.310028809
## 163 -1.223329058
## 243 4.097969199
## 391 -0.527656901
## 221 4.722102543
## 86 -1.399198327
## 144 0.294507837
## 327 0.418441533
## 359 4.083739937
## 200 0.563962039
## 58 -2.713164777
## 241 -2.360198525
## 25 1.272364249
## 45 -3.265067899
## 263 0.307550298
## 183 -3.537753975
## 487 0.510986212
## 326 -0.305316723
## 494 2.312719844
## 349 -0.046746271
## 442 -8.035147214
## 234 -1.856278658
## 95 1.798124659
## 271 2.256840338
## 345 0.089075714
## 40 0.897809254
## 206 0.999519574
## 185 1.090980799
## 1 0.682866890
## 322 -0.846586035
## 333 3.071669160
## 188 1.671853805
## 427 1.209421554
## 469 2.463471180
## 438 -3.371480319
## 85 -1.324351108
## 311 0.931691104
## 167 1.478385093
## 71 -3.570055890
## 46 0.336338361
## 281 2.296357152
## 193 -1.856737928
## 218 -1.487159221
## 194 -0.278933607
## 133 1.580927647
## 216 -1.221213450
## 244 2.353309657
## 392 -2.144363591
## 20 0.681719064
## 92 1.929455839
## 286 -0.221787188
## 334 0.390261862
## 98 -0.753590454
## 298 -0.525981416
## 410 -0.334632348
## 291 0.341378368
## 49 0.915284878
## 97 -0.313927564
## 66 0.296037436
## 109 -1.077975329
## 104 1.582417734
## 434 4.356808730
## 153 4.152346781
## 88 -1.332296748
## 158 1.341797318
## 324 -0.689570311
## 491 0.007817876
## 60 0.587554957
## 264 2.058653102
## 422 -0.076179624
## 375 -1.837027835
## 108 0.672903632
## 266 3.292041400
## 157 -0.126389044
## 187 -0.021145959
## 466 5.265696190
## 19 -1.190407340
## 418 -4.792590067
## 33 -0.893421643
## 429 -0.472968761
## 151 0.238501679
## 368 0.871025927
## 63 2.098018343
## 120 0.459940229
## 474 4.957387491
## 354 0.615870938
## 265 1.294692233
## 96 -1.641629993
## 454 -2.444746511
## 453 -2.437434484
## 395 -1.031367062
## 222 4.235216113
## 361 0.105511372
## 424 0.657257354
## 171 -0.901473771
## 313 1.978214698
## 293 -0.785288706
## 273 -0.148856530
## 409 -0.467364991
## 471 0.823354502
## 54 0.626856471
## 154 -1.245988762
## 47 1.422388466
## 235 3.456340533
## 24 1.770979442
## 249 0.512583638
## 69 -0.702004198
## 233 2.163601182
## 38 -3.174546327
## 335 0.740337563
## 433 -0.983410962
## 125 -2.180975976
## 192 7.137177618
## 126 2.136108999
## 30 -0.931534661
## 401 -2.072592233
## 170 -2.621827867
## 114 -2.081807872
## 145 1.583377396
## 197 -2.965022273
## 476 2.175348933
## 146 1.427048391
## 53 -1.394215079
## 384 1.072861842
## 247 4.469533653
## 118 -1.116574836
## 386 -1.928975002
## 331 -0.269787700
## 398 -1.975281470
## 159 6.221718047
## 123 -0.135236330
## 300 -0.664315930
## 283 0.898470193
## 230 -2.512060089
## 437 -2.084121920
## 94 0.500833004
## 137 2.190561067
## 190 0.868770219
## 229 0.499535599
## 15 -1.672791947
## 284 -0.244733767
## 122 0.454116368
## 75 -2.978419493
## 268 0.782168525
## 226 -4.078322049
## 480 -0.417279859
## 251 -1.270434627
## 208 0.545517014
## 176 0.315824095
## 232 1.139359871
## 164 -3.711797985
## 485 3.749337342
## 227 -2.417633895
## 337 -0.379948762
## 179 1.288324077
## 342 -1.376177547
## 100 -2.925210923
## 460 2.593000200
## 470 -1.737820607
## 117 1.425946544
## 270 0.484018191
## 357 -2.303291053
## 215 -4.580819674
## 44 0.076571112
## 4 -0.615178537
## 140 -4.864816694
## 14 -3.206638473
## 482 3.347478878
## 308 2.390767854
## 365 1.174915288
## 364 2.044937879
## 90 0.485905318
## 444 -1.779813443
## 350 1.317060164
## 239 3.642152968
## 91 1.155601590
## 172 0.663336871
## 106 -4.042456980
## 9 -0.158171968
## 374 0.600907649
## 169 1.516020842
## 447 -1.862732062
## 473 1.282629206
## 358 -1.683788357
## 383 -1.123904364
## 73 -3.329646813
## 461 -1.402011133
## 278 0.713702729
## 344 -0.080786043
## 378 -0.753898329
## 347 -2.222915324
## 201 -4.660085958
## 356 1.974470750
## 317 1.575946769
## 450 -2.839089224
## 210 -0.145959229
## 105 0.930993655
## 173 -3.782912156
## 425 1.292942918
## 414 -0.881553828
## 205 0.771919835
## 186 2.081556721
## 388 0.130255730
## 387 0.502734509
## 237 -2.792856351
## 346 -2.372486983
## 236 -4.227176084
## 285 -0.425572403
## 48 0.556004754
## 416 -2.465775868
## 130 0.187877269
## 17 1.709323709
## 412 -1.651852407
## 141 8.570804985
## 160 -0.502360003
## 259 0.598915668
## 380 0.019681402
## 379 -0.743072116
## 61 -1.023352883
## 110 2.864617728
## 83 1.299770614
## 287 -1.773144906
## 84 -1.267221055
## 340 -1.103594831
## 451 0.721369445
## 486 -1.228653443
## 363 -2.132580767
## 3 -1.311918877
## 306 3.977636984
## 316 -1.951208293
## 13 1.630168330
## 341 0.033457963
## 27 -2.041668330
## 36 -0.835947644
## 223 -0.734630303
## 138 0.881769839
## 431 -1.336227184
## 240 3.438160451
## 490 0.117319684
## 446 -1.986336895
## 488 2.830413953
## 155 -0.146970798
## 143 0.218233518
## 312 0.742726067
## 294 -1.449319898
## 305 0.317382264
## 127 1.899387173
## 111 -0.860247799
## 455 1.970674915
## 393 1.295485505
## 289 -3.177971319
## 257 -2.219682663
## 12 2.840154974
## 432 -2.122704633
## 77 -0.330175220
## 184 1.253715469
## 87 -3.824000487
## 296 1.433235015
## 74 -3.050670021
## 231 -2.261710337
## 59 -0.679803773
## 439 1.289365419
## 224 -0.415974024
## 492 1.987339812
## 309 0.957696249
## 421 -2.621862913
## 452 -0.472938531
## 10 0.373268727
## 307 1.597175163
## 499 1.583319438
## 57 -0.133311514
## 397 -0.127071159
## 328 0.089761893
## 39 -2.718158080
## 260 0.449721378
## 394 -1.323812604
## 93 0.303816169
## 329 0.130085539
## 302 -0.025304493
## 132 -3.198612612
## 477 0.300401419
## 135 -0.177931809
## 242 3.552901964
## 2 -0.839784867
## 178 -0.028936879
## 62 -1.181057826
## 445 0.775002705
## 403 0.479492363
## 336 2.756033875
## 50 0.130934835
## 139 -1.242984621
## 116 0.125679405
## 276 -2.149805242
## 150 2.850420620
## 129 -2.097849025
## 21 -1.086272666
## 448 -0.694993527
## 280 0.038092061
## 288 0.186688379
## 177 0.187767975
## 390 -0.843827646
## 204 2.885837696
## 338 -2.486992276
## 303 1.100209435
## 148 -0.167814845
## 29 -0.412358503
## 128 1.477705116
## 161 2.213551288
## 22 -0.859029455
## 246 -3.188107621
## 162 -3.017483753
## 406 0.907930657
## 339 -0.874559369
## 497 2.521233413
## 202 1.962849907
## 441 -0.640019863
## 325 0.690493072
## 32 -1.102596799
## 211 -2.129969266
## 275 -0.237292040
## 506 -1.039057777
## 255 -0.425612715
## 267 0.723691196
## 420 -1.216257447
## 168 0.246232282
## 245 -2.153779908
## 463 0.665163340
## 373 -1.991093596
## 67 -0.083023902
## 217 -4.269722087
## 64 1.479512910
## 198 0.729094625
## 456 -0.352043364
## 405 0.891750021
## 203 -0.229787888
## 175 0.201362924
## 299 0.090512176
## 7 -1.721976492
## 258 2.013578435
## 6 -2.641413992
## 481 0.145906336
## 478 1.522100912
## 297 -0.871982870
## 80 -0.270689928
## 321 2.833969321
## 252 -2.099738389
## 195 2.518169292
## 272 -0.563579608
## 449 -1.141767575
## 199 2.513518410
## 166 0.135546273
## 372 -0.139561247
## 41 -2.176541599
## 315 -0.444741487
## 292 0.815165847
## 56 0.126548000
## 367 0.362370276
## 475 2.098174688
## 314 2.035075820
## 351 -1.472539262
## 462 0.484461253
## 34 0.560231977
## 35 -0.890322739
## 70 -1.850604891
## 102 1.716306016
## 436 -3.112630829
##
## , , 22 comps
##
## weight
## 225 0.391936620
## 31 0.411936399
## 290 -0.254126327
## 174 -1.529210695
## 505 -0.332039838
## 274 -2.654388838
## 493 2.228722149
## 440 4.695186672
## 385 2.527428838
## 196 -0.691541810
## 68 -1.045616554
## 55 0.637222911
## 310 2.152800794
## 319 3.352111594
## 79 0.996265205
## 238 -2.566573363
## 43 -1.184488355
## 370 4.557359616
## 362 -0.036805477
## 301 2.743311549
## 65 0.643830508
## 382 -1.133138559
## 16 -0.718919285
## 355 -3.670889047
## 89 0.254274196
## 277 1.195262653
## 498 1.558182738
## 134 -3.505798758
## 152 2.153964250
## 282 2.246999053
## 112 1.309343280
## 147 -0.394983937
## 42 0.361549412
## 489 2.644430628
## 330 -0.064317331
## 415 -3.123241372
## 207 2.080988555
## 212 4.029588783
## 78 -4.512195117
## 99 -0.866771371
## 376 -1.373064946
## 163 -1.203760667
## 243 4.030674519
## 391 -0.542989799
## 221 4.721677757
## 86 -1.376575555
## 144 0.298668652
## 327 0.438487841
## 359 4.251837912
## 200 0.505316368
## 58 -2.790020419
## 241 -2.337128384
## 25 1.267313793
## 45 -3.258386088
## 263 0.286210808
## 183 -3.664445129
## 487 0.451950029
## 326 -0.349003094
## 494 2.345526176
## 349 0.017795261
## 442 -8.084081975
## 234 -1.872910921
## 95 1.818639032
## 271 2.360841450
## 345 0.195985148
## 40 0.825544130
## 206 0.958488012
## 185 1.090465077
## 1 0.590960224
## 322 -0.870141890
## 333 3.211732722
## 188 1.644017737
## 427 1.110325722
## 469 2.441703682
## 438 -3.384140782
## 85 -1.235375439
## 311 0.791127027
## 167 1.333756805
## 71 -3.569012825
## 46 0.304699399
## 281 2.262422079
## 193 -1.856010168
## 218 -1.559124260
## 194 -0.394167606
## 133 1.535910770
## 216 -1.179218229
## 244 2.576010338
## 392 -1.983565890
## 20 0.680472101
## 92 1.827182330
## 286 -0.367870556
## 334 0.457386611
## 98 -0.813944024
## 298 -0.516915093
## 410 -0.289517880
## 291 0.266040807
## 49 0.859030460
## 97 -0.246757581
## 66 0.357926833
## 109 -0.927251640
## 104 1.718557379
## 434 4.440020531
## 153 3.866143626
## 88 -1.323379341
## 158 1.510669786
## 324 -0.681456194
## 491 -0.174328578
## 60 0.576099812
## 264 1.964170492
## 422 0.069839155
## 375 -1.817773900
## 108 0.706049838
## 266 3.375877157
## 157 -0.139476555
## 187 0.060238172
## 466 5.175500703
## 19 -1.223219881
## 418 -4.694515628
## 33 -0.836945356
## 429 -0.484984577
## 151 0.175830054
## 368 0.981248345
## 63 2.100219673
## 120 0.467859645
## 474 4.872932567
## 354 0.554912920
## 265 1.326780063
## 96 -1.678702570
## 454 -2.444324502
## 453 -2.326083909
## 395 -0.966193609
## 222 4.226314079
## 361 0.117847270
## 424 0.621536437
## 171 -0.902945850
## 313 1.874919879
## 293 -0.921306665
## 273 -0.169132159
## 409 -0.414616809
## 471 0.764768562
## 54 0.639881854
## 154 -1.115987882
## 47 1.436608995
## 235 3.407781433
## 24 2.000163085
## 249 0.593102144
## 69 -0.461868362
## 233 2.244873203
## 38 -3.168212079
## 335 0.753368688
## 433 -1.057299092
## 125 -2.131130189
## 192 7.121226726
## 126 2.257559611
## 30 -0.939102108
## 401 -2.073164377
## 170 -2.614582686
## 114 -1.906395735
## 145 1.552232950
## 197 -2.931982213
## 476 1.983678602
## 146 1.414891983
## 53 -1.451626363
## 384 1.122290705
## 247 4.516429843
## 118 -1.202527527
## 386 -1.811004252
## 331 -0.224000509
## 398 -2.058327973
## 159 6.267505020
## 123 -0.149688618
## 300 -0.764009862
## 283 1.006472399
## 230 -2.500331266
## 437 -2.091917635
## 94 0.644072505
## 137 2.460347658
## 190 0.779069990
## 229 0.400613447
## 15 -1.821947023
## 284 -0.209557975
## 122 0.518863397
## 75 -3.033194253
## 268 0.678682577
## 226 -4.115228253
## 480 -0.486752120
## 251 -1.268037708
## 208 0.535110931
## 176 0.245243974
## 232 1.021756485
## 164 -3.728611833
## 485 3.611671761
## 227 -2.453207747
## 337 -0.371388633
## 179 1.429342417
## 342 -1.423878798
## 100 -2.899999041
## 460 2.477288622
## 470 -1.640916982
## 117 1.295550483
## 270 0.436248402
## 357 -2.334483870
## 215 -4.614563104
## 44 0.009629299
## 4 -0.876522878
## 140 -4.999852540
## 14 -3.210359990
## 482 3.294719734
## 308 2.384394193
## 365 1.123325902
## 364 2.124869293
## 90 0.651306969
## 444 -1.749338242
## 350 1.289939374
## 239 3.711217132
## 91 1.334265709
## 172 0.604830526
## 106 -3.874391319
## 9 -0.236302972
## 374 0.542425852
## 169 1.398752265
## 447 -1.878815137
## 473 1.255601951
## 358 -1.584676294
## 383 -1.093185604
## 73 -3.357040000
## 461 -1.365809224
## 278 0.601467715
## 344 -0.035338578
## 378 -0.783880353
## 347 -2.219376682
## 201 -4.619688345
## 356 1.993655502
## 317 1.537431817
## 450 -2.768366727
## 210 -0.138160512
## 105 0.883599951
## 173 -3.725034980
## 425 1.575364501
## 414 -0.968396318
## 205 0.773937359
## 186 2.131385185
## 388 0.176643851
## 387 0.439782646
## 237 -2.671001739
## 346 -2.321628124
## 236 -4.219895702
## 285 -0.452420804
## 48 0.517816788
## 416 -2.476366711
## 130 0.221987075
## 17 1.765288714
## 412 -1.654140627
## 141 8.548640981
## 160 -0.503537017
## 259 0.694336469
## 380 0.076992285
## 379 -0.792243451
## 61 -1.051385385
## 110 2.955775432
## 83 1.342250760
## 287 -1.856180166
## 84 -1.310887925
## 340 -1.071062229
## 451 0.656541196
## 486 -1.181197925
## 363 -2.049180533
## 3 -1.189419317
## 306 3.914629259
## 316 -1.988071512
## 13 1.500378411
## 341 -0.032546127
## 27 -2.080854971
## 36 -0.748963758
## 223 -0.676272380
## 138 0.858414031
## 431 -1.277139424
## 240 3.443373827
## 490 0.073836116
## 446 -1.734281334
## 488 2.679703221
## 155 -0.136083752
## 143 0.210033809
## 312 0.791740091
## 294 -1.552735805
## 305 0.290445977
## 127 2.024895449
## 111 -0.906397085
## 455 2.088645115
## 393 1.220320672
## 289 -3.231659399
## 257 -2.166387427
## 12 3.037531423
## 432 -2.159890609
## 77 -0.163697639
## 184 1.333947215
## 87 -3.969538860
## 296 1.544723280
## 74 -3.018581069
## 231 -2.166645106
## 59 -0.646641280
## 439 1.167092838
## 224 -0.302582748
## 492 2.026049363
## 309 0.897681291
## 421 -2.565526805
## 452 -0.389540444
## 10 0.572335317
## 307 1.511153302
## 499 1.500406880
## 57 -0.263524218
## 397 -0.148991091
## 328 0.119738837
## 39 -2.511417290
## 260 0.390510423
## 394 -1.306454106
## 93 0.160168374
## 329 0.154875140
## 302 -0.126785044
## 132 -3.197505385
## 477 0.395143547
## 135 -0.216107304
## 242 3.619113652
## 2 -0.963337692
## 178 -0.197883737
## 62 -1.128940884
## 445 0.869543515
## 403 0.603018561
## 336 2.712105512
## 50 0.167360294
## 139 -1.344845736
## 116 0.076303928
## 276 -2.241637983
## 150 2.730920540
## 129 -2.027582357
## 21 -0.962466246
## 448 -0.704779242
## 280 0.018742238
## 288 0.179941702
## 177 0.112942838
## 390 -0.737842201
## 204 2.723948486
## 338 -2.487978491
## 303 1.087702445
## 148 -0.114182128
## 29 -0.281865541
## 128 1.492594247
## 161 1.950518190
## 22 -0.963595026
## 246 -3.218158735
## 162 -3.038421871
## 406 0.935876143
## 339 -0.876221799
## 497 2.477419740
## 202 1.989191339
## 441 -0.628558403
## 325 0.708695716
## 32 -1.265116103
## 211 -2.096492479
## 275 -0.344227293
## 506 -1.117377364
## 255 -0.542304075
## 267 0.743637881
## 420 -1.268768012
## 168 0.230651546
## 245 -2.077068342
## 463 0.739477814
## 373 -2.022961013
## 67 0.005586584
## 217 -4.363762301
## 64 1.473103259
## 198 0.735168527
## 456 -0.321303691
## 405 0.904568792
## 203 -0.275683316
## 175 0.154012720
## 299 0.178137417
## 7 -1.734714947
## 258 2.047283358
## 6 -2.589880662
## 481 -0.024140222
## 478 1.616775786
## 297 -0.925084576
## 80 -0.349634697
## 321 2.807524169
## 252 -2.132575330
## 195 2.503951223
## 272 -0.667870658
## 449 -1.138497675
## 199 2.490270788
## 166 0.037727281
## 372 -0.122691502
## 41 -2.149673891
## 315 -0.450422791
## 292 0.608055904
## 56 0.152832322
## 367 0.350124955
## 475 2.049326710
## 314 2.021871115
## 351 -1.432508843
## 462 0.447282758
## 34 0.685293239
## 35 -0.962991349
## 70 -1.777455451
## 102 1.921088984
## 436 -2.948581897
##
## , , 23 comps
##
## weight
## 225 0.495640681
## 31 0.527793374
## 290 -0.323868703
## 174 -1.419719778
## 505 -0.256465619
## 274 -2.621090771
## 493 2.341924377
## 440 4.716946809
## 385 2.412481442
## 196 -0.567356877
## 68 -1.144158512
## 55 0.666101080
## 310 2.176523084
## 319 3.277636385
## 79 0.950899873
## 238 -2.491283949
## 43 -1.186605926
## 370 4.584105222
## 362 -0.014287446
## 301 2.696657481
## 65 0.701711416
## 382 -1.067710975
## 16 -0.797097009
## 355 -3.677671399
## 89 0.144889456
## 277 1.133801998
## 498 1.673072936
## 134 -3.494100286
## 152 2.237306526
## 282 2.313737723
## 112 1.302362313
## 147 -0.337137587
## 42 0.367551977
## 489 2.692942273
## 330 -0.085132910
## 415 -3.187670319
## 207 2.109955340
## 212 4.035779760
## 78 -4.529607356
## 99 -0.816051252
## 376 -1.277138280
## 163 -1.101317350
## 243 3.968650062
## 391 -0.559081206
## 221 4.727983061
## 86 -1.442079942
## 144 0.264629774
## 327 0.512713994
## 359 4.256432707
## 200 0.436791351
## 58 -2.736621380
## 241 -2.406213897
## 25 1.290093968
## 45 -3.249317542
## 263 0.332499117
## 183 -3.538785591
## 487 0.346712509
## 326 -0.421011594
## 494 2.343739782
## 349 0.104279294
## 442 -8.124546003
## 234 -1.807375342
## 95 1.948055906
## 271 2.330375686
## 345 0.219847878
## 40 0.995200274
## 206 1.003954738
## 185 1.144976077
## 1 0.743570052
## 322 -0.849415559
## 333 3.203383654
## 188 1.611922220
## 427 1.146224687
## 469 2.418680140
## 438 -3.335212800
## 85 -1.327438184
## 311 0.690683631
## 167 1.340608276
## 71 -3.592473063
## 46 0.393931027
## 281 2.249949734
## 193 -1.854535064
## 218 -1.495933764
## 194 -0.362819744
## 133 1.391088983
## 216 -1.202834341
## 244 2.662605419
## 392 -1.936753576
## 20 0.741783078
## 92 1.799368025
## 286 -0.298311506
## 334 0.511005712
## 98 -0.885867709
## 298 -0.510290204
## 410 -0.276810495
## 291 0.258168406
## 49 0.871009104
## 97 -0.190910339
## 66 0.316836748
## 109 -1.005300741
## 104 1.642544700
## 434 4.484900873
## 153 3.736523151
## 88 -1.365500280
## 158 1.480816748
## 324 -0.590263810
## 491 -0.156837891
## 60 0.645589209
## 264 1.980602995
## 422 0.216827729
## 375 -1.776325489
## 108 0.618977255
## 266 3.386957639
## 157 -0.141790375
## 187 0.003547839
## 466 5.101181198
## 19 -1.167395991
## 418 -4.590215492
## 33 -0.877485339
## 429 -0.572815206
## 151 0.057217752
## 368 1.055704966
## 63 2.224184509
## 120 0.421778316
## 474 4.800389962
## 354 0.542219603
## 265 1.267392734
## 96 -1.671990680
## 454 -2.468322774
## 453 -2.320421577
## 395 -0.983600387
## 222 4.272971343
## 361 0.222401603
## 424 0.637839662
## 171 -0.889163908
## 313 1.875628573
## 293 -0.954804467
## 273 -0.177595945
## 409 -0.434052528
## 471 0.689712836
## 54 0.691560569
## 154 -1.133169471
## 47 1.464542038
## 235 3.519547437
## 24 2.057062069
## 249 0.587771617
## 69 -0.444566001
## 233 2.346451089
## 38 -3.160105720
## 335 0.698250543
## 433 -1.036887034
## 125 -2.212637895
## 192 7.072586243
## 126 2.272791522
## 30 -0.957404175
## 401 -2.069157003
## 170 -2.659066498
## 114 -1.864025354
## 145 1.592736994
## 197 -2.932195651
## 476 2.002109517
## 146 1.328444561
## 53 -1.526533640
## 384 1.159816719
## 247 4.508509369
## 118 -1.168021855
## 386 -1.797635359
## 331 -0.371297218
## 398 -1.963433300
## 159 6.168382681
## 123 -0.145028498
## 300 -0.761172742
## 283 1.019471528
## 230 -2.541404306
## 437 -2.163604938
## 94 0.668995779
## 137 2.372283038
## 190 0.773853062
## 229 0.411883924
## 15 -1.837172428
## 284 -0.261140452
## 122 0.562591998
## 75 -2.976231469
## 268 0.620981197
## 226 -4.145267962
## 480 -0.397257102
## 251 -1.336737538
## 208 0.479473726
## 176 0.290637540
## 232 1.088137633
## 164 -3.730980605
## 485 3.530418752
## 227 -2.467134697
## 337 -0.314432314
## 179 1.430381708
## 342 -1.478418548
## 100 -2.872434708
## 460 2.410076655
## 470 -1.638619929
## 117 1.318334523
## 270 0.448701830
## 357 -2.292817186
## 215 -4.573397026
## 44 0.001851354
## 4 -0.852835086
## 140 -4.990121942
## 14 -3.283111957
## 482 3.449512654
## 308 2.399179977
## 365 1.135793996
## 364 2.023794737
## 90 0.621856218
## 444 -1.740564644
## 350 1.322785753
## 239 3.710735555
## 91 1.388342131
## 172 0.644570509
## 106 -3.830887157
## 9 -0.072660480
## 374 0.580745880
## 169 1.334086525
## 447 -1.950348665
## 473 1.252834343
## 358 -1.597971176
## 383 -1.135066781
## 73 -3.354592361
## 461 -1.382470624
## 278 0.600889306
## 344 -0.043623217
## 378 -0.789914076
## 347 -2.335386836
## 201 -4.629405100
## 356 1.964408064
## 317 1.469760912
## 450 -2.713476318
## 210 -0.196765766
## 105 0.900381542
## 173 -3.727790096
## 425 1.555072732
## 414 -0.952140349
## 205 0.768791882
## 186 2.170980856
## 388 0.254683701
## 387 0.534957561
## 237 -2.623240719
## 346 -2.354801555
## 236 -4.124691864
## 285 -0.514916266
## 48 0.441563200
## 416 -2.415313170
## 130 0.287954955
## 17 1.869053270
## 412 -1.801381202
## 141 8.517260514
## 160 -0.516709929
## 259 0.751653800
## 380 0.104895717
## 379 -0.645221493
## 61 -1.158394100
## 110 2.653531270
## 83 1.300742821
## 287 -1.829619939
## 84 -1.360663098
## 340 -1.125592727
## 451 0.550232632
## 486 -1.274591184
## 363 -2.093025383
## 3 -1.314856657
## 306 3.984486230
## 316 -1.982385367
## 13 1.475770166
## 341 0.062095304
## 27 -2.032551014
## 36 -0.772358762
## 223 -0.564907826
## 138 0.976055346
## 431 -1.196319025
## 240 3.495277977
## 490 0.011182286
## 446 -1.761397488
## 488 2.700908597
## 155 -0.126770788
## 143 0.170835531
## 312 0.887818826
## 294 -1.582217912
## 305 0.252838228
## 127 1.896302474
## 111 -0.945194999
## 455 2.146870609
## 393 1.255396630
## 289 -3.203155319
## 257 -2.184783448
## 12 3.075957248
## 432 -2.116384675
## 77 -0.251612257
## 184 1.369008963
## 87 -4.028052082
## 296 1.364527024
## 74 -3.014110501
## 231 -2.292250166
## 59 -0.673078902
## 439 1.027874479
## 224 -0.293688948
## 492 1.966537210
## 309 0.802421850
## 421 -2.572329725
## 452 -0.297191653
## 10 0.581108337
## 307 1.461816417
## 499 1.404476086
## 57 -0.427521588
## 397 -0.120697763
## 328 0.023356755
## 39 -2.565392320
## 260 0.410466193
## 394 -1.406024070
## 93 0.031108319
## 329 0.143507605
## 302 -0.199639274
## 132 -3.287375972
## 477 0.395247908
## 135 -0.263385867
## 242 3.555246997
## 2 -0.929525194
## 178 -0.090717051
## 62 -1.115554400
## 445 0.809417959
## 403 0.642595778
## 336 2.716201998
## 50 0.148705625
## 139 -1.363346863
## 116 -0.034976544
## 276 -2.296531914
## 150 2.805008239
## 129 -2.011828708
## 21 -1.022503997
## 448 -0.876781538
## 280 -0.056543101
## 288 0.245535596
## 177 0.174264724
## 390 -0.599376098
## 204 2.768943114
## 338 -2.380075975
## 303 1.083824795
## 148 -0.135274273
## 29 -0.285780658
## 128 1.425427568
## 161 1.895809181
## 22 -0.876042461
## 246 -3.274167464
## 162 -3.012590976
## 406 0.884301954
## 339 -0.713493797
## 497 2.480278500
## 202 1.904097087
## 441 -0.572756758
## 325 0.759610647
## 32 -1.305483050
## 211 -2.098096673
## 275 -0.312210056
## 506 -1.121887409
## 255 -0.553034162
## 267 0.763275632
## 420 -1.257098105
## 168 0.296309567
## 245 -2.206400163
## 463 0.770999167
## 373 -1.953974360
## 67 -0.108679216
## 217 -4.245149504
## 64 1.421358943
## 198 0.763400389
## 456 -0.299613623
## 405 0.887264823
## 203 -0.223685354
## 175 0.152531335
## 299 0.258622941
## 7 -1.592181860
## 258 2.086493004
## 6 -2.672964254
## 481 0.090648737
## 478 1.619895042
## 297 -1.062597037
## 80 -0.484290351
## 321 2.822462972
## 252 -2.167482325
## 195 2.507801508
## 272 -0.671759823
## 449 -1.117917292
## 199 2.549480828
## 166 -0.022064830
## 372 -0.107911312
## 41 -2.104926938
## 315 -0.453640579
## 292 0.549882919
## 56 0.139890895
## 367 0.376494281
## 475 2.098184623
## 314 2.038267855
## 351 -1.401745734
## 462 0.423097053
## 34 0.702096046
## 35 -0.824233470
## 70 -1.802418755
## 102 1.999063115
## 436 -3.067595778
Calculo de R-cuadrado para análisis de componentes principales.
coefd <- R2(modelolm3, ncomp = 13, intercept = FALSE)
coefd
## [1] 0.9687
Cálculo de R-cuadrado ajustado
coefdnum <- as.numeric(coefd[[1]])
numerador <- (1 - coefdnum) * (nrow (data_training) - 1)
denominador <- (nrow (data_training) - (ncol(data_training) - 1))
R2ajustado <- 1 - (numerador / denominador)
R2ajustado
## [1] 0.9668812
residuosmodelo313comp = residuosmodelo3 [,,13]
residuosmodelo313comp.stand = (residuosmodelo313comp-mean(residuosmodelo313comp))/sd(residuosmodelo313comp)
valores.ajustados3=data.frame(fitted(modelolm3))
valores.ajustados313comp= valores.ajustados3[,13]
plot(valores.ajustados313comp, residuosmodelo313comp, xlab = "Valores ajustados", ylab = "Residuos estandarizados", col = 'green', main = 'Distribución de residuos utilizados 13 componentes')
Entender la normalidad de residuos con gráfico de histograma incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection.
x=seq(-4,4,0.01)
hist(residuosmodelo313comp.stand, col = "green", main="Histograma de residuos", xlab="Residuos",prob = TRUE, ylim = c(0,0.5))
theo.res=dnorm(x, mean = 0, sd = 1)
lines(theo.res ~ x, col="orange", lwd = 2 )
lines(density(residuosmodelo313comp.stand), col="violet", lwd = 2)
Entender la normalidad de residuos con gráfico de QQ-plot incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection
qqnorm(residuosmodelo313comp.stand, main = 'QQ plot residuos - componentes principales')
qqline(residuosmodelo313comp.stand, col="green", lwd = 2)
prediccion3 = predict(modelolm3, ncomp = 13, newdata = data_test)
prediccion3
## , , 13 comps
##
## weight
## 5 78.99250
## 8 80.71268
## 11 79.08964
## 18 69.82355
## 23 69.09613
## 26 89.88562
## 28 73.79119
## 37 71.06397
## 51 75.33331
## 52 83.31154
## 72 77.11092
## 76 64.96217
## 81 96.93187
## 82 80.66615
## 101 86.24698
## 103 55.83876
## 107 84.10844
## 113 62.14339
## 115 83.20583
## 119 82.58590
## 121 82.61561
## 124 106.43816
## 131 75.36220
## 136 77.31425
## 142 84.77339
## 149 71.74536
## 156 67.36020
## 165 70.41981
## 180 82.10919
## 181 69.86927
## 182 81.72756
## 189 78.29949
## 191 80.04390
## 209 72.88804
## 213 93.51790
## 214 67.98783
## 219 78.84356
## 220 81.89716
## 228 77.22901
## 248 50.70654
## 250 46.26964
## 253 55.51272
## 254 44.08843
## 256 69.41785
## 261 40.16608
## 262 49.60882
## 269 83.75974
## 279 54.61523
## 295 49.99194
## 304 62.99001
## 318 46.33040
## 320 51.32229
## 323 55.67755
## 332 52.45393
## 343 48.77523
## 348 51.54317
## 352 58.90693
## 353 57.35700
## 360 52.95002
## 366 41.18437
## 369 61.86465
## 371 58.79459
## 377 55.14328
## 381 38.87844
## 389 54.11732
## 396 65.00981
## 399 56.45117
## 400 64.59893
## 402 74.08800
## 404 55.42645
## 407 89.10492
## 408 56.13909
## 411 76.91659
## 413 68.01905
## 417 60.98648
## 419 61.19109
## 423 63.07545
## 426 57.95397
## 428 80.58313
## 430 54.51957
## 435 59.30819
## 443 63.63091
## 457 79.73377
## 458 69.39135
## 459 60.19132
## 464 48.37826
## 465 65.43916
## 467 67.36109
## 468 65.17165
## 472 57.88589
## 479 74.08501
## 483 62.91988
## 484 55.54147
## 495 56.21704
## 496 63.91993
## 500 68.84966
## 501 65.48560
## 502 74.73369
## 503 71.21565
## 504 57.68403
## 507 72.71986
Valores verdaderos conjunto de datos testeo
data_test[,1]
## [1] 78.8 78.4 76.6 70.0 66.2 89.6 76.4 67.2 75.6 86.2 78.9 63.9
## [13] 93.0 80.9 86.4 53.9 83.2 65.0 84.1 82.7 79.5 116.4 75.0 76.4
## [25] 86.4 72.7 68.6 65.9 80.5 70.0 81.8 73.6 82.7 72.3 91.1 67.3
## [37] 76.6 85.0 77.3 51.6 49.2 59.0 47.6 66.8 42.0 50.0 82.5 55.0
## [49] 50.2 60.7 48.7 50.0 55.7 52.8 48.6 53.6 58.4 56.2 51.8 45.0
## [61] 60.2 58.8 54.4 43.2 54.6 63.6 56.8 64.1 72.3 55.9 84.5 55.9
## [73] 76.4 65.9 58.6 59.1 60.0 54.1 75.9 57.3 58.6 62.0 80.9 70.5
## [85] 60.9 52.7 62.7 66.4 67.3 57.7 72.3 63.6 53.4 57.3 64.1 68.2
## [97] 61.4 76.8 71.8 55.5 67.3
Cálculo suma errores total método componentes principales
Error3=sum((data_test[,1]-prediccion3)^2)
Error3
## [1] 573.973
Cálculo error medio
ME3.test = mean((data_test[,1]-prediccion3)^2)
ME3.test
## [1] 5.682901
Cálculo error cuadrático
ME3C.test = mean((residuosmodelo313comp.stand )^2)
ME3C.test
## [1] 0.9975369
Gráfico valores verdaderos vs calculados utilizando componentes principales.
plot(data_test[,1], prediccion3, main = 'Predicción valores verdaderos vs calculados - componentes principales' , xlab = "Valores verdaderos - weight",
ylab = "Valores calculados - weight", col = "red")
abline(0,1, col = "green", lwd = 2)
Cálculo del mínimo error
RSSE_v = vector ()
for (i in 1:23) {
prediccion3 = predict (modelolm3, ncomp = i, newdata = data_test)
RSSE_v = rbind(RSSE_v, mean ((data_test[,1]-prediccion3)^2))
}
indice = c (1:23)
qplot (x = indice, y = RSSE_v, geom = 'point', xlab = 'Cantidad de componentes', ylab = 'Errores', main = 'Error mínimo considerando cada componente')