library(ggplot2)
library(ggcorrplot)
library(funModeling) 
## Loading required package: Hmisc
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
## funModeling v.1.9.4 :)
## Examples and tutorials at livebook.datascienceheroes.com
##  / Now in Spanish: librovivodecienciadedatos.ai
library(olsrr)
## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers
library(pls)
## 
## Attaching package: 'pls'
## The following object is masked from 'package:stats':
## 
##     loadings
dfbody <- read.csv("data_multiple_regression_exercice.csv",header= TRUE, sep="")
dim(dfbody)
## [1] 507  24
p=ncol(dfbody)-1
p
## [1] 23
names(dfbody)
##  [1] "weight"         "biacromial"     "pelvic.breadth" "bitrochanteric"
##  [5] "chest.depth"    "chest.diam"     "elbow.diam"     "wrist.diam"    
##  [9] "knee.diam"      "ankle.diam"     "shoulder.girth" "chest.girth"   
## [13] "waist.girth"    "navel.girth"    "hip.girth"      "thigh.girth"   
## [17] "bicep.girth"    "forearm.girth"  "knee.girth"     "calf.girth"    
## [21] "ankle.girth"    "wrist.girth"    "age"            "height"
head(dfbody)
##   weight biacromial pelvic.breadth bitrochanteric chest.depth chest.diam
## 1   65.6       42.9           26.0           31.5        17.7       28.0
## 2   71.8       43.7           28.5           33.5        16.9       30.8
## 3   80.7       40.1           28.2           33.3        20.9       31.7
## 4   72.6       44.3           29.9           34.0        18.4       28.2
## 5   78.8       42.5           29.9           34.0        21.5       29.4
## 6   74.8       43.3           27.0           31.5        19.6       31.3
##   elbow.diam wrist.diam knee.diam ankle.diam shoulder.girth chest.girth
## 1       13.1       10.4      18.8       14.1          106.2        89.5
## 2       14.0       11.8      20.6       15.1          110.5        97.0
## 3       13.9       10.9      19.7       14.1          115.1        97.5
## 4       13.9       11.2      20.9       15.0          104.5        97.0
## 5       15.2       11.6      20.7       14.9          107.5        97.5
## 6       14.0       11.5      18.8       13.9          119.8        99.9
##   waist.girth navel.girth hip.girth thigh.girth bicep.girth forearm.girth
## 1        71.5        74.5      93.5        51.5        32.5          26.0
## 2        79.0        86.5      94.8        51.5        34.4          28.0
## 3        83.2        82.9      95.0        57.3        33.4          28.8
## 4        77.8        78.8      94.0        53.0        31.0          26.2
## 5        80.0        82.5      98.5        55.4        32.0          28.4
## 6        82.5        80.1      95.3        57.5        33.0          28.0
##   knee.girth calf.girth ankle.girth wrist.girth  age height
## 1       34.5       36.5        23.5        16.5 21.0  174.0
## 2       36.5       37.5        24.5        17.0 23.0  175.3
## 3       37.0       37.3        21.9        16.9 28.0  193.5
## 4       37.0       34.8        23.0        16.6 23.0  186.5
## 5       37.7       38.6        24.4        18.0 22.0  187.2
## 6       36.6       36.1        23.5        16.9 20.6  181.5
str(dfbody) 
## 'data.frame':    507 obs. of  24 variables:
##  $ weight        : num  65.6 71.8 80.7 72.6 78.8 74.8 86.4 78.4 62 81.6 ...
##  $ biacromial    : num  42.9 43.7 40.1 44.3 42.5 43.3 43.5 44.4 43.5 42 ...
##  $ pelvic.breadth: num  26 28.5 28.2 29.9 29.9 27 30 29.8 26.5 28 ...
##  $ bitrochanteric: num  31.5 33.5 33.3 34 34 31.5 34 33.2 32.1 34 ...
##  $ chest.depth   : num  17.7 16.9 20.9 18.4 21.5 19.6 21.9 21.8 15.5 22.5 ...
##  $ chest.diam    : num  28 30.8 31.7 28.2 29.4 31.3 31.7 28.8 27.5 28 ...
##  $ elbow.diam    : num  13.1 14 13.9 13.9 15.2 14 16.1 15.1 14.1 15.6 ...
##  $ wrist.diam    : num  10.4 11.8 10.9 11.2 11.6 11.5 12.5 11.9 11.2 12 ...
##  $ knee.diam     : num  18.8 20.6 19.7 20.9 20.7 18.8 20.8 21 18.9 21.1 ...
##  $ ankle.diam    : num  14.1 15.1 14.1 15 14.9 13.9 15.6 14.6 13.2 15 ...
##  $ shoulder.girth: num  106 110 115 104 108 ...
##  $ chest.girth   : num  89.5 97 97.5 97 97.5 ...
##  $ waist.girth   : num  71.5 79 83.2 77.8 80 82.5 82 76.8 68.5 77.5 ...
##  $ navel.girth   : num  74.5 86.5 82.9 78.8 82.5 80.1 84 80.5 69 81.5 ...
##  $ hip.girth     : num  93.5 94.8 95 94 98.5 95.3 101 98 89.5 99.8 ...
##  $ thigh.girth   : num  51.5 51.5 57.3 53 55.4 57.5 60.9 56 50 59.8 ...
##  $ bicep.girth   : num  32.5 34.4 33.4 31 32 33 42.4 34.1 33 36.5 ...
##  $ forearm.girth : num  26 28 28.8 26.2 28.4 28 32.3 28 26 29.2 ...
##  $ knee.girth    : num  34.5 36.5 37 37 37.7 36.6 40.1 39.2 35.5 38.3 ...
##  $ calf.girth    : num  36.5 37.5 37.3 34.8 38.6 36.1 40.3 36.7 35 38.6 ...
##  $ ankle.girth   : num  23.5 24.5 21.9 23 24.4 23.5 23.6 22.5 22 22.2 ...
##  $ wrist.girth   : num  16.5 17 16.9 16.6 18 16.9 18.8 18 16.5 16.9 ...
##  $ age           : num  21 23 28 23 22 20.6 25.5 26.9 22.8 21 ...
##  $ height        : num  174 175 194 186 187 ...
anyNA(dfbody)
## [1] FALSE
attach(dfbody)

Separar el conjunto de registros aleatoriamente en dos conjuntos de datos data_training y data_test. El primer conjunto se utilizará para calcular los parámetros de cada modelo y el segundo se utilizará para realizar predicciones y evaluar los resultados.

Para ello lo que hice fue dividir aleatoriamente el 80% de los datos para entrenamiento y el 20% para el modelo de testeo.

index_sample=get_sample(data = dfbody, percentage_tr_rows=0.8, seed = 234)

data_training = dfbody[index_sample,]
data_test = dfbody[-index_sample,]

Antes de realizar el gráfico de regresión lineal y su validación, voy a entender más como estan correlacionadas las variables de entrenamiento como también entender la variabilidad de una variable vs las otras y si existen algun outlier en las variables.

Correlación con variable dependiente

correlation_table(data_training, "weight")
##          Variable weight
## 1          weight   1.00
## 2     waist.girth   0.91
## 3     chest.girth   0.90
## 4  shoulder.girth   0.88
## 5     bicep.girth   0.87
## 6   forearm.girth   0.87
## 7      chest.diam   0.83
## 8     wrist.girth   0.81
## 9     chest.depth   0.80
## 10     elbow.diam   0.80
## 11     knee.girth   0.79
## 12     wrist.diam   0.76
## 13      hip.girth   0.76
## 14    ankle.girth   0.76
## 15      knee.diam   0.75
## 16     calf.girth   0.74
## 17         height   0.73
## 18     biacromial   0.72
## 19    navel.girth   0.72
## 20     ankle.diam   0.71
## 21 bitrochanteric   0.65
## 22    thigh.girth   0.54
## 23 pelvic.breadth   0.50
## 24            age   0.22

Matriz de correlación de variables para el conjunto de entrenamiento

cordatatraining = cor(data_training[,1:24])
cordatatraining
##                   weight biacromial pelvic.breadth bitrochanteric chest.depth
## weight         1.0000000 0.72333708      0.4979851      0.6523826   0.8020373
## biacromial     0.7233371 1.00000000      0.3205021      0.4812884   0.5744144
## pelvic.breadth 0.4979851 0.32050211      1.0000000      0.6847879   0.3531194
## bitrochanteric 0.6523826 0.48128837      0.6847879      1.0000000   0.4476102
## chest.depth    0.8020373 0.57441443      0.3531194      0.4476102   1.0000000
## chest.diam     0.8255359 0.76660976      0.3362752      0.5049457   0.6602519
## elbow.diam     0.7981996 0.76800227      0.3221594      0.5053734   0.6663184
## wrist.diam     0.7589759 0.71692617      0.2804776      0.4575196   0.6029277
## knee.diam      0.7475840 0.63330502      0.4382057      0.5833981   0.5246282
## ankle.diam     0.7143812 0.66730766      0.3673644      0.4728103   0.5850445
## shoulder.girth 0.8793832 0.78317389      0.2884577      0.4635623   0.7404735
## chest.girth    0.8988234 0.71414861      0.3261211      0.4743455   0.8080765
## waist.girth    0.9053409 0.63430902      0.4498945      0.5624033   0.8004537
## navel.girth    0.7179399 0.31395612      0.5935838      0.6070064   0.6130228
## hip.girth      0.7576721 0.32508769      0.5728108      0.7434893   0.5440697
## thigh.girth    0.5406768 0.10567708      0.4055826      0.5168913   0.3417289
## bicep.girth    0.8656875 0.69567295      0.3085243      0.4679921   0.7294714
## forearm.girth  0.8650929 0.75197645      0.2993726      0.4619208   0.7155195
## knee.girth     0.7919113 0.50768385      0.4761210      0.6174524   0.5626738
## calf.girth     0.7447298 0.49762067      0.3879855      0.5716573   0.5297461
## ankle.girth    0.7580149 0.59830444      0.3307441      0.5307470   0.5887505
## wrist.girth    0.8109316 0.76954325      0.2676489      0.4649945   0.6775134
## age            0.2214360 0.08389303      0.2585529      0.2717645   0.3081505
## height         0.7283307 0.76144089      0.3661565      0.4741203   0.5611011
##                chest.diam elbow.diam wrist.diam knee.diam ankle.diam
## weight          0.8255359  0.7981996  0.7589759 0.7475840  0.7143812
## biacromial      0.7666098  0.7680023  0.7169262 0.6333050  0.6673077
## pelvic.breadth  0.3362752  0.3221594  0.2804776 0.4382057  0.3673644
## bitrochanteric  0.5049457  0.5053734  0.4575196 0.5833981  0.4728103
## chest.depth     0.6602519  0.6663184  0.6029277 0.5246282  0.5850445
## chest.diam      1.0000000  0.7462998  0.7207153 0.6485177  0.6633892
## elbow.diam      0.7462998  1.0000000  0.8295361 0.7121106  0.8214705
## wrist.diam      0.7207153  0.8295361  1.0000000 0.7051048  0.7679319
## knee.diam       0.6485177  0.7121106  0.7051048 1.0000000  0.7069192
## ankle.diam      0.6633892  0.8214705  0.7679319 0.7069192  1.0000000
## shoulder.girth  0.8675862  0.8179573  0.7739053 0.6729619  0.6889967
## chest.girth     0.8647893  0.8000336  0.7582419 0.6452346  0.7002848
## waist.girth     0.7846368  0.6920480  0.6763861 0.6060924  0.6266948
## navel.girth     0.5115517  0.4397734  0.3967711 0.4504462  0.4180081
## hip.girth       0.5068641  0.4242717  0.4113337 0.5579286  0.3894831
## thigh.girth     0.2940656  0.1917599  0.1814579 0.4049156  0.1599306
## bicep.girth     0.7905738  0.8061469  0.7600526 0.6775442  0.6779734
## forearm.girth   0.7976906  0.8628347  0.8135324 0.7130703  0.7315444
## knee.girth      0.5765679  0.5801664  0.5804820 0.7135134  0.5118940
## calf.girth      0.5707056  0.5707920  0.5656750 0.6600462  0.5115481
## ankle.girth     0.6259361  0.6649994  0.6484956 0.6313086  0.6623997
## wrist.girth     0.7507846  0.8432443  0.8659224 0.7206948  0.7696373
## age             0.2102470  0.2028904  0.2215147 0.1803180  0.2484763
## height          0.6357405  0.7523124  0.6848540 0.5867066  0.6917417
##                shoulder.girth chest.girth waist.girth navel.girth hip.girth
## weight              0.8793832   0.8988234   0.9053409   0.7179399 0.7576721
## biacromial          0.7831739   0.7141486   0.6343090   0.3139561 0.3250877
## pelvic.breadth      0.2884577   0.3261211   0.4498945   0.5935838 0.5728108
## bitrochanteric      0.4635623   0.4743455   0.5624033   0.6070064 0.7434893
## chest.depth         0.7404735   0.8080765   0.8004537   0.6130228 0.5440697
## chest.diam          0.8675862   0.8647893   0.7846368   0.5115517 0.5068641
## elbow.diam          0.8179573   0.8000336   0.6920480   0.4397734 0.4242717
## wrist.diam          0.7739053   0.7582419   0.6763861   0.3967711 0.4113337
## knee.diam           0.6729619   0.6452346   0.6060924   0.4504462 0.5579286
## ankle.diam          0.6889967   0.7002848   0.6266948   0.4180081 0.3894831
## shoulder.girth      1.0000000   0.9285451   0.8227046   0.5325323 0.5314731
## chest.girth         0.9285451   1.0000000   0.8819770   0.6258189 0.5760541
## waist.girth         0.8227046   0.8819770   1.0000000   0.7621070 0.6909509
## navel.girth         0.5325323   0.6258189   0.7621070   1.0000000 0.8198649
## hip.girth           0.5314731   0.5760541   0.6909509   0.8198649 1.0000000
## thigh.girth         0.3087823   0.3504549   0.4151366   0.5812397 0.8235774
## bicep.girth         0.8944054   0.9044726   0.7999314   0.5520385 0.5504800
## forearm.girth       0.8907049   0.8839423   0.7730307   0.4865365 0.4994283
## knee.girth          0.6183799   0.6070020   0.6542704   0.6221640 0.7399292
## calf.girth          0.6043730   0.5832171   0.6020694   0.4986900 0.6581096
## ankle.girth         0.6776462   0.6641805   0.6465919   0.5258192 0.5821043
## wrist.girth         0.8351320   0.8192825   0.7167030   0.4410299 0.4481897
## age                 0.1971285   0.2579937   0.3739958   0.4189151 0.2278693
## height              0.6807636   0.6281098   0.5597050   0.3252731 0.3384099
##                 thigh.girth bicep.girth forearm.girth knee.girth calf.girth
## weight          0.540676767   0.8656875     0.8650929  0.7919113  0.7447298
## biacromial      0.105677080   0.6956730     0.7519764  0.5076838  0.4976207
## pelvic.breadth  0.405582630   0.3085243     0.2993726  0.4761210  0.3879855
## bitrochanteric  0.516891268   0.4679921     0.4619208  0.6174524  0.5716573
## chest.depth     0.341728865   0.7294714     0.7155195  0.5626738  0.5297461
## chest.diam      0.294065600   0.7905738     0.7976906  0.5765679  0.5707056
## elbow.diam      0.191759902   0.8061469     0.8628347  0.5801664  0.5707920
## wrist.diam      0.181457879   0.7600526     0.8135324  0.5804820  0.5656750
## knee.diam       0.404915646   0.6775442     0.7130703  0.7135134  0.6600462
## ankle.diam      0.159930586   0.6779734     0.7315444  0.5118940  0.5115481
## shoulder.girth  0.308782294   0.8944054     0.8907049  0.6183799  0.6043730
## chest.girth     0.350454877   0.9044726     0.8839423  0.6070020  0.5832171
## waist.girth     0.415136602   0.7999314     0.7730307  0.6542704  0.6020694
## navel.girth     0.581239686   0.5520385     0.4865365  0.6221640  0.4986900
## hip.girth       0.823577426   0.5504800     0.4994283  0.7399292  0.6581096
## thigh.girth     1.000000000   0.3977879     0.3233755  0.6394071  0.6144429
## bicep.girth     0.397787922   1.0000000     0.9393573  0.6132996  0.6166695
## forearm.girth   0.323375544   0.9393573     1.0000000  0.6485153  0.6537984
## knee.girth      0.639407107   0.6132996     0.6485153  1.0000000  0.7990788
## calf.girth      0.614442942   0.6166695     0.6537984  0.7990788  1.0000000
## ankle.girth     0.413060662   0.6658508     0.7088273  0.7338806  0.7516910
## wrist.girth     0.228736643   0.8401296     0.9011480  0.6320826  0.6415886
## age            -0.007646679   0.1919124     0.1660848  0.1439582  0.1244519
## height          0.101726784   0.6070166     0.6753614  0.5259818  0.4419199
##                ankle.girth wrist.girth          age     height
## weight           0.7580149   0.8109316  0.221435966 0.72833068
## biacromial       0.5983044   0.7695432  0.083893026 0.76144089
## pelvic.breadth   0.3307441   0.2676489  0.258552894 0.36615649
## bitrochanteric   0.5307470   0.4649945  0.271764476 0.47412032
## chest.depth      0.5887505   0.6775134  0.308150549 0.56110106
## chest.diam       0.6259361   0.7507846  0.210246962 0.63574051
## elbow.diam       0.6649994   0.8432443  0.202890359 0.75231237
## wrist.diam       0.6484956   0.8659224  0.221514688 0.68485404
## knee.diam        0.6313086   0.7206948  0.180317957 0.58670658
## ankle.diam       0.6623997   0.7696373  0.248476291 0.69174166
## shoulder.girth   0.6776462   0.8351320  0.197128476 0.68076360
## chest.girth      0.6641805   0.8192825  0.257993695 0.62810979
## waist.girth      0.6465919   0.7167030  0.373995837 0.55970503
## navel.girth      0.5258192   0.4410299  0.418915127 0.32527309
## hip.girth        0.5821043   0.4481897  0.227869290 0.33840987
## thigh.girth      0.4130607   0.2287366 -0.007646679 0.10172678
## bicep.girth      0.6658508   0.8401296  0.191912416 0.60701664
## forearm.girth    0.7088273   0.9011480  0.166084760 0.67536145
## knee.girth       0.7338806   0.6320826  0.143958165 0.52598183
## calf.girth       0.7516910   0.6415886  0.124451947 0.44191990
## ankle.girth      1.0000000   0.7599351  0.156099154 0.56742251
## wrist.girth      0.7599351   1.0000000  0.199751271 0.70132692
## age              0.1560992   0.1997513  1.000000000 0.07945014
## height           0.5674225   0.7013269  0.079450138 1.00000000

Mapa de calor para el conjunto de entrenamiento

library(ggcorrplot)
library(ggplot2)
ggcorrplot(cordatatraining) + ggtitle('Matriz de Correlaciones conjunto entrenamiento')

Realizar el boxPlot para el conjunto de entrenamiento

boxplot(data_training [,] , main = "Boxplot conjunto de Entrenamiento", names=c("Weight","Biacromial", "Pelvic.Breadth", "Bitrochanteric", "Chest.depth", "Chest.diam", "Elbow.diam", "Wrist.diam", "Knee.diam", "Ankle.diam", "shoulder.girth","chest.girth","waist.girth","navel.girth","hip.girth","thigh.girth","bicep.girth","forearm.girth","knee.girth","calf.girth","ankle.girth","wrist.girth","age","height"),  cex.main = 1, cex.sub= 0.5 , ylab = 'Variabilidad', xlab = 'Variables', cex.lab=0.8, col = c("orange2", "yellow3", "green3", "grey","red", "brown", "black", 'blue', 'pink', 'violet'), axes=T, xlim=c(0, 24), outpch = 25, outbg = "red", whiskcol = 'black',  whisklty = 2, lty = 1, tcl=0.4, las=0.3 )

Realizar distancia de Mahalanobis para el conjunto de entrenamiento

datatrainingmahala= mahalanobis(data_training, colMeans(data_training), cov(data_training))
datatrainingmahala
##       225        31       290       174       505       274       493       440 
## 26.194018 25.709546 21.490218 22.506174 35.220547 14.463441 33.499513 40.618378 
##       385       196        68        55       310       319        79       238 
## 32.224008 34.703966 17.731543 14.621177 15.106492 14.738978 17.436865 39.613674 
##        43       370       362       301        65       382        16       355 
## 14.541845 33.067279 15.034040 23.497079 15.445694 16.161802 31.624288 16.195831 
##        89       277       498       134       152       282       112       147 
## 20.631842 17.034460 22.548189 25.071961 18.034085 16.979922 30.593899 13.920002 
##        42       489       330       415       207       212        78        99 
## 41.598322 16.499088 15.610000 16.718339 34.132052 32.180960 40.733315 22.458554 
##       376       163       243       391       221        86       144       327 
## 25.207235 38.041555 28.078822 14.294444 53.669179 23.007066 30.735565 16.151416 
##       359       200        58       241        25        45       263       183 
## 64.430760 14.912236 19.348603 26.297356 28.922634 22.724439 27.788672 34.535399 
##       487       326       494       349       442       234        95       271 
## 10.593756 21.486398 26.659523 59.185369 40.269449 28.896443 24.681002 30.935693 
##       345        40       206       185         1       322       333       188 
## 15.565651 27.582477 18.835250 24.001951 22.379758 18.793111 34.414321 20.766502 
##       427       469       438        85       311       167        71        46 
## 16.050417 17.411243 34.757719 18.273790 26.601371 31.442345 23.771845 21.904680 
##       281       193       218       194       133       216       244       392 
## 11.753179 13.205066 36.808749 28.850565 24.276854 15.076133 50.424916 24.054455 
##        20        92       286       334        98       298       410       291 
## 23.058452 22.531952 20.100386 17.676128 23.195049 13.727310 16.008354 15.335473 
##        49        97        66       109       104       434       153        88 
## 23.981526 14.762105 40.122127 29.285714 14.736456 29.937988 29.122028 14.326633 
##       158       324       491        60       264       422       375       108 
## 21.540947 16.948088 43.996979 16.042712 16.427527 22.462780 29.389344 14.938395 
##       266       157       187       466        19       418        33       429 
## 24.947435 13.347754 24.871921 45.008583 24.456135 26.208250 26.298852 13.422081 
##       151       368        63       120       474       354       265        96 
## 19.964984 13.047505 19.528759 31.605934 91.414082 20.712715 14.637515 13.896713 
##       454       453       395       222       361       424       171       313 
## 16.128262 26.573235 27.922064 54.838308 24.391549 20.303558 15.113033 21.717413 
##       293       273       409       471        54       154        47       235 
## 28.980823 11.391618 19.333639 11.031677 23.495496 17.661168 27.243477 32.629445 
##        24       249        69       233        38       335       433       125 
## 28.774028 16.783349 57.056563 17.900959 15.099892 17.946416 18.603972 15.798682 
##       192       126        30       401       170       114       145       197 
## 37.086275 22.129321 15.167479 18.298715 17.419470 28.459303 20.164306 20.232878 
##       476       146        53       384       247       118       386       331 
## 27.542716 12.961243 22.010504 23.998055 19.478145 20.731118 16.452837 50.355301 
##       398       159       123       300       283       230       437        94 
## 20.609880 38.836689 16.574543 16.868612 17.524248 26.292944 13.172299 23.934832 
##       137       190       229        15       284       122        75       268 
## 31.643274 19.879805 18.603516 24.238648 24.317745 14.675723 20.075512 22.412001 
##       226       480       251       208       176       232       164       485 
## 20.189712 24.996192 16.301204 23.087000 39.510458 25.137316 24.587964 24.189033 
##       227       337       179       342       100       460       470       117 
## 44.127906  6.020223 36.164946 20.695511 30.503689 21.013894 11.811969 19.275114 
##       270       357       215        44         4       140        14       482 
## 25.491598 14.934868 48.298389 18.060399 28.721024 44.408489 15.462554 49.180033 
##       308       365       364        90       444       350       239        91 
## 18.223513 29.525728 14.202892 20.173217 16.218454 12.302168 27.458350 25.646003 
##       172       106         9       374       169       447       473       358 
## 21.994449 29.447384 25.407851 13.147394 27.497097 16.201828 15.821554 13.736644 
##       383        73       461       278       344       378       347       201 
##  9.989903 25.776707 17.155139 25.415537  9.697280 17.364157 16.337041 24.575236 
##       356       317       450       210       105       173       425       414 
## 22.285741 17.847435 16.001532 15.630819 28.656396 23.086847 68.233766 29.060611 
##       205       186       388       387       237       346       236       285 
## 20.953191 25.466880 12.762412 11.100739 24.122908 34.047751 35.299376 11.211832 
##        48       416       130        17       412       141       160       259 
## 33.807237 21.293973 24.196286 27.364565 24.666734 47.713484 17.702840 12.386271 
##       380       379        61       110        83       287        84       340 
## 22.089715 13.323916 28.752257 46.598900 10.128350 16.605756 15.589872 18.310163 
##       451       486       363         3       306       316        13       341 
## 11.166936 14.993567 18.495779 28.018175 15.399787 22.407768 27.321852 20.004308 
##        27        36       223       138       431       240       490       446 
## 22.010772 24.129807 28.183030 21.116661 23.057489 29.722444 19.286336 34.682921 
##       488       155       143       312       294       305       127       111 
## 27.713718 25.951955 13.294384 42.503246 11.015734 15.428816 39.501660 25.090078 
##       455       393       289       257        12       432        77       184 
## 24.794065 21.733564 25.475873 28.056791 22.877468 25.388307 21.444711 22.530936 
##        87       296        74       231        59       439       224       492 
## 30.811816 22.937145 25.359481 34.716995 22.158292 23.272522 23.715452 24.145848 
##       309       421       452        10       307       499        57       397 
## 18.953603 19.228821 22.841718 30.245110 20.279143 52.641616 22.798214 17.851367 
##       328        39       260       394        93       329       302       132 
## 43.532125 24.635011 13.320361 25.803913 23.507117 16.736233 20.616181 46.811505 
##       477       135       242         2       178        62       445       403 
## 40.167860 32.968381 21.537634 28.114907 36.403163 18.458722 16.492321 11.204608 
##       336        50       139       116       276       150       129        21 
## 11.449744 14.530366 19.740080 40.570851 14.736187 22.643353 41.305824 24.884268 
##       448       280       288       177       390       204       338       303 
## 35.059653 12.721675 11.151057 18.939663 17.041501 31.288922 19.763461 16.176121 
##       148        29       128       161        22       246       162       406 
## 15.949695 17.192242 17.439451 36.166018 25.284986 25.028278 30.860808 30.950071 
##       339       497       202       441       325        32       211       275 
## 17.744515 15.949515 39.605249 21.813905 25.235779 22.723012 16.147899 22.011749 
##       506       255       267       420       168       245       463       373 
## 22.409372 24.393988 14.446973 24.867237 21.312993 33.736314 26.200613 16.884736 
##        67       217        64       198       456       405       203       175 
## 16.050287 26.362549 16.609949 47.399470 32.190364 36.103400 21.929888 28.321725 
##       299         7       258         6       481       478       297        80 
## 21.099574 23.697328 20.791805 14.298626 27.788535 15.391506 18.433544 23.720635 
##       321       252       195       272       449       199       166       372 
## 26.252761 16.016476 24.779470 15.392229 15.018857 25.499805 27.579895 12.351127 
##        41       315       292        56       367       475       314       351 
## 21.149495 27.243038 19.835325 19.257557 32.482239 24.385143 16.099707 14.879685 
##       462        34        35        70       102       436 
## 14.795642 26.925216 21.461534  9.770562 25.035458 24.454800
summary(datatrainingmahala)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    6.02   16.61   22.41   23.94   27.77   91.41
boxplot(datatrainingmahala,  col = "skyblue", xlab="Distancia Mahalanobis",main = "Distancia de Mahalanobis del conjunto de entrenamiento", outpch = 25, outbg = "red")

boxplot.stats(datatrainingmahala)
## $stats
##       337       287       506       481       474 
##  6.020223 16.605756 22.410686 27.788535 44.408489 
## 
## $n
## [1] 406
## 
## $conf
## [1] 21.53380 23.28757
## 
## $out
##      221      359      349      244      466      474      222       69 
## 53.66918 64.43076 59.18537 50.42492 45.00858 91.41408 54.83831 57.05656 
##      331      215      482      425      141      110      499      132 
## 50.35530 48.29839 49.18003 68.23377 47.71348 46.59890 52.64162 46.81150 
##      198 
## 47.39947
  1. Realizar el modelo de regresión múltiple con todas las variables involucradas y la validación del modelo.

Modelo de regresión múltiple para el conjunto de entrenamiento

modelolm1=lm(weight~., data = data_training)
summary(modelolm1)
## 
## Call:
## lm(formula = weight ~ ., data = data_training)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.1245 -1.2765  0.0074  1.2548  8.5173 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    -118.39184    2.85443 -41.477  < 2e-16 ***
## biacromial       -0.05318    0.07416  -0.717 0.473760    
## pelvic.breadth    0.08507    0.07289   1.167 0.243865    
## bitrochanteric   -0.05284    0.10320  -0.512 0.608924    
## chest.depth       0.31068    0.07741   4.014 7.20e-05 ***
## chest.diam        0.15778    0.09031   1.747 0.081415 .  
## elbow.diam        0.03080    0.20745   0.148 0.882052    
## wrist.diam        0.21581    0.25379   0.850 0.395665    
## knee.diam         0.41704    0.15175   2.748 0.006275 ** 
## ankle.diam        0.04212    0.17336   0.243 0.808177    
## shoulder.girth    0.05592    0.03517   1.590 0.112663    
## chest.girth       0.14624    0.04225   3.461 0.000598 ***
## waist.girth       0.33340    0.02752  12.116  < 2e-16 ***
## navel.girth       0.02950    0.02723   1.083 0.279383    
## hip.girth         0.25363    0.05468   4.638 4.83e-06 ***
## thigh.girth       0.22158    0.05884   3.766 0.000192 ***
## bicep.girth       0.13134    0.09050   1.451 0.147524    
## forearm.girth     0.35670    0.15183   2.349 0.019316 *  
## knee.girth        0.21726    0.09190   2.364 0.018569 *  
## calf.girth        0.39131    0.07802   5.015 8.12e-07 ***
## ankle.girth       0.05629    0.11433   0.492 0.622776    
## wrist.girth      -0.31358    0.24225  -1.294 0.196288    
## age              -0.05850    0.01370  -4.270 2.47e-05 ***
## height            0.30778    0.02034  15.132  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.108 on 382 degrees of freedom
## Multiple R-squared:  0.9765, Adjusted R-squared:  0.975 
## F-statistic: 688.9 on 23 and 382 DF,  p-value: < 2.2e-16

Validación del modelo de regresión múltiple para el conjunto de entrenamiento

Análisis de los residuos

residuosmodelo1=rstandard(modelolm1)
valores.ajustados1=fitted(modelolm1)

plot(valores.ajustados1, residuosmodelo1, xlab = "Valores ajustados", main="Gráfico dispersión de residuos - conjunto entrenamiento" , ylab = "Residuos estandarizados", col = "blue")

Entender la normalidad de residuos con gráfico de histograma incluyendo curva de distribución empírica y teórica para el conjunto de entrenamiento

x=seq(-2,4,0.01)
hist(residuosmodelo1, breaks = "FD", col = "lightblue", main="Histograma de residuos - datos entrenamiento", 
     xlab="Residuos", prob = TRUE, ylim = c(0,0.5))
theo.res=dnorm(x, mean = 0, sd = 1)
lines(theo.res ~ x, col="violet", lwd = 2)
lines(density(residuosmodelo1), col = "blue", lwd = 2)

Gráfico de QQ plot para el conjunto de entrenamiento

qqnorm(residuosmodelo1, main= "QQ plot de residuos - datos entrenamiento")
qqline(residuosmodelo1, col="blue", lwd = 2)

  1. Comparar el primer modelo utilizando el comando predict () sobre el segundo conjunto de datos data.body2 y calculando el error cuadratico medio para cada caso
prediccion1=predict(modelolm1, data_test)
prediccion1
##         5         8        11        18        23        26        28        37 
##  79.96526  78.89438  80.38535  67.33191  67.65617  89.38856  73.43100  69.90253 
##        51        52        72        76        81        82       101       103 
##  75.59995  82.38469  77.76965  65.94783  96.77197  80.45650  86.71403  57.25589 
##       107       113       115       119       121       124       131       136 
##  84.40548  62.94834  82.80462  81.74278  81.73293 107.47256  75.38555  79.64496 
##       142       149       156       165       180       181       182       189 
##  87.76814  73.90585  66.92714  68.59073  81.14602  70.35148  83.18543  78.33134 
##       191       209       213       214       219       220       228       248 
##  79.67180  73.60900  93.78390  68.42034  79.11079  81.95546  78.09756  51.46534 
##       250       253       254       256       261       262       269       279 
##  47.69543  56.84060  44.30635  70.04823  40.35570  49.56773  83.43927  54.78193 
##       295       304       318       320       323       332       343       348 
##  50.67515  63.32607  45.91001  48.91492  54.20725  52.58160  47.86306  53.29895 
##       352       353       360       366       369       371       377       381 
##  59.45190  59.05218  54.48530  42.38543  62.37061  56.30421  56.83411  39.85894 
##       389       396       399       400       402       404       407       408 
##  53.29277  65.52477  55.67100  63.13899  72.76570  54.57043  86.46361  55.50647 
##       411       413       417       419       423       426       428       430 
##  77.74966  67.43435  60.16900  59.30239  63.54912  57.09038  78.95714  54.61854 
##       435       443       457       458       459       464       465       467 
##  58.51437  61.90194  80.50878  69.45860  59.26224  49.99025  64.50755  67.51135 
##       468       472       479       483       484       495       496       500 
##  64.85336  55.82649  72.72166  62.06329  55.62538  56.70487  62.46031  68.66276 
##       501       502       503       504       507 
##  62.57023  74.67758  70.99442  56.14787  71.02845

Datos verdaderos de conjunto dato testeo

data_test[,1]
##   [1]  78.8  78.4  76.6  70.0  66.2  89.6  76.4  67.2  75.6  86.2  78.9  63.9
##  [13]  93.0  80.9  86.4  53.9  83.2  65.0  84.1  82.7  79.5 116.4  75.0  76.4
##  [25]  86.4  72.7  68.6  65.9  80.5  70.0  81.8  73.6  82.7  72.3  91.1  67.3
##  [37]  76.6  85.0  77.3  51.6  49.2  59.0  47.6  66.8  42.0  50.0  82.5  55.0
##  [49]  50.2  60.7  48.7  50.0  55.7  52.8  48.6  53.6  58.4  56.2  51.8  45.0
##  [61]  60.2  58.8  54.4  43.2  54.6  63.6  56.8  64.1  72.3  55.9  84.5  55.9
##  [73]  76.4  65.9  58.6  59.1  60.0  54.1  75.9  57.3  58.6  62.0  80.9  70.5
##  [85]  60.9  52.7  62.7  66.4  67.3  57.7  72.3  63.6  53.4  57.3  64.1  68.2
##  [97]  61.4  76.8  71.8  55.5  67.3

Cálculo suma errores totales

Error1=sum((data_test[,1]-prediccion1)^2)
Error1
## [1] 482.2333

Cálculo error medio

ME1.test = mean((data_test[,1]-prediccion1)^2)
ME1.test
## [1] 4.774587

Calculo error cuadrático medio

MEC1.test = mean((residuosmodelo1)^2)
MEC1.test
## [1] 1.009834

Análisis de valores verdaderos vs calculados conjunto entrenamiento.

plot(data_test[,1], prediccion1, main = 'Predicción valores verdaderos vs calculados - dato test' , xlab = "Valores verdaderos - weight", 
     ylab = "Valores calculados - weight", col = "blue")
abline(0,1, col = "orange", lwd = 2)

  1. Realizar el modelo de regresión lineal múltiple utilizando el método de selección de variables Mixed Selection.

pent: variables con p-valor menor 0.05 serán incluídas en el modelo.

prem: variables con p-valor mayor 0.5 serán eliminadas del modelo.

progress: lógica que muestra las variables incluidas en cada paso

details: muestra el modelo en cada paso

modelolm2 = ols_step_both_p(modelolm1, pent= 0.05, prem = 0.5, details = TRUE, progress = TRUE, 
                      print_plot=TRUE)
## Stepwise Selection Method   
## ---------------------------
## 
## Candidate Terms: 
## 
## 1. biacromial 
## 2. pelvic.breadth 
## 3. bitrochanteric 
## 4. chest.depth 
## 5. chest.diam 
## 6. elbow.diam 
## 7. wrist.diam 
## 8. knee.diam 
## 9. ankle.diam 
## 10. shoulder.girth 
## 11. chest.girth 
## 12. waist.girth 
## 13. navel.girth 
## 14. hip.girth 
## 15. thigh.girth 
## 16. bicep.girth 
## 17. forearm.girth 
## 18. knee.girth 
## 19. calf.girth 
## 20. ankle.girth 
## 21. wrist.girth 
## 22. age 
## 23. height 
## 
## We are selecting variables based on p value...
## 
## 
## Stepwise Selection: Step 1 
## 
## - waist.girth added 
## 
##                         Model Summary                          
## --------------------------------------------------------------
## R                       0.905       RMSE                5.675 
## R-Squared               0.820       Coef. Var           8.140 
## Adj. R-Squared          0.819       MSE                32.203 
## Pred R-Squared          0.818       MAE                 4.458 
## --------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    59124.940          1      59124.940    1835.991    0.0000 
## Residual      13010.126        404         32.203                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                     Parameter Estimates                                     
## -------------------------------------------------------------------------------------------
##       model       Beta    Std. Error    Std. Beta      t        Sig       lower      upper 
## -------------------------------------------------------------------------------------------
## (Intercept)    -14.579         1.987                 -7.336    0.000    -18.485    -10.672 
## waist.girth      1.089         0.025        0.905    42.848    0.000      1.039      1.139 
## -------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 2 
## 
## - height added 
## 
##                         Model Summary                          
## --------------------------------------------------------------
## R                       0.944       RMSE                4.414 
## R-Squared               0.891       Coef. Var           6.332 
## Adj. R-Squared          0.891       MSE                19.483 
## Pred R-Squared          0.889       MAE                 3.372 
## --------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    64283.477          2      32141.738    1649.745    0.0000 
## Residual       7851.589        403         19.483                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                     Parameter Estimates                                      
## --------------------------------------------------------------------------------------------
##       model       Beta    Std. Error    Std. Beta       t        Sig       lower      upper 
## --------------------------------------------------------------------------------------------
## (Intercept)    -74.949         4.019                 -18.648    0.000    -82.851    -67.048 
## waist.girth      0.872         0.024        0.725     36.544    0.000      0.825      0.918 
##      height      0.450         0.028        0.323     16.272    0.000      0.396      0.504 
## --------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                          
## --------------------------------------------------------------
## R                       0.944       RMSE                4.414 
## R-Squared               0.891       Coef. Var           6.332 
## Adj. R-Squared          0.891       MSE                19.483 
## Pred R-Squared          0.889       MAE                 3.372 
## --------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    64283.477          2      32141.738    1649.745    0.0000 
## Residual       7851.589        403         19.483                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                     Parameter Estimates                                      
## --------------------------------------------------------------------------------------------
##       model       Beta    Std. Error    Std. Beta       t        Sig       lower      upper 
## --------------------------------------------------------------------------------------------
## (Intercept)    -74.949         4.019                 -18.648    0.000    -82.851    -67.048 
## waist.girth      0.872         0.024        0.725     36.544    0.000      0.825      0.918 
##      height      0.450         0.028        0.323     16.272    0.000      0.396      0.504 
## --------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 3 
## 
## - thigh.girth added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.972       RMSE               3.155 
## R-Squared               0.945       Coef. Var          4.526 
## Adj. R-Squared          0.944       MSE                9.955 
## Pred R-Squared          0.943       MAE                2.416 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    68133.199          3      22711.066    2281.398    0.0000 
## Residual       4001.867        402          9.955                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                       Parameter Estimates                                       
## -----------------------------------------------------------------------------------------------
##       model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -----------------------------------------------------------------------------------------------
## (Intercept)    -119.047         3.645                 -32.664    0.000    -126.212    -111.882 
## waist.girth       0.710         0.019        0.590     37.501    0.000       0.673       0.747 
##      height       0.518         0.020        0.372     25.827    0.000       0.479       0.558 
## thigh.girth       0.789         0.040        0.258     19.665    0.000       0.710       0.867 
## -----------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.972       RMSE               3.155 
## R-Squared               0.945       Coef. Var          4.526 
## Adj. R-Squared          0.944       MSE                9.955 
## Pred R-Squared          0.943       MAE                2.416 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    68133.199          3      22711.066    2281.398    0.0000 
## Residual       4001.867        402          9.955                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                       Parameter Estimates                                       
## -----------------------------------------------------------------------------------------------
##       model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -----------------------------------------------------------------------------------------------
## (Intercept)    -119.047         3.645                 -32.664    0.000    -126.212    -111.882 
## waist.girth       0.710         0.019        0.590     37.501    0.000       0.673       0.747 
##      height       0.518         0.020        0.372     25.827    0.000       0.479       0.558 
## thigh.girth       0.789         0.040        0.258     19.665    0.000       0.710       0.867 
## -----------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 4 
## 
## - forearm.girth added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.981       RMSE               2.609 
## R-Squared               0.962       Coef. Var          3.743 
## Adj. R-Squared          0.962       MSE                6.807 
## Pred R-Squared          0.961       MAE                1.960 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    69405.425          4      17351.356    2549.015    0.0000 
## Residual       2729.641        401          6.807                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -113.358         3.042                 -37.260    0.000    -119.339    -107.377 
##   waist.girth       0.555         0.019        0.461     28.705    0.000       0.517       0.593 
##        height       0.398         0.019        0.285     21.158    0.000       0.361       0.435 
##   thigh.girth       0.745         0.033        0.243     22.352    0.000       0.679       0.810 
## forearm.girth       1.132         0.083        0.237     13.671    0.000       0.969       1.294 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.981       RMSE               2.609 
## R-Squared               0.962       Coef. Var          3.743 
## Adj. R-Squared          0.962       MSE                6.807 
## Pred R-Squared          0.961       MAE                1.960 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    69405.425          4      17351.356    2549.015    0.0000 
## Residual       2729.641        401          6.807                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -113.358         3.042                 -37.260    0.000    -119.339    -107.377 
##   waist.girth       0.555         0.019        0.461     28.705    0.000       0.517       0.593 
##        height       0.398         0.019        0.285     21.158    0.000       0.361       0.435 
##   thigh.girth       0.745         0.033        0.243     22.352    0.000       0.679       0.810 
## forearm.girth       1.132         0.083        0.237     13.671    0.000       0.969       1.294 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 5 
## 
## - calf.girth added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.983       RMSE               2.491 
## R-Squared               0.966       Coef. Var          3.574 
## Adj. R-Squared          0.965       MSE                6.207 
## Pred R-Squared          0.964       MAE                1.842 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    69652.373          5      13930.475    2244.414    0.0000 
## Residual       2482.693        400          6.207                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -115.077         2.918                 -39.439    0.000    -120.813    -109.340 
##   waist.girth       0.550         0.018        0.457     29.757    0.000       0.513       0.586 
##        height       0.385         0.018        0.276     21.332    0.000       0.350       0.421 
##   thigh.girth       0.614         0.038        0.201     16.155    0.000       0.539       0.688 
## forearm.girth       0.948         0.084        0.199     11.255    0.000       0.782       1.113 
##    calf.girth       0.457         0.072        0.094      6.308    0.000       0.314       0.599 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.983       RMSE               2.491 
## R-Squared               0.966       Coef. Var          3.574 
## Adj. R-Squared          0.965       MSE                6.207 
## Pred R-Squared          0.964       MAE                1.842 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    69652.373          5      13930.475    2244.414    0.0000 
## Residual       2482.693        400          6.207                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -115.077         2.918                 -39.439    0.000    -120.813    -109.340 
##   waist.girth       0.550         0.018        0.457     29.757    0.000       0.513       0.586 
##        height       0.385         0.018        0.276     21.332    0.000       0.350       0.421 
##   thigh.girth       0.614         0.038        0.201     16.155    0.000       0.539       0.688 
## forearm.girth       0.948         0.084        0.199     11.255    0.000       0.782       1.113 
##    calf.girth       0.457         0.072        0.094      6.308    0.000       0.314       0.599 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 6 
## 
## - chest.girth added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.985       RMSE               2.350 
## R-Squared               0.969       Coef. Var          3.371 
## Adj. R-Squared          0.969       MSE                5.522 
## Pred R-Squared          0.968       MAE                1.765 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    69931.748          6      11655.291    2110.663    0.0000 
## Residual       2203.318        399          5.522                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -118.274         2.789                 -42.412    0.000    -123.756    -112.792 
##   waist.girth       0.439         0.023        0.365     18.844    0.000       0.394       0.485 
##        height       0.378         0.017        0.271     22.163    0.000       0.345       0.412 
##   thigh.girth       0.600         0.036        0.196     16.714    0.000       0.529       0.670 
## forearm.girth       0.488         0.102        0.102      4.764    0.000       0.287       0.689 
##    calf.girth       0.539         0.069        0.111      7.782    0.000       0.403       0.675 
##   chest.girth       0.243         0.034        0.182      7.113    0.000       0.176       0.310 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.985       RMSE               2.350 
## R-Squared               0.969       Coef. Var          3.371 
## Adj. R-Squared          0.969       MSE                5.522 
## Pred R-Squared          0.968       MAE                1.765 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    69931.748          6      11655.291    2110.663    0.0000 
## Residual       2203.318        399          5.522                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -118.274         2.789                 -42.412    0.000    -123.756    -112.792 
##   waist.girth       0.439         0.023        0.365     18.844    0.000       0.394       0.485 
##        height       0.378         0.017        0.271     22.163    0.000       0.345       0.412 
##   thigh.girth       0.600         0.036        0.196     16.714    0.000       0.529       0.670 
## forearm.girth       0.488         0.102        0.102      4.764    0.000       0.287       0.689 
##    calf.girth       0.539         0.069        0.111      7.782    0.000       0.403       0.675 
##   chest.girth       0.243         0.034        0.182      7.113    0.000       0.176       0.310 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 7 
## 
## - hip.girth added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.986       RMSE               2.229 
## R-Squared               0.973       Coef. Var          3.197 
## Adj. R-Squared          0.972       MSE                4.968 
## Pred R-Squared          0.971       MAE                1.670 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70157.849          7      10022.550    2017.469    0.0000 
## Residual       1977.217        398          4.968                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -122.360         2.713                 -45.093    0.000    -127.695    -117.026 
##   waist.girth       0.358         0.025        0.298     14.191    0.000       0.308       0.407 
##        height       0.357         0.016        0.256     21.666    0.000       0.325       0.389 
##   thigh.girth       0.326         0.053        0.107      6.148    0.000       0.222       0.430 
## forearm.girth       0.591         0.098        0.124      6.008    0.000       0.398       0.784 
##    calf.girth       0.512         0.066        0.106      7.774    0.000       0.382       0.641 
##   chest.girth       0.250         0.032        0.187      7.712    0.000       0.186       0.314 
##     hip.girth       0.282         0.042        0.138      6.746    0.000       0.200       0.364 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.986       RMSE               2.229 
## R-Squared               0.973       Coef. Var          3.197 
## Adj. R-Squared          0.972       MSE                4.968 
## Pred R-Squared          0.971       MAE                1.670 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70157.849          7      10022.550    2017.469    0.0000 
## Residual       1977.217        398          4.968                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -122.360         2.713                 -45.093    0.000    -127.695    -117.026 
##   waist.girth       0.358         0.025        0.298     14.191    0.000       0.308       0.407 
##        height       0.357         0.016        0.256     21.666    0.000       0.325       0.389 
##   thigh.girth       0.326         0.053        0.107      6.148    0.000       0.222       0.430 
## forearm.girth       0.591         0.098        0.124      6.008    0.000       0.398       0.784 
##    calf.girth       0.512         0.066        0.106      7.774    0.000       0.382       0.641 
##   chest.girth       0.250         0.032        0.187      7.712    0.000       0.186       0.314 
##     hip.girth       0.282         0.042        0.138      6.746    0.000       0.200       0.364 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 8 
## 
## - knee.diam added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.987       RMSE               2.199 
## R-Squared               0.973       Coef. Var          3.154 
## Adj. R-Squared          0.973       MSE                4.834 
## Pred R-Squared          0.972       MAE                1.654 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70216.126          8       8777.016    1815.834    0.0000 
## Residual       1918.940        397          4.834                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -123.356         2.692                 -45.825    0.000    -128.648    -118.064 
##   waist.girth       0.364         0.025        0.303     14.594    0.000       0.315       0.413 
##        height       0.345         0.017        0.248     20.788    0.000       0.313       0.378 
##   thigh.girth       0.335         0.052        0.110      6.409    0.000       0.233       0.438 
## forearm.girth       0.503         0.100        0.105      5.018    0.000       0.306       0.700 
##    calf.girth       0.456         0.067        0.094      6.812    0.000       0.324       0.587 
##   chest.girth       0.250         0.032        0.188      7.830    0.000       0.187       0.313 
##     hip.girth       0.257         0.042        0.126      6.155    0.000       0.175       0.339 
##     knee.diam       0.459         0.132        0.046      3.472    0.001       0.199       0.719 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.987       RMSE               2.199 
## R-Squared               0.973       Coef. Var          3.154 
## Adj. R-Squared          0.973       MSE                4.834 
## Pred R-Squared          0.972       MAE                1.654 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70216.126          8       8777.016    1815.834    0.0000 
## Residual       1918.940        397          4.834                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -123.356         2.692                 -45.825    0.000    -128.648    -118.064 
##   waist.girth       0.364         0.025        0.303     14.594    0.000       0.315       0.413 
##        height       0.345         0.017        0.248     20.788    0.000       0.313       0.378 
##   thigh.girth       0.335         0.052        0.110      6.409    0.000       0.233       0.438 
## forearm.girth       0.503         0.100        0.105      5.018    0.000       0.306       0.700 
##    calf.girth       0.456         0.067        0.094      6.812    0.000       0.324       0.587 
##   chest.girth       0.250         0.032        0.188      7.830    0.000       0.187       0.313 
##     hip.girth       0.257         0.042        0.126      6.155    0.000       0.175       0.339 
##     knee.diam       0.459         0.132        0.046      3.472    0.001       0.199       0.719 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 9 
## 
## - age added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.987       RMSE               2.165 
## R-Squared               0.974       Coef. Var          3.106 
## Adj. R-Squared          0.974       MSE                4.689 
## Pred R-Squared          0.973       MAE                1.630 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70278.408          9       7808.712    1665.493    0.0000 
## Residual       1856.657        396          4.689                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -121.271         2.712                 -44.713    0.000    -126.603    -115.939 
##   waist.girth       0.386         0.025        0.321     15.260    0.000       0.337       0.436 
##        height       0.334         0.017        0.240     20.069    0.000       0.301       0.367 
##   thigh.girth       0.280         0.054        0.091      5.196    0.000       0.174       0.385 
## forearm.girth       0.472         0.099        0.099      4.758    0.000       0.277       0.666 
##    calf.girth       0.462         0.066        0.095      7.006    0.000       0.332       0.591 
##   chest.girth       0.248         0.031        0.186      7.868    0.000       0.186       0.310 
##     hip.girth       0.285         0.042        0.140      6.812    0.000       0.203       0.367 
##     knee.diam       0.503         0.131        0.050      3.845    0.000       0.246       0.760 
##           age      -0.047         0.013       -0.034     -3.645    0.000      -0.073      -0.022 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.987       RMSE               2.165 
## R-Squared               0.974       Coef. Var          3.106 
## Adj. R-Squared          0.974       MSE                4.689 
## Pred R-Squared          0.973       MAE                1.630 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70278.408          9       7808.712    1665.493    0.0000 
## Residual       1856.657        396          4.689                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -121.271         2.712                 -44.713    0.000    -126.603    -115.939 
##   waist.girth       0.386         0.025        0.321     15.260    0.000       0.337       0.436 
##        height       0.334         0.017        0.240     20.069    0.000       0.301       0.367 
##   thigh.girth       0.280         0.054        0.091      5.196    0.000       0.174       0.385 
## forearm.girth       0.472         0.099        0.099      4.758    0.000       0.277       0.666 
##    calf.girth       0.462         0.066        0.095      7.006    0.000       0.332       0.591 
##   chest.girth       0.248         0.031        0.186      7.868    0.000       0.186       0.310 
##     hip.girth       0.285         0.042        0.140      6.812    0.000       0.203       0.367 
##     knee.diam       0.503         0.131        0.050      3.845    0.000       0.246       0.760 
##           age      -0.047         0.013       -0.034     -3.645    0.000      -0.073      -0.022 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 10 
## 
## - chest.depth added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.987       RMSE               2.132 
## R-Squared               0.975       Coef. Var          3.058 
## Adj. R-Squared          0.974       MSE                4.546 
## Pred R-Squared          0.973       MAE                1.611 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70339.455         10       7033.945    1547.333    0.0000 
## Residual       1795.611        395          4.546                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -120.430         2.680                 -44.929    0.000    -125.699    -115.160 
##   waist.girth       0.364         0.026        0.303     14.194    0.000       0.314       0.415 
##        height       0.324         0.017        0.232     19.477    0.000       0.291       0.356 
##   thigh.girth       0.262         0.053        0.086      4.934    0.000       0.158       0.367 
## forearm.girth       0.476         0.098        0.100      4.877    0.000       0.284       0.668 
##    calf.girth       0.451         0.065        0.093      6.938    0.000       0.323       0.578 
##   chest.girth       0.216         0.032        0.162      6.710    0.000       0.153       0.279 
##     hip.girth       0.294         0.041        0.144      7.111    0.000       0.212       0.375 
##     knee.diam       0.549         0.129        0.055      4.240    0.000       0.294       0.803 
##           age      -0.053         0.013       -0.039     -4.147    0.000      -0.079      -0.028 
##   chest.depth       0.279         0.076        0.053      3.665    0.000       0.129       0.428 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.987       RMSE               2.132 
## R-Squared               0.975       Coef. Var          3.058 
## Adj. R-Squared          0.974       MSE                4.546 
## Pred R-Squared          0.973       MAE                1.611 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70339.455         10       7033.945    1547.333    0.0000 
## Residual       1795.611        395          4.546                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -120.430         2.680                 -44.929    0.000    -125.699    -115.160 
##   waist.girth       0.364         0.026        0.303     14.194    0.000       0.314       0.415 
##        height       0.324         0.017        0.232     19.477    0.000       0.291       0.356 
##   thigh.girth       0.262         0.053        0.086      4.934    0.000       0.158       0.367 
## forearm.girth       0.476         0.098        0.100      4.877    0.000       0.284       0.668 
##    calf.girth       0.451         0.065        0.093      6.938    0.000       0.323       0.578 
##   chest.girth       0.216         0.032        0.162      6.710    0.000       0.153       0.279 
##     hip.girth       0.294         0.041        0.144      7.111    0.000       0.212       0.375 
##     knee.diam       0.549         0.129        0.055      4.240    0.000       0.294       0.803 
##           age      -0.053         0.013       -0.039     -4.147    0.000      -0.079      -0.028 
##   chest.depth       0.279         0.076        0.053      3.665    0.000       0.129       0.428 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## Stepwise Selection: Step 11 
## 
## - knee.girth added 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.988       RMSE               2.118 
## R-Squared               0.975       Coef. Var          3.038 
## Adj. R-Squared          0.975       MSE                4.486 
## Pred R-Squared          0.974       MAE                1.597 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70367.485         11       6397.044    1425.923    0.0000 
## Residual       1767.581        394          4.486                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -119.942         2.670                 -44.923    0.000    -125.192    -114.693 
##   waist.girth       0.358         0.026        0.297     13.955    0.000       0.307       0.408 
##        height       0.315         0.017        0.226     18.671    0.000       0.282       0.348 
##   thigh.girth       0.244         0.053        0.080      4.575    0.000       0.139       0.349 
## forearm.girth       0.461         0.097        0.097      4.745    0.000       0.270       0.652 
##    calf.girth       0.380         0.070        0.079      5.403    0.000       0.242       0.519 
##   chest.girth       0.226         0.032        0.170      7.017    0.000       0.163       0.290 
##     hip.girth       0.277         0.042        0.136      6.676    0.000       0.196       0.359 
##     knee.diam       0.464         0.133        0.046      3.494    0.001       0.203       0.726 
##           age      -0.053         0.013       -0.038     -4.114    0.000      -0.078      -0.027 
##   chest.depth       0.273         0.076        0.052      3.613    0.000       0.124       0.422 
##    knee.girth       0.215         0.086        0.041      2.500    0.013       0.046       0.384 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.988       RMSE               2.118 
## R-Squared               0.975       Coef. Var          3.038 
## Adj. R-Squared          0.975       MSE                4.486 
## Pred R-Squared          0.974       MAE                1.597 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70367.485         11       6397.044    1425.923    0.0000 
## Residual       1767.581        394          4.486                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -119.942         2.670                 -44.923    0.000    -125.192    -114.693 
##   waist.girth       0.358         0.026        0.297     13.955    0.000       0.307       0.408 
##        height       0.315         0.017        0.226     18.671    0.000       0.282       0.348 
##   thigh.girth       0.244         0.053        0.080      4.575    0.000       0.139       0.349 
## forearm.girth       0.461         0.097        0.097      4.745    0.000       0.270       0.652 
##    calf.girth       0.380         0.070        0.079      5.403    0.000       0.242       0.519 
##   chest.girth       0.226         0.032        0.170      7.017    0.000       0.163       0.290 
##     hip.girth       0.277         0.042        0.136      6.676    0.000       0.196       0.359 
##     knee.diam       0.464         0.133        0.046      3.494    0.001       0.203       0.726 
##           age      -0.053         0.013       -0.038     -4.114    0.000      -0.078      -0.027 
##   chest.depth       0.273         0.076        0.052      3.613    0.000       0.124       0.422 
##    knee.girth       0.215         0.086        0.041      2.500    0.013       0.046       0.384 
## -------------------------------------------------------------------------------------------------
## 
## 
## 
## No more variables to be added/removed.
## 
## 
## Final Model Output 
## ------------------
## 
##                         Model Summary                         
## -------------------------------------------------------------
## R                       0.988       RMSE               2.118 
## R-Squared               0.975       Coef. Var          3.038 
## Adj. R-Squared          0.975       MSE                4.486 
## Pred R-Squared          0.974       MAE                1.597 
## -------------------------------------------------------------
##  RMSE: Root Mean Square Error 
##  MSE: Mean Square Error 
##  MAE: Mean Absolute Error 
## 
##                                  ANOVA                                   
## ------------------------------------------------------------------------
##                  Sum of                                                 
##                 Squares         DF    Mean Square       F          Sig. 
## ------------------------------------------------------------------------
## Regression    70367.485         11       6397.044    1425.923    0.0000 
## Residual       1767.581        394          4.486                       
## Total         72135.066        405                                      
## ------------------------------------------------------------------------
## 
##                                        Parameter Estimates                                        
## -------------------------------------------------------------------------------------------------
##         model        Beta    Std. Error    Std. Beta       t        Sig        lower       upper 
## -------------------------------------------------------------------------------------------------
##   (Intercept)    -119.942         2.670                 -44.923    0.000    -125.192    -114.693 
##   waist.girth       0.358         0.026        0.297     13.955    0.000       0.307       0.408 
##        height       0.315         0.017        0.226     18.671    0.000       0.282       0.348 
##   thigh.girth       0.244         0.053        0.080      4.575    0.000       0.139       0.349 
## forearm.girth       0.461         0.097        0.097      4.745    0.000       0.270       0.652 
##    calf.girth       0.380         0.070        0.079      5.403    0.000       0.242       0.519 
##   chest.girth       0.226         0.032        0.170      7.017    0.000       0.163       0.290 
##     hip.girth       0.277         0.042        0.136      6.676    0.000       0.196       0.359 
##     knee.diam       0.464         0.133        0.046      3.494    0.001       0.203       0.726 
##           age      -0.053         0.013       -0.038     -4.114    0.000      -0.078      -0.027 
##   chest.depth       0.273         0.076        0.052      3.613    0.000       0.124       0.422 
##    knee.girth       0.215         0.086        0.041      2.500    0.013       0.046       0.384 
## -------------------------------------------------------------------------------------------------
modelolm2 = modelolm2$model
coef.estimados2 = summary(modelolm2)[["coefficients"]][1:12]
coef.estimados2
##  [1] -119.94238480    0.35764567    0.31508021    0.24398655    0.46092806
##  [6]    0.38040510    0.22623013    0.27722863    0.46439092   -0.05257939
## [11]    0.27296379    0.21472081
summary(modelolm2)
## 
## Call:
## lm(formula = paste(response, "~", paste(preds, collapse = " + ")), 
##     data = l)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4622 -1.3170  0.0429  1.1664  8.4828 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -119.94238    2.66995 -44.923  < 2e-16 ***
## waist.girth      0.35765    0.02563  13.955  < 2e-16 ***
## height           0.31508    0.01688  18.671  < 2e-16 ***
## thigh.girth      0.24399    0.05333   4.575 6.39e-06 ***
## forearm.girth    0.46093    0.09715   4.745 2.93e-06 ***
## calf.girth       0.38041    0.07040   5.403 1.14e-07 ***
## chest.girth      0.22623    0.03224   7.017 9.93e-12 ***
## hip.girth        0.27723    0.04153   6.676 8.36e-11 ***
## knee.diam        0.46439    0.13290   3.494 0.000529 ***
## age             -0.05258    0.01278  -4.114 4.73e-05 ***
## chest.depth      0.27296    0.07556   3.613 0.000342 ***
## knee.girth       0.21472    0.08590   2.500 0.012839 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.118 on 394 degrees of freedom
## Multiple R-squared:  0.9755, Adjusted R-squared:  0.9748 
## F-statistic:  1426 on 11 and 394 DF,  p-value: < 2.2e-16

Validación del modelo de regresión multiple utilizando el método de selección de variables mixed selection

Análisis de los residuos

residuosmodelo2=modelolm2$residuals
valores.ajustados2=modelolm2$fitted.values

residuos2_sd=(residuosmodelo2-mean(residuosmodelo2))/sd(residuosmodelo2) 

plot(valores.ajustados2, residuos2_sd,  main="Gráfico dispersión de residuos - mixed selection", xlab = "Valores ajustados", ylab = "Residuos estandarizados", col = 'red')

Entender la normalidad de residuos con gráfico de histograma incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection.

x=seq(-4,4,0.01)

hist(residuos2_sd, col = "yellow", main="Histograma de residuos - mixed selection", xlab="Residuos",prob = TRUE, ylim = c(0,0.45))
theo.res=dnorm(x, mean = 0, sd = 1)
lines(theo.res ~ x, col="orange", lwd = 2 )
lines(density(residuos2_sd), col="violet", lwd = 2)

Entender la normalidad de residuos con gráfico de QQ-plot incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection

qqnorm(residuos2_sd, main = 'QQ plot residuos - mixed selection')
qqline(residuos2_sd, col="yellow", lwd = 2)

  1. Comparar el primer modelo utilizando el comando predict () sobre el segundo conjunto de datos data_test y calculando el error cuadrático medio para el caso de método de selección de variables de mixed selection

Valores calculados

prediccion2=predict(modelolm2, data_test)
prediccion2
##         5         8        11        18        23        26        28        37 
##  80.72743  79.24969  79.95961  66.83213  67.33634  89.48429  73.07341  69.40112 
##        51        52        72        76        81        82       101       103 
##  75.27207  82.32266  77.85605  65.78213  96.03548  80.70151  86.45037  56.68141 
##       107       113       115       119       121       124       131       136 
##  83.78599  63.10515  83.11556  81.51716  81.30201 107.30961  75.92296  80.34579 
##       142       149       156       165       180       181       182       189 
##  88.54618  74.04851  66.59301  67.89705  81.54746  70.03948  82.76415  78.32543 
##       191       209       213       214       219       220       228       248 
##  79.67837  73.32619  93.50596  69.31488  79.25658  81.44547  78.08806  51.70696 
##       250       253       254       256       261       262       269       279 
##  48.20772  56.53656  44.27263  70.34666  40.34998  49.44525  83.52371  54.91052 
##       295       304       318       320       323       332       343       348 
##  50.81201  63.48092  45.82615  48.78875  54.47768  52.29242  47.90619  53.58749 
##       352       353       360       366       369       371       377       381 
##  59.45335  58.94962  54.43594  42.40387  62.86626  56.58972  56.67717  39.74312 
##       389       396       399       400       402       404       407       408 
##  52.94583  65.40099  55.52300  63.22358  71.75722  54.26886  86.43317  54.60946 
##       411       413       417       419       423       426       428       430 
##  77.61650  66.86771  59.56761  59.18733  63.50211  56.83988  78.47048  54.29735 
##       435       443       457       458       459       464       465       467 
##  58.14458  61.71876  79.97678  69.09143  59.03228  49.83376  64.46797  67.59804 
##       468       472       479       483       484       495       496       500 
##  64.42073  55.63807  72.86264  61.82624  56.12825  56.60151  62.66825  68.62638 
##       501       502       503       504       507 
##  62.26284  74.90940  70.61341  55.54792  70.89471

Valores verdaderos de datos de testeo

data_test[,1]
##   [1]  78.8  78.4  76.6  70.0  66.2  89.6  76.4  67.2  75.6  86.2  78.9  63.9
##  [13]  93.0  80.9  86.4  53.9  83.2  65.0  84.1  82.7  79.5 116.4  75.0  76.4
##  [25]  86.4  72.7  68.6  65.9  80.5  70.0  81.8  73.6  82.7  72.3  91.1  67.3
##  [37]  76.6  85.0  77.3  51.6  49.2  59.0  47.6  66.8  42.0  50.0  82.5  55.0
##  [49]  50.2  60.7  48.7  50.0  55.7  52.8  48.6  53.6  58.4  56.2  51.8  45.0
##  [61]  60.2  58.8  54.4  43.2  54.6  63.6  56.8  64.1  72.3  55.9  84.5  55.9
##  [73]  76.4  65.9  58.6  59.1  60.0  54.1  75.9  57.3  58.6  62.0  80.9  70.5
##  [85]  60.9  52.7  62.7  66.4  67.3  57.7  72.3  63.6  53.4  57.3  64.1  68.2
##  [97]  61.4  76.8  71.8  55.5  67.3

Cálculo error total método mixed selection

Error2=sum((data_test[,1]-prediccion2)^2)
Error2
## [1] 493.5445

Cálculo error medio

ME2.test = mean((data_test[,1]-prediccion2)^2)
ME2.test
## [1] 4.886579

Cálculo error cuadrático medio

ME2C.test = mean((residuos2_sd)^2)
ME2C.test
## [1] 0.9975369
plot(data_test[,1], prediccion2, main = 'Predicción valores verdaderos vs calculados - mixed selection' , xlab = "Valores verdaderos - weight", 
     ylab = "Valores calculados - weight", col = "red")
abline(0,1, col = "yellow", lwd = 2)

  1. Estudiar el comando pcr() del paquete pls.

  2. Realizar el modelo de regresión múltiple tomando las componentes principales del conjunto de variables explicativas

modelolm3 = pcr(weight~., data = data_training, scale = TRUE)
summary(modelolm3)
## Data:    X dimension: 406 23 
##  Y dimension: 406 1
## Fit method: svdpc
## Number of components considered: 23
## TRAINING: % variance explained
##         1 comps  2 comps  3 comps  4 comps  5 comps  6 comps  7 comps  8 comps
## X         60.60    71.61    77.19    81.79    84.95    86.90    88.66    90.07
## weight    93.57    94.29    94.32    94.92    95.91    96.16    96.18    96.22
##         9 comps  10 comps  11 comps  12 comps  13 comps  14 comps  15 comps
## X         91.43     92.68     93.82      94.8     95.68     96.42     97.11
## weight    96.61     96.71     96.72      96.8     96.87     96.90     96.91
##         16 comps  17 comps  18 comps  19 comps  20 comps  21 comps  22 comps
## X          97.71     98.23     98.67     99.05     99.39     99.64     99.83
## weight     97.32     97.43     97.52     97.61     97.64     97.64     97.64
##         23 comps
## X         100.00
## weight     97.65

Cargas de las primeras trece componentes, opte por las primeras 13 ya que con esta llego al 95% de variabilidad

modelolm3$loadings[,1]
##     biacromial pelvic.breadth bitrochanteric    chest.depth     chest.diam 
##    -0.21032753    -0.13388929    -0.18091096    -0.21269802    -0.22926149 
##     elbow.diam     wrist.diam      knee.diam     ankle.diam shoulder.girth 
##    -0.23317205    -0.22389980    -0.21600375    -0.21327140    -0.24254593 
##    chest.girth    waist.girth    navel.girth      hip.girth    thigh.girth 
##    -0.24407644    -0.23582105    -0.18316191    -0.18964057    -0.12644436 
##    bicep.girth  forearm.girth     knee.girth     calf.girth    ankle.girth 
##    -0.23980088    -0.24409088    -0.21190311    -0.20314335    -0.21612029 
##    wrist.girth            age         height 
##    -0.23790957    -0.07430121    -0.19764948
coef(modelolm3, intercept = TRUE, ncomp = 13)
## , , 13 comps
## 
##                       weight
## (Intercept)    -122.16079039
## biacromial        0.56549094
## pelvic.breadth    0.25760855
## bitrochanteric   -0.25466220
## chest.depth       1.52779938
## chest.diam        1.13388545
## elbow.diam        0.50846417
## wrist.diam        0.46329245
## knee.diam        -0.03418391
## ankle.diam        0.21734385
## shoulder.girth    1.08100745
## chest.girth       1.13542875
## waist.girth       1.33782447
## navel.girth       1.24795181
## hip.girth         1.26289524
## thigh.girth       1.40420794
## bicep.girth       0.49869093
## forearm.girth     0.42438275
## knee.girth        1.40056835
## calf.girth        0.55131043
## ankle.girth      -0.12412805
## wrist.girth       0.04528131
## age              -0.42755690
## height            2.12424903

Validación del modelo de regresión multiple tomando los componentes principales del conjunto de varialbes explicativas

residuosmodelo3= residuals(modelolm3)
residuosmodelo3
## , , 1 comps
## 
##          weight
## 225  0.76999003
## 31  -1.61414021
## 290  3.51931070
## 174 -0.41364923
## 505 -3.45560446
## 274 -1.16562918
## 493  3.28417841
## 440  2.74599687
## 385  4.53672223
## 196 -3.17368294
## 68  -2.02891085
## 55   0.36392400
## 310  4.43429804
## 319  1.90363676
## 79  -0.12328796
## 238 -6.42347837
## 43  -0.73819440
## 370  4.06071248
## 362  3.79749967
## 301  1.34931288
## 65  -0.64075607
## 382  1.57668989
## 16  -0.69453779
## 355 -2.39689067
## 89   1.34344039
## 277 -0.53158845
## 498  1.55298172
## 134  0.29377543
## 152  2.44058709
## 282  1.47636113
## 112  2.57922933
## 147 -3.81198432
## 42   2.00412425
## 489  3.62967740
## 330 -1.60774475
## 415 -4.64188080
## 207 -2.82131154
## 212  7.76583531
## 78  -2.34475807
## 99   1.59326083
## 376  0.33874016
## 163 -6.89676735
## 243  3.21484641
## 391  0.36321209
## 221 11.90461891
## 86   0.19602948
## 144  1.01011852
## 327  3.60969232
## 359  7.07353469
## 200  0.01851722
## 58  -6.51062098
## 241 -9.64543767
## 25  -1.81075499
## 45  -1.55684617
## 263 -0.39382731
## 183  0.73122277
## 487  0.54724155
## 326 -1.33725294
## 494 -3.34544430
## 349  5.19206176
## 442 -0.86316825
## 234 -5.17936497
## 95   6.07110770
## 271  3.87599001
## 345 -1.80878883
## 40  -2.89317626
## 206 -0.86509221
## 185  4.16856478
## 1   -1.62092175
## 322 -5.08076823
## 333  0.37519498
## 188 -0.19559103
## 427 -1.46605347
## 469 -0.37784577
## 438 -3.56525869
## 85   0.59960707
## 311 -0.91565190
## 167  2.83815078
## 71  -5.82846519
## 46  -1.32979728
## 281  0.87260828
## 193 -3.83615532
## 218 -2.69927133
## 194  6.66874496
## 133  2.72940432
## 216 -2.39956617
## 244  5.17967622
## 392  2.29987879
## 20  -2.58998033
## 92   1.28011873
## 286  3.40652255
## 334 -0.98323102
## 98   0.88578570
## 298 -1.23061681
## 410  4.17575006
## 291  0.61024653
## 49   4.46250345
## 97   0.02650534
## 66  -7.48600224
## 109 -0.91692308
## 104  1.10233469
## 434  2.06552961
## 153  4.24324457
## 88  -0.69415023
## 158  0.15776974
## 324 -1.18835224
## 491 -1.22256777
## 60  -2.59643945
## 264  2.39606696
## 422  0.51543224
## 375  2.01914212
## 108 -2.70364687
## 266  7.17884250
## 157 -3.02062729
## 187 -1.63511794
## 466  8.61459342
## 19  -7.84838372
## 418 -1.47706930
## 33  -4.95909171
## 429 -2.33272847
## 151 -1.80727541
## 368  2.32947718
## 63  -4.13640404
## 120 -0.91127275
## 474  6.50797265
## 354  2.09199637
## 265 -0.66794054
## 96  -2.36995772
## 454 -8.76359149
## 453  1.97883240
## 395  1.28201523
## 222  3.70253250
## 361  0.27898074
## 424 -3.96951246
## 171  0.82862132
## 313  2.74691890
## 293 -0.36448110
## 273 -1.27795296
## 409 -2.79460121
## 471  1.40017495
## 54   4.82949886
## 154 -0.99607076
## 47   5.62148711
## 235  0.06339252
## 24   3.25207494
## 249 -0.07489862
## 69   6.96287896
## 233  1.73522174
## 38  -4.90971487
## 335  4.41700837
## 433 -3.05885563
## 125 -0.19050074
## 192  5.94733678
## 126  3.64916359
## 30  -0.39793976
## 401 -5.16859740
## 170 -5.55619065
## 114 -1.83342096
## 145  2.66703078
## 197 -5.59415915
## 476  3.92868815
## 146  2.76226323
## 53  -6.52767492
## 384  5.38108836
## 247  3.74251270
## 118 -1.25982169
## 386 -0.89086238
## 331  1.21331311
## 398 -0.70004692
## 159  8.04798443
## 123 -0.53755219
## 300 -2.63373062
## 283  0.41911623
## 230  2.78044533
## 437 -2.48182663
## 94   0.34423628
## 137 -0.12688816
## 190 -2.31019643
## 229 -1.34381792
## 15  -2.12951461
## 284  1.93592373
## 122 -2.79145703
## 75  -6.55371783
## 268  0.49870937
## 226 -3.40894195
## 480  0.20020589
## 251  0.45464871
## 208  1.30625119
## 176 -1.29255512
## 232  1.35331603
## 164 -5.40844380
## 485  6.15923991
## 227 -1.81033130
## 337  0.08530359
## 179 -1.91758504
## 342  1.64556242
## 100 -0.96324576
## 460  8.35485363
## 470 -1.06954570
## 117 -2.72561575
## 270  2.37698783
## 357 -0.73489869
## 215 -7.23218379
## 44  -2.65075820
## 4   -1.91905425
## 140 -8.91954480
## 14   1.11448521
## 482  9.31736164
## 308 -2.75362752
## 365  2.71884500
## 364  0.53634208
## 90  -1.91310902
## 444 -1.92205639
## 350  3.01530458
## 239 -0.16486107
## 91  -3.09783404
## 172 -3.57027269
## 106 -3.79358122
## 9   -4.54135267
## 374  2.44678751
## 169  3.97537204
## 447 -3.14577013
## 473  0.54985810
## 358  0.43061043
## 383 -1.23851676
## 73  -1.69986897
## 461 -0.28824248
## 278 -1.14591548
## 344  0.33258386
## 378  5.45561153
## 347  0.07638332
## 201 -5.84909983
## 356  4.11172777
## 317 -1.58474506
## 450 -4.79583009
## 210  1.75804546
## 105  0.18465700
## 173 -2.44656953
## 425  2.06482017
## 414 -4.57968224
## 205 -0.12006328
## 186  5.08768282
## 388 -1.22546809
## 387  3.83568779
## 237 -1.45527130
## 346 -2.03476567
## 236 -4.49495053
## 285  0.12364003
## 48  -0.12312329
## 416 -4.89076741
## 130 -2.69200807
## 17   4.98855823
## 412 -2.42888008
## 141 14.00151346
## 160 -2.60424913
## 259 -0.12755541
## 380  0.14835149
## 379  2.49252477
## 61  -2.39408419
## 110 -2.62262852
## 83   2.24344171
## 287 -3.15246506
## 84  -3.21797667
## 340 -2.41451761
## 451  2.22226950
## 486 -2.57552086
## 363  0.94451063
## 3    3.06483027
## 306  3.20664000
## 316 -1.48219626
## 13   0.08025394
## 341 -0.64042927
## 27  -1.73097606
## 36  -4.58687104
## 223  0.16040887
## 138 -0.12006728
## 431 -2.44705374
## 240  1.78126776
## 490  2.22551868
## 446 -6.14180892
## 488  2.42404025
## 155  1.65957498
## 143  0.44156976
## 312  1.34294825
## 294  0.18074078
## 305  1.28468744
## 127 -0.26417085
## 111 -2.06435399
## 455 -2.30018454
## 393  5.93333761
## 289 -5.20331120
## 257 -2.19107792
## 12  -0.55078388
## 432 -2.25981365
## 77   2.08797329
## 184  0.76255734
## 87  -6.06053198
## 296  5.83976914
## 74  -3.25195550
## 231 -3.78029985
## 59  -3.30106641
## 439 -0.21497656
## 224  3.71069139
## 492 -0.15730569
## 309  1.78877443
## 421 -0.82690101
## 452 -2.99058537
## 10  -0.20416979
## 307 -0.03648486
## 499  1.14494569
## 57  -3.92417122
## 397 -4.14432075
## 328 -3.11375232
## 39  -1.29610539
## 260  2.45827359
## 394  0.40585328
## 93  -0.68462517
## 329  1.65006253
## 302 -0.37883385
## 132 -3.23392837
## 477  3.44736568
## 135  1.38600456
## 242  2.35986000
## 2   -5.74757734
## 178  3.84468270
## 62  -2.87236807
## 445  1.64477102
## 403 -2.49356527
## 336  5.99899043
## 50  -0.55166181
## 139 -1.23847047
## 116  1.95057558
## 276 -0.09467187
## 150  1.20894322
## 129  0.09074971
## 21   2.92892149
## 448 -3.82969082
## 280  5.64964749
## 288  1.77940658
## 177  2.91591349
## 390 -0.12630214
## 204  4.64380062
## 338  1.52021474
## 303 -1.08003723
## 148  4.40881611
## 29  -1.88927502
## 128  2.39044784
## 161  5.11609466
## 22  -3.06348595
## 246 -5.23762247
## 162 -3.01664713
## 406  0.02636195
## 339 -1.74667546
## 497  1.45295768
## 202  5.40263964
## 441 -3.54590477
## 325 -6.47931410
## 32  -2.34572233
## 211 -5.82506877
## 275  1.26841009
## 506  0.23861102
## 255 -0.42456484
## 267  1.16280303
## 420  2.03300847
## 168  1.11796688
## 245 -4.57292946
## 463  0.45507790
## 373  0.28394419
## 67   1.22027943
## 217 -4.42868060
## 64  -2.95214452
## 198  7.56214315
## 456 -5.45217876
## 405  1.02653445
## 203 -2.79983578
## 175 -1.43430156
## 299  6.59613095
## 7   -5.03412849
## 258  4.55989125
## 6   -1.47790794
## 481  0.86218549
## 478  3.81944875
## 297 -1.33994288
## 80   1.54632101
## 321 -1.78268741
## 252 -0.93812258
## 195  1.57886624
## 272  0.90241257
## 449  1.66940019
## 199  6.10146925
## 166  0.58739608
## 372 -0.15347195
## 41   3.22432693
## 315  1.82806077
## 292  3.85923465
## 56  -1.81298722
## 367  0.49982567
## 475  5.80708554
## 314  2.89233863
## 351  3.57166574
## 462  0.44309231
## 34   0.72254969
## 35  -1.98864525
## 70  -2.74797389
## 102 -1.72286941
## 436 -2.68953046
## 
## , , 2 comps
## 
##           weight
## 225  1.591393632
## 31  -0.956807410
## 290  3.375719522
## 174  0.484237951
## 505 -2.318963754
## 274 -2.040402660
## 493  2.997409202
## 440  1.693565237
## 385  5.905877472
## 196 -3.530273208
## 68  -2.237076959
## 55   1.990070713
## 310  3.369394421
## 319  2.396433147
## 79   0.665485034
## 238 -4.319928595
## 43  -0.335106490
## 370  4.698482529
## 362  3.294690130
## 301  2.781692080
## 65   0.245675918
## 382  1.113981447
## 16   0.319576034
## 355 -3.160254325
## 89   2.460835397
## 277  0.227200696
## 498  2.001058775
## 134 -0.928518658
## 152  4.154607527
## 282  1.497289595
## 112  3.306164435
## 147 -2.737888614
## 42   2.172395979
## 489  3.105622731
## 330 -1.406083286
## 415 -5.606740802
## 207 -2.059333523
## 212  7.459063527
## 78  -1.506367614
## 99   1.971569763
## 376  0.401384822
## 163 -6.652527584
## 243  4.514336133
## 391  0.545093059
## 221 11.769697027
## 86   0.557349338
## 144  1.198871697
## 327  3.223350701
## 359  4.349406529
## 200  0.852495726
## 58  -5.721924908
## 241 -6.877485688
## 25  -0.946453182
## 45  -1.615319179
## 263 -0.840600987
## 183  1.594801675
## 487 -0.835989323
## 326 -2.122588295
## 494 -2.785863924
## 349  1.748613412
## 442 -3.952726541
## 234 -4.524598012
## 95   5.283842971
## 271  1.902496620
## 345 -2.285525718
## 40  -1.152097085
## 206  0.856549369
## 185  4.200491161
## 1   -0.235505273
## 322 -6.378840127
## 333  0.692189769
## 188  0.810248020
## 427 -0.539703178
## 469 -0.792292665
## 438 -5.841274165
## 85   0.933922962
## 311 -2.437058865
## 167  0.257010574
## 71  -5.700460952
## 46  -0.782566606
## 281  0.545855465
## 193 -3.227671167
## 218 -3.544074464
## 194  6.093996406
## 133  3.019739739
## 216 -1.983835750
## 244  3.911838698
## 392  2.306478710
## 20  -2.397104296
## 92   1.931377869
## 286  1.950701561
## 334 -1.301058409
## 98   1.587824329
## 298 -1.179561830
## 410  3.051978844
## 291  1.581070608
## 49   5.103998437
## 97   1.152546551
## 66  -7.395015330
## 109 -0.101133449
## 104  2.084179840
## 434  3.419929376
## 153  5.673961106
## 88  -0.485548738
## 158  1.062091951
## 324 -1.671862368
## 491 -3.240044427
## 60  -1.970612300
## 264  2.738373663
## 422  0.126321290
## 375  1.654071407
## 108 -1.734943596
## 266  6.854360201
## 157 -0.800296076
## 187 -1.672395015
## 466  6.422156632
## 19  -6.817368156
## 418 -2.645921417
## 33  -3.840059128
## 429 -2.547330608
## 151 -0.373625623
## 368  2.670869743
## 63  -2.247808842
## 120  1.112002703
## 474  1.540956632
## 354  0.967740624
## 265 -1.901175425
## 96  -2.140545614
## 454 -9.272375219
## 453  0.094511201
## 395  0.175833726
## 222  6.262309800
## 361  0.534088546
## 424 -4.231601271
## 171  0.276284367
## 313  2.558992816
## 293 -0.649309632
## 273 -1.215819485
## 409 -2.741327176
## 471  0.740109642
## 54   5.206034019
## 154 -0.369981076
## 47   5.745753598
## 235  1.811261987
## 24   3.157827304
## 249 -0.386804355
## 69   5.764065457
## 233  3.145029341
## 38  -4.423965160
## 335  4.413453748
## 433 -3.854116770
## 125 -0.156401343
## 192  6.909807530
## 126  4.284916184
## 30   0.384284546
## 401 -4.711158672
## 170 -5.060666672
## 114 -2.539585604
## 145  1.873844562
## 197 -4.607053891
## 476  1.803192592
## 146  3.151171466
## 53  -5.503464584
## 384  3.453284786
## 247  3.779388152
## 118 -1.267397235
## 386 -0.609167476
## 331  1.266010294
## 398 -2.588908021
## 159  7.261987453
## 123  0.496387086
## 300 -2.535221713
## 283  1.575008303
## 230  3.158998786
## 437 -2.966246018
## 94   1.118782709
## 137  0.584124637
## 190 -1.210801410
## 229 -0.058124302
## 15  -1.298065371
## 284  0.183021417
## 122 -2.138033941
## 75  -4.881098004
## 268  0.206168113
## 226 -3.238549896
## 480  0.388660709
## 251 -1.216423392
## 208  1.759402119
## 176 -1.262655831
## 232  1.855864202
## 164 -4.192987418
## 485  5.714566996
## 227 -1.412462859
## 337 -0.425003234
## 179 -1.661206365
## 342  2.210377349
## 100 -2.572742196
## 460  7.101954998
## 470 -2.657957642
## 117 -1.359185144
## 270  2.160845272
## 357 -0.944142248
## 215 -7.911921380
## 44  -1.079786633
## 4   -0.947791278
## 140 -6.698826316
## 14   1.258142200
## 482  7.730076268
## 308 -2.097106618
## 365  3.123270201
## 364 -0.033633446
## 90  -0.445636718
## 444 -3.066966085
## 350  3.106665943
## 239  1.330872679
## 91  -2.234085620
## 172 -2.236015031
## 106 -2.873759857
## 9   -2.598974851
## 374  1.300485008
## 169  2.970341781
## 447 -3.578642628
## 473  0.266705681
## 358  0.106833875
## 383 -0.821201473
## 73  -1.513375068
## 461 -0.266186520
## 278 -1.493815849
## 344  0.392777960
## 378  4.992197940
## 347  0.038641391
## 201 -4.355926462
## 356  2.448810688
## 317 -1.242173889
## 450 -4.584295980
## 210  1.427837386
## 105  2.965657025
## 173 -1.268033590
## 425 -0.836369689
## 414 -6.447676986
## 205 -0.276020394
## 186  4.673172515
## 388 -0.960707876
## 387  3.037828407
## 237 -1.431672075
## 346 -1.866742992
## 236 -3.274752063
## 285  0.512860040
## 48  -0.635606499
## 416 -5.324982642
## 130 -1.705576226
## 17   4.174812630
## 412 -3.340140166
## 141 13.807186123
## 160 -1.343938092
## 259  0.306002290
## 380  0.328560154
## 379  2.291338368
## 61  -1.322375990
## 110 -0.196728801
## 83   3.403954523
## 287 -2.996256233
## 84  -2.069825339
## 340 -2.777481153
## 451  2.238252243
## 486 -2.724966117
## 363  1.194842372
## 3    3.794604234
## 306  2.416440769
## 316 -2.675532900
## 13   0.272643766
## 341  0.257915434
## 27  -2.503664343
## 36  -3.052414850
## 223  1.846408175
## 138 -0.541571734
## 431 -3.944026502
## 240  2.131869688
## 490  2.557252112
## 446 -6.705987954
## 488  2.435338666
## 155  0.914274891
## 143  1.705373947
## 312 -0.373235548
## 294  0.005103727
## 305  0.957401529
## 127  0.917117720
## 111 -1.234324497
## 455 -2.101503022
## 393  4.000965191
## 289 -5.397356958
## 257 -3.719281665
## 12   0.734087757
## 432 -3.948605141
## 77   2.606957558
## 184  1.198154790
## 87  -4.296087332
## 296  4.866360543
## 74  -1.394051671
## 231 -3.775559180
## 59  -3.976879264
## 439 -0.075472155
## 224  3.335523944
## 492 -0.623743249
## 309 -0.171990731
## 421 -2.251546044
## 452 -3.277967077
## 10   0.411150139
## 307 -0.415576607
## 499 -1.478209227
## 57  -3.473318259
## 397 -4.493980203
## 328 -3.771908988
## 39  -0.350829398
## 260  1.806048352
## 394 -0.262862432
## 93   0.572107509
## 329  1.688235208
## 302 -1.151114264
## 132 -2.088529000
## 477  0.018831697
## 135  3.334481691
## 242  3.859031568
## 2   -4.610245215
## 178  3.130429973
## 62  -3.291264492
## 445  1.444826780
## 403 -2.439658304
## 336  4.896404582
## 50   1.538409951
## 139  0.595996930
## 116  3.768598095
## 276 -1.146246934
## 150  2.480858761
## 129 -0.818119898
## 21   3.499919000
## 448 -6.400208911
## 280  3.856397275
## 288  1.071657804
## 177  3.068186241
## 390 -0.046405303
## 204  4.940358755
## 338 -0.301091137
## 303 -0.801812383
## 148  4.780306895
## 29  -1.047450608
## 128  2.479558692
## 161  3.609229834
## 22  -1.984616916
## 246 -5.208574355
## 162 -3.184342465
## 406 -2.498393084
## 339 -2.053688515
## 497  1.077429599
## 202  4.804418755
## 441 -5.462013726
## 325 -6.036955783
## 32  -0.146742644
## 211 -5.304072902
## 275  0.885148398
## 506 -0.954861995
## 255 -2.113171945
## 267  0.307095744
## 420  0.018653643
## 168  2.311404040
## 245 -4.049554115
## 463 -1.786043415
## 373 -0.303572043
## 67   2.084311868
## 217 -4.469203853
## 64  -1.300448921
## 198  5.114557693
## 456 -6.832840416
## 405 -1.067744824
## 203 -1.473774781
## 175 -1.234603041
## 299  4.237653932
## 7   -4.174449163
## 258  4.333187686
## 6   -0.216320728
## 481 -0.529973617
## 478  3.062242389
## 297 -2.443360044
## 80   1.983842875
## 321 -2.465559691
## 252 -1.374822656
## 195  1.639386853
## 272 -0.721437632
## 449  1.216973666
## 199  5.959373858
## 166  0.192454991
## 372  0.330682970
## 41   3.133809156
## 315 -0.716654310
## 292  3.249187526
## 56  -0.088541913
## 367  1.291713177
## 475  6.383003031
## 314  3.549519160
## 351  1.849211020
## 462 -0.156911599
## 34   0.271072208
## 35  -1.112801681
## 70  -1.361382586
## 102 -0.528441744
## 436 -4.353316843
## 
## , , 3 comps
## 
##           weight
## 225  1.806948131
## 31  -1.058068873
## 290  3.368827394
## 174  0.681411244
## 505 -2.330446783
## 274 -2.239199812
## 493  2.889289706
## 440  1.809346896
## 385  5.931089035
## 196 -2.940428571
## 68  -2.295686946
## 55   2.246140730
## 310  3.354860888
## 319  2.614480407
## 79   0.549560731
## 238 -4.301315645
## 43  -0.616933195
## 370  4.667826698
## 362  3.120083105
## 301  2.693019160
## 65   0.110903643
## 382  1.196738815
## 16   0.104778787
## 355 -3.291672450
## 89   2.463824702
## 277  0.142863201
## 498  1.776822022
## 134 -1.132356995
## 152  4.217853892
## 282  1.557265590
## 112  3.377311399
## 147 -2.720357368
## 42   1.912427905
## 489  3.292236451
## 330 -1.600928493
## 415 -5.858732593
## 207 -1.553545302
## 212  7.306913352
## 78  -1.480125736
## 99   1.759768175
## 376  0.238744192
## 163 -6.347714924
## 243  5.059656305
## 391  0.688929474
## 221 11.987334683
## 86   0.698277636
## 144  1.527450592
## 327  2.818949912
## 359  3.972106025
## 200  1.326934574
## 58  -5.485391220
## 241 -6.809252832
## 25  -1.283939758
## 45  -1.698976311
## 263 -0.922494298
## 183  1.475431541
## 487 -0.962390285
## 326 -1.976699680
## 494 -2.739377608
## 349  1.354597837
## 442 -4.044923793
## 234 -4.031299402
## 95   5.346877091
## 271  1.602628039
## 345 -2.272150518
## 40  -1.485000728
## 206  0.688063948
## 185  4.141026440
## 1   -0.460526509
## 322 -6.252641812
## 333  0.374351786
## 188  1.319175628
## 427 -0.685158174
## 469 -0.978762009
## 438 -5.782348519
## 85   1.070627722
## 311 -2.939408601
## 167  0.435517361
## 71  -5.685668823
## 46  -1.142370322
## 281  0.515920427
## 193 -2.915617778
## 218 -3.482308254
## 194  6.651478642
## 133  3.353410681
## 216 -1.724887173
## 244  3.959724659
## 392  2.187313161
## 20  -2.776901555
## 92   2.146653634
## 286  1.704245844
## 334 -1.067865860
## 98   1.431671209
## 298 -1.352344978
## 410  2.939148993
## 291  1.562358259
## 49   5.020035263
## 97   0.991498776
## 66  -6.913622053
## 109 -0.219680325
## 104  2.199447933
## 434  3.549483694
## 153  5.650064721
## 88  -0.571663059
## 158  1.047100505
## 324 -1.644205701
## 491 -3.002651138
## 60  -1.537580528
## 264  2.829722127
## 422  0.139882183
## 375  1.872343658
## 108 -1.785794938
## 266  6.799290160
## 157 -0.775571050
## 187 -1.187716152
## 466  6.400489087
## 19  -6.865671186
## 418 -2.265555737
## 33  -3.945294566
## 429 -2.546528165
## 151 -0.146715185
## 368  2.459495269
## 63  -2.155872509
## 120  1.162236385
## 474  1.354855415
## 354  0.536505268
## 265 -1.987050389
## 96  -2.094518055
## 454 -9.036470553
## 453  0.330861477
## 395  0.240259998
## 222  6.645529980
## 361  0.308529019
## 424 -3.991726107
## 171  0.496479187
## 313  2.606941177
## 293 -0.836272798
## 273 -1.207373835
## 409 -2.853371967
## 471  0.637839454
## 54   5.120530741
## 154 -0.305302581
## 47   5.474429155
## 235  1.816328419
## 24   3.074426379
## 249 -0.880373845
## 69   5.860001665
## 233  3.475412607
## 38  -4.599153994
## 335  4.430026490
## 433 -3.931423644
## 125  0.055833908
## 192  6.963273911
## 126  4.253591262
## 30   0.351663223
## 401 -4.516461422
## 170 -5.039782038
## 114 -2.378420032
## 145  2.138151569
## 197 -4.801415886
## 476  1.865491479
## 146  3.188271627
## 53  -5.515271417
## 384  3.157148702
## 247  3.762601352
## 118 -1.366662424
## 386 -0.870793119
## 331  0.985957693
## 398 -2.331329103
## 159  7.527429551
## 123  0.542441272
## 300 -2.544881370
## 283  1.414311551
## 230  3.330879899
## 437 -2.656148582
## 94   0.911118914
## 137  0.673939636
## 190 -0.900597495
## 229  0.080931688
## 15  -1.268463955
## 284  0.260699397
## 122 -2.324670290
## 75  -5.019174337
## 268  0.245936851
## 226 -2.871060918
## 480  0.494757378
## 251 -1.312824065
## 208  1.564081850
## 176 -1.486023991
## 232  2.353411891
## 164 -4.069971922
## 485  5.829777950
## 227 -1.041074157
## 337 -0.613040871
## 179 -1.869761701
## 342  2.218351962
## 100 -2.560646999
## 460  7.121514279
## 470 -2.882446908
## 117 -1.341755691
## 270  2.216883666
## 357 -1.291570132
## 215 -8.188366913
## 44  -1.062303591
## 4   -1.086345683
## 140 -6.859649344
## 14   1.262496163
## 482  8.296431602
## 308 -1.854213999
## 365  2.993726543
## 364 -0.382258637
## 90  -0.485245400
## 444 -2.854094792
## 350  3.087831801
## 239  1.181475834
## 91  -2.303383882
## 172 -2.377131459
## 106 -2.957211613
## 9   -2.810676728
## 374  1.539592773
## 169  2.918264313
## 447 -3.320230368
## 473  0.303042454
## 358  0.036745708
## 383 -0.703280200
## 73  -1.676129587
## 461 -0.332362979
## 278 -1.162832651
## 344  0.257015939
## 378  4.931725815
## 347 -0.003767639
## 201 -4.275230352
## 356  2.159281093
## 317 -1.014417188
## 450 -4.590815284
## 210  1.564133055
## 105  2.755015645
## 173 -1.243288216
## 425 -0.831006014
## 414 -5.724851663
## 205 -0.315513179
## 186  5.178670979
## 388 -1.065224987
## 387  3.160886123
## 237 -1.215257012
## 346 -2.167713024
## 236 -3.302823788
## 285  0.488210346
## 48  -0.937243201
## 416 -5.119511916
## 130 -1.838135523
## 17   3.888269444
## 412 -3.283478710
## 141 13.607463727
## 160 -1.196359656
## 259  0.162487874
## 380  0.152560439
## 379  2.181637762
## 61  -1.425570677
## 110 -0.267360601
## 83   3.341192376
## 287 -3.168816310
## 84  -1.958540339
## 340 -2.688978390
## 451  2.124113662
## 486 -2.635718028
## 363  1.198069360
## 3    3.730231633
## 306  2.728836244
## 316 -2.926483722
## 13  -0.091557964
## 341  0.218496177
## 27  -2.720957884
## 36  -3.201212647
## 223  1.841382259
## 138 -0.116045856
## 431 -3.889473236
## 240  2.418450174
## 490  2.603480125
## 446 -6.402037904
## 488  2.176910902
## 155  0.719225345
## 143  1.658226725
## 312 -0.167253106
## 294 -0.248062660
## 305  0.758066716
## 127  0.785845968
## 111 -1.364658098
## 455 -1.960968568
## 393  3.670995468
## 289 -5.516034682
## 257 -3.506850107
## 12   0.427298935
## 432 -3.806440930
## 77   2.590594839
## 184  1.441767450
## 87  -4.580183127
## 296  4.860941204
## 74  -1.572024058
## 231 -3.048422906
## 59  -3.926837691
## 439  0.047817921
## 224  3.516472963
## 492 -0.793072363
## 309 -0.458458840
## 421 -1.920468057
## 452 -3.356344592
## 10   0.100015160
## 307 -0.540205072
## 499 -1.633198659
## 57  -3.009536158
## 397 -4.248651038
## 328 -4.280632141
## 39  -0.505805666
## 260  1.749391492
## 394 -0.297017223
## 93   0.649106001
## 329  1.462001492
## 302 -1.301190151
## 132 -1.813822001
## 477  0.110259483
## 135  3.398618809
## 242  3.841248874
## 2   -4.780994790
## 178  3.406054155
## 62  -2.981348954
## 445  1.780023184
## 403 -2.269769009
## 336  4.646090873
## 50   1.665823787
## 139  0.600387303
## 116  4.092410203
## 276 -1.284177427
## 150  2.380749998
## 129 -0.446096860
## 21   3.497473825
## 448 -6.595041570
## 280  3.569568565
## 288  0.913466385
## 177  3.233723111
## 390 -0.156989488
## 204  4.876499340
## 338 -0.425275219
## 303 -0.927940331
## 148  4.830963924
## 29  -1.220372358
## 128  2.442156992
## 161  3.886966193
## 22  -2.200342746
## 246 -5.443666435
## 162 -3.098154837
## 406 -2.354140154
## 339 -2.159188189
## 497  0.986086216
## 202  5.411900100
## 441 -4.946994382
## 325 -5.547501218
## 32  -0.287263850
## 211 -5.484319047
## 275  0.918020059
## 506 -1.030188293
## 255 -2.421157405
## 267  0.171841123
## 420  0.110134686
## 168  2.287114706
## 245 -4.328097072
## 463 -1.765983491
## 373 -0.457523938
## 67   1.986101322
## 217 -4.352862337
## 64  -1.354868663
## 198  4.886976516
## 456 -6.257707953
## 405 -0.743434068
## 203 -1.005486518
## 175 -1.443500196
## 299  4.177882349
## 7   -4.460495771
## 258  4.490530996
## 6   -0.420902943
## 481 -0.450274614
## 478  3.049750885
## 297 -2.305721608
## 80   1.803688287
## 321 -2.821606528
## 252 -1.308864797
## 195  1.875433719
## 272 -1.063808708
## 449  1.632112218
## 199  5.873064275
## 166 -0.133035922
## 372  0.212886657
## 41   3.007665535
## 315 -0.500293392
## 292  3.059865509
## 56  -0.269698087
## 367  0.892334478
## 475  6.511182572
## 314  3.385050838
## 351  1.599732621
## 462 -0.382186773
## 34   0.035806052
## 35  -1.244520800
## 70  -1.166415348
## 102 -0.786316812
## 436 -4.171834851
## 
## , , 4 comps
## 
##          weight
## 225  0.28677181
## 31   1.10193717
## 290  4.11064526
## 174  0.33118966
## 505 -3.06854663
## 274 -0.98797646
## 493  2.29089366
## 440  3.04172233
## 385  3.62353541
## 196 -2.32590657
## 68  -2.96581871
## 55   2.10547097
## 310  3.12257308
## 319  3.58857246
## 79   1.89757629
## 238 -3.96037676
## 43  -1.05155932
## 370  2.95691046
## 362  2.65471845
## 301  1.50070726
## 65   1.69216435
## 382  1.02531145
## 16   0.33350442
## 355 -3.79626037
## 89   2.47888425
## 277  0.70882058
## 498  0.95551838
## 134 -3.46675906
## 152  4.62385688
## 282  1.58386797
## 112  3.51121815
## 147 -1.17242538
## 42  -0.30376608
## 489  2.87475029
## 330 -1.29220814
## 415 -4.29714721
## 207 -0.92931842
## 212  7.20069978
## 78  -1.55043778
## 99   1.40816580
## 376 -0.70166566
## 163 -5.68437351
## 243  4.78232051
## 391  1.70649700
## 221 10.53958611
## 86   0.72486335
## 144  0.08571525
## 327  2.77462398
## 359  2.93968915
## 200  1.15711164
## 58  -4.12832194
## 241 -7.82862559
## 25  -1.87629879
## 45  -1.10351731
## 263 -1.34980662
## 183  0.65358389
## 487 -0.87438682
## 326 -2.32400691
## 494 -3.31662590
## 349 -1.18611409
## 442 -3.94519207
## 234 -4.85888685
## 95   5.69792994
## 271  2.16421331
## 345 -2.24264320
## 40  -0.35380782
## 206 -0.30367661
## 185  3.56198865
## 1    0.10825186
## 322 -4.46554213
## 333  0.10365739
## 188  1.52668258
## 427 -1.17218117
## 469  0.78422209
## 438 -4.46302602
## 85   1.26060325
## 311 -1.98114454
## 167  0.52724633
## 71  -6.34837505
## 46  -0.70890945
## 281  1.73428031
## 193 -2.18943941
## 218 -2.63283671
## 194  5.56899711
## 133  3.14550883
## 216 -2.02545723
## 244  5.65086265
## 392 -0.20867376
## 20  -2.48382485
## 92   2.03337110
## 286  0.63647720
## 334 -2.08611984
## 98   1.41193914
## 298 -0.56643664
## 410  2.59947906
## 291  0.85774861
## 49   2.78087328
## 97   0.41096288
## 66  -5.66649235
## 109  0.26405032
## 104  2.76618964
## 434  1.87328419
## 153  4.99254168
## 88  -1.46350750
## 158  0.33098096
## 324 -1.10673719
## 491 -3.00626376
## 60  -0.53701725
## 264  3.92515737
## 422  0.27183225
## 375 -0.48561870
## 108 -1.38470073
## 266  6.47851338
## 157 -0.54107354
## 187 -1.20429219
## 466  5.56789251
## 19  -6.00938403
## 418 -3.91276196
## 33  -0.57331916
## 429 -0.71702043
## 151 -0.94010798
## 368  1.79524506
## 63  -2.06764801
## 120  2.14863790
## 474  0.93731767
## 354  1.70115648
## 265 -1.28148100
## 96  -1.47779110
## 454 -7.95494292
## 453 -1.51627505
## 395 -0.80853378
## 222  5.96467814
## 361 -0.27759490
## 424 -3.70656475
## 171 -1.02650657
## 313  3.24472208
## 293  0.09712875
## 273  0.81183028
## 409 -3.10830222
## 471  2.20375773
## 54   3.80068847
## 154  0.03129462
## 47   5.90743798
## 235  1.58243640
## 24   2.93610293
## 249 -0.28185959
## 69   5.00671725
## 233  3.91072139
## 38  -4.08530026
## 335  3.59105255
## 433 -1.80176883
## 125 -1.86195809
## 192  6.49273942
## 126  4.91754198
## 30   1.34405710
## 401 -4.07027058
## 170 -5.50593704
## 114 -2.95922641
## 145  2.99757621
## 197 -4.31195334
## 476  1.96636930
## 146  2.44176345
## 53  -5.64292636
## 384  1.62820097
## 247  4.34827506
## 118 -1.53846035
## 386 -2.21227954
## 331 -1.85909522
## 398 -2.30316247
## 159  6.53269082
## 123  0.79911709
## 300 -2.10760918
## 283 -0.10716391
## 230  2.81014235
## 437 -2.20492851
## 94   2.02835295
## 137  0.68851965
## 190  0.85426945
## 229 -0.98248570
## 15  -2.19238961
## 284  0.78920498
## 122 -1.34256317
## 75  -5.11585150
## 268  0.55297882
## 226 -3.66247729
## 480  0.24620573
## 251 -1.97731463
## 208  1.36150205
## 176 -0.21784062
## 232  1.03343578
## 164 -4.99067976
## 485  5.09923923
## 227 -1.52278111
## 337  0.14203107
## 179 -2.06787187
## 342  0.61721933
## 100 -3.79851053
## 460  7.06935163
## 470 -2.95792659
## 117 -1.09667017
## 270  2.84940067
## 357 -2.58114637
## 215 -7.11525067
## 44  -1.28466906
## 4    1.61619324
## 140 -9.28427509
## 14  -0.03714837
## 482  6.38388368
## 308 -0.93553813
## 365  0.81307572
## 364  0.16226174
## 90  -0.32302014
## 444 -1.27368474
## 350  3.44728449
## 239  0.30107726
## 91  -0.85068674
## 172 -1.49897594
## 106 -4.58384640
## 9   -1.59012199
## 374  1.09616497
## 169  1.48928111
## 447 -2.07917493
## 473 -0.54090541
## 358 -0.52681963
## 383 -0.40913214
## 73  -2.14590068
## 461  0.67408266
## 278 -0.96508066
## 344 -0.30862915
## 378  2.88414414
## 347 -1.90972855
## 201 -3.24234665
## 356  1.55897635
## 317  0.54974686
## 450 -4.63272742
## 210  1.81246472
## 105  1.26658980
## 173 -2.36839925
## 425 -0.05303814
## 414 -5.47991813
## 205  0.25588029
## 186  5.39988780
## 388 -1.09343837
## 387  2.12217519
## 237 -2.78398050
## 346 -2.50124654
## 236 -3.97827950
## 285 -0.26004435
## 48  -1.00441335
## 416 -2.09588041
## 130 -1.03863556
## 17   4.92038488
## 412 -2.68429602
## 141 12.00918126
## 160  0.41401131
## 259  1.19527509
## 380 -0.72526961
## 379  1.83628201
## 61  -0.30794783
## 110 -1.39550830
## 83   3.42615349
## 287 -2.36336378
## 84   0.04273065
## 340 -2.50065316
## 451  1.38601355
## 486 -1.83847180
## 363  0.21885509
## 3    4.31333535
## 306  3.78994887
## 316 -1.37456626
## 13   1.79612079
## 341 -0.34100280
## 27  -1.54629750
## 36  -2.94335874
## 223  1.04779830
## 138 -0.93888525
## 431 -2.08813250
## 240  2.07912628
## 490  3.10577864
## 446 -5.30209163
## 488  1.95626876
## 155 -0.04750297
## 143  2.41989955
## 312 -0.44403330
## 294 -0.53520167
## 305  1.47254125
## 127  3.20747341
## 111 -1.52235518
## 455 -1.68808107
## 393  4.14765560
## 289 -5.11972051
## 257 -4.45013235
## 12   0.65379550
## 432 -3.00277283
## 77   2.63423702
## 184  2.01649255
## 87  -5.45614048
## 296  4.43945700
## 74  -2.12516166
## 231 -3.76008690
## 59  -3.72615122
## 439  0.53760462
## 224  1.93696241
## 492 -1.34462424
## 309 -0.67404338
## 421 -2.59300141
## 452 -3.99963582
## 10   0.89343227
## 307  0.83903044
## 499 -2.61825897
## 57  -1.74148590
## 397 -3.96662626
## 328 -3.67109589
## 39  -0.36012366
## 260  2.98082030
## 394 -0.56490499
## 93  -0.68772193
## 329  1.02708331
## 302 -0.84712580
## 132 -2.18545810
## 477 -1.64498052
## 135  3.50240508
## 242  3.14128238
## 2   -3.30981797
## 178  3.07721517
## 62  -0.55106272
## 445  1.05578946
## 403 -1.21380035
## 336  5.23838754
## 50   0.56867788
## 139  0.28041442
## 116  5.63744195
## 276 -0.29602036
## 150  1.07826217
## 129 -1.89925468
## 21   2.46472819
## 448 -6.23910908
## 280  3.34478485
## 288  1.34603211
## 177  4.54895559
## 390 -1.12207653
## 204  5.67828561
## 338 -1.32204514
## 303  0.14282756
## 148  4.87741416
## 29  -1.84590343
## 128  1.50064132
## 161  2.43389039
## 22  -1.76719205
## 246 -5.62028005
## 162 -2.00885487
## 406 -0.57805382
## 339 -0.96405479
## 497  2.79600022
## 202  5.80794009
## 441 -3.75743884
## 325 -4.26819156
## 32  -1.86429999
## 211 -6.08732362
## 275  2.10246105
## 506 -0.28904320
## 255 -1.69370796
## 267  1.01961330
## 420  0.97925911
## 168  1.52971680
## 245 -5.09326838
## 463 -2.23399291
## 373 -0.86163620
## 67   2.06109569
## 217 -4.10273853
## 64  -0.15324572
## 198  2.90735651
## 456 -4.86699474
## 405 -2.13734498
## 203 -2.43104009
## 175 -1.16273912
## 299  2.85160663
## 7   -4.13396855
## 258  6.03990389
## 6   -0.72877053
## 481 -2.27972181
## 478  2.58594073
## 297 -2.95991383
## 80   2.85340212
## 321 -2.71533987
## 252 -1.93851819
## 195  0.88817979
## 272 -0.54109342
## 449  2.42587127
## 199  5.43741377
## 166  0.71462079
## 372 -0.13521615
## 41   2.55389217
## 315  0.23578061
## 292  2.47620459
## 56  -0.39210028
## 367 -0.20829763
## 475  6.55099014
## 314  3.62044823
## 351  0.50330847
## 462  0.70272146
## 34   2.35409720
## 35  -2.35903587
## 70  -0.88856829
## 102  0.68425556
## 436 -2.81220765
## 
## , , 5 comps
## 
##          weight
## 225  1.27890359
## 31  -0.98691654
## 290  2.12025549
## 174 -0.13562982
## 505  0.08413725
## 274 -1.57290478
## 493  1.39660971
## 440  4.34285816
## 385  4.99041543
## 196 -0.86232230
## 68  -3.68830252
## 55   0.11318685
## 310  2.49911573
## 319  3.14598236
## 79   0.31196942
## 238 -4.20087944
## 43   0.03775177
## 370  4.63109395
## 362  1.82092053
## 301  2.49813646
## 65   1.22823818
## 382 -0.17754393
## 16  -0.73021326
## 355 -4.20964622
## 89  -0.05832861
## 277  1.02105688
## 498  2.20051219
## 134 -2.81987594
## 152  4.90249008
## 282  1.01129491
## 112  0.60311290
## 147 -0.01298120
## 42  -1.51919059
## 489  1.98109076
## 330 -0.73545179
## 415 -4.90304406
## 207  2.12780619
## 212  6.32387139
## 78  -2.14615395
## 99   0.55407853
## 376 -0.33196521
## 163 -2.52145333
## 243  4.70974618
## 391  1.24470095
## 221  8.98870047
## 86   0.63786699
## 144  1.00691205
## 327  2.93992176
## 359  4.83850455
## 200 -0.04470559
## 58  -2.04761767
## 241 -6.41480596
## 25  -1.58320614
## 45  -1.56817976
## 263 -0.88801099
## 183 -0.32835782
## 487 -1.81368359
## 326 -1.88656371
## 494 -1.23949418
## 349  0.59548817
## 442 -5.55558927
## 234 -2.11175262
## 95   4.21452014
## 271  1.83947462
## 345 -1.64119874
## 40   1.28861825
## 206 -0.47514359
## 185  1.32551162
## 1    0.17172536
## 322 -1.97178710
## 333  1.08394259
## 188  1.56544004
## 427 -0.06391429
## 469  2.89657068
## 438 -4.74782949
## 85   0.06951976
## 311 -1.24412537
## 167 -0.42511749
## 71  -4.90555029
## 46   0.78404491
## 281  1.67962868
## 193 -3.95215412
## 218  1.22170378
## 194  3.70870517
## 133  3.97396581
## 216 -2.29864063
## 244  3.16563476
## 392 -0.58916486
## 20  -1.74448592
## 92   2.09246099
## 286  0.26994815
## 334  0.60004881
## 98  -0.62642930
## 298 -1.14879878
## 410  0.87340574
## 291  0.81098203
## 49   2.24612544
## 97  -0.66271473
## 66  -1.70976964
## 109  1.04357669
## 104  2.54662954
## 434  3.33511676
## 153  5.78040134
## 88  -1.95381763
## 158  2.07184384
## 324 -2.51423036
## 491  0.69253241
## 60   0.22020436
## 264  2.36136654
## 422 -0.09867313
## 375 -1.54408925
## 108 -1.75850869
## 266  5.41522773
## 157 -1.25116599
## 187  0.60717477
## 466  5.65560005
## 19  -5.35171426
## 418 -4.29092779
## 33  -2.11725162
## 429 -1.54707871
## 151  0.87193876
## 368  2.26162809
## 63  -1.35363375
## 120  0.89251138
## 474  3.31183936
## 354  2.21288276
## 265  0.30866329
## 96  -0.51919859
## 454 -6.30767689
## 453 -2.33843045
## 395 -1.10791112
## 222  3.86655806
## 361  1.07452026
## 424 -2.45940993
## 171 -1.83535491
## 313  1.52501997
## 293 -0.08544204
## 273  1.38494455
## 409 -3.22167454
## 471  1.61053491
## 54   1.84670857
## 154 -0.74694687
## 47   6.06567335
## 235  2.68252971
## 24   0.92754199
## 249  1.76500919
## 69   1.73429761
## 233  3.03713134
## 38  -3.09072513
## 335  2.26194864
## 433 -2.57311565
## 125 -2.45714711
## 192  4.14358681
## 126  4.82095248
## 30  -0.24658708
## 401 -4.40660236
## 170 -6.61315367
## 114 -3.09644171
## 145  3.08726635
## 197 -4.35632905
## 476  3.68105099
## 146  3.64938017
## 53  -4.52604587
## 384  1.17778727
## 247  5.46419636
## 118 -2.16122040
## 386 -2.29180770
## 331 -1.87652696
## 398 -1.44783202
## 159  5.65044108
## 123 -1.08865741
## 300 -1.30385080
## 283  0.43541986
## 230  4.18202674
## 437 -2.63045008
## 94   0.75796843
## 137  1.30603382
## 190  0.13692757
## 229  0.73799251
## 15  -4.08039779
## 284 -0.80481931
## 122 -0.06759575
## 75  -6.26881878
## 268 -0.16999980
## 226 -2.79368061
## 480 -1.90001635
## 251 -1.58393720
## 208  1.82370781
## 176  1.19462521
## 232  0.11694683
## 164 -2.80518638
## 485  4.86785052
## 227  1.63898314
## 337  0.24677090
## 179  0.20622796
## 342  0.45023269
## 100 -2.10021138
## 460  5.77559592
## 470 -2.60557184
## 117  0.37182821
## 270  0.93186388
## 357 -2.27826323
## 215 -5.66539783
## 44   0.14984291
## 4    0.61678304
## 140 -8.75294305
## 14  -1.78504721
## 482  3.20999879
## 308 -0.39032452
## 365 -0.59595089
## 364  1.97002279
## 90  -0.58307411
## 444 -0.50952731
## 350  2.07787374
## 239  0.42028614
## 91  -1.60227624
## 172  0.11021375
## 106 -4.81007427
## 9   -1.78291312
## 374  0.18404035
## 169  0.71765125
## 447 -1.80878373
## 473  0.49797649
## 358 -0.84762337
## 383 -1.99975222
## 73  -2.43348940
## 461  0.49097989
## 278  0.84981051
## 344 -0.98312334
## 378  1.10642153
## 347 -2.76602259
## 201 -4.41805388
## 356  0.88826964
## 317  2.20543603
## 450 -5.98363353
## 210  1.63972526
## 105  2.27479988
## 173 -3.38949036
## 425  1.57850979
## 414 -4.15978047
## 205  2.46007364
## 186  4.87420083
## 388  0.54227156
## 387  1.09809960
## 237 -2.43480770
## 346 -1.86874193
## 236 -4.64050710
## 285  0.86500814
## 48  -2.53190151
## 416 -3.16937340
## 130 -1.26686948
## 17   6.01564313
## 412 -3.67501323
## 141 10.39942910
## 160  1.41822103
## 259  1.74707999
## 380 -0.10791062
## 379  1.15828012
## 61   0.55520214
## 110 -0.79855199
## 83   2.03740666
## 287 -1.73591218
## 84   0.43406279
## 340  0.01193566
## 451  1.37982665
## 486 -2.66942711
## 363  0.43988227
## 3    2.93162612
## 306  2.71077745
## 316 -1.73681465
## 13   1.05385370
## 341 -0.22975155
## 27  -3.88414065
## 36  -2.56822517
## 223  2.13366881
## 138 -0.37044797
## 431 -1.23175834
## 240  2.86905843
## 490  3.04926655
## 446 -5.96439062
## 488  1.77890722
## 155  1.80985055
## 143  3.59948668
## 312  0.74961486
## 294 -0.19892402
## 305  1.11338123
## 127  4.00651224
## 111 -0.59886143
## 455 -2.56107954
## 393  4.06341464
## 289 -4.65770999
## 257 -3.99587413
## 12   1.07979539
## 432 -4.78199410
## 77   1.54175081
## 184  1.42325714
## 87  -6.00967850
## 296  3.30345028
## 74  -0.66362631
## 231 -1.99733994
## 59  -1.69218494
## 439  2.62570315
## 224  0.66164883
## 492 -0.46134905
## 309 -1.70390007
## 421 -3.60277215
## 452 -2.69552296
## 10   0.61187935
## 307 -0.17341535
## 499 -0.39168828
## 57  -0.52158020
## 397 -3.36932099
## 328  0.01150033
## 39   0.08521400
## 260  1.29112618
## 394 -1.84014350
## 93  -1.89578562
## 329  0.84059513
## 302 -1.30304190
## 132 -0.02992747
## 477 -1.87346468
## 135  3.10801340
## 242  3.18562061
## 2   -2.99065341
## 178  0.19825890
## 62  -0.56132707
## 445  0.24604964
## 403 -0.31999311
## 336  4.76311793
## 50   0.71571951
## 139  0.82632921
## 116  2.00640626
## 276 -1.92084104
## 150  1.79168966
## 129 -3.09644113
## 21   0.25200248
## 448 -3.57475800
## 280  2.19209946
## 288  0.62606852
## 177  3.44343314
## 390  0.00217430
## 204  4.27062626
## 338 -1.80558942
## 303  0.74380208
## 148  3.69859726
## 29  -1.09293985
## 128  2.08720616
## 161  2.07642453
## 22  -3.11316706
## 246 -3.49190913
## 162 -3.49453111
## 406 -2.03915617
## 339  0.08094243
## 497  1.97563288
## 202  6.36267755
## 441 -3.85469767
## 325 -2.15469911
## 32  -1.60505253
## 211 -3.69543564
## 275  3.08050200
## 506 -0.01873378
## 255 -1.18615035
## 267 -0.06933762
## 420 -1.05393715
## 168 -0.26589408
## 245 -4.49687551
## 463 -1.49634163
## 373 -0.06508462
## 67   0.61916596
## 217 -2.78796504
## 64  -0.53316744
## 198  0.60123406
## 456 -2.43872857
## 405 -1.02872528
## 203 -3.58079228
## 175 -0.40885897
## 299  1.00312885
## 7   -4.23061857
## 258  4.52909110
## 6   -2.14147774
## 481 -0.10448926
## 478  1.91905180
## 297 -1.20372367
## 80   1.49041068
## 321 -0.83046805
## 252 -3.85550314
## 195  2.11166369
## 272 -0.32837374
## 449  0.73377402
## 199  2.65498310
## 166 -0.87571731
## 372 -1.59129077
## 41   0.79579497
## 315  0.89488827
## 292  2.48561496
## 56   0.03838927
## 367  1.60129841
## 475  6.03829927
## 314  3.99380664
## 351  0.22148963
## 462  1.30130863
## 34   2.24750573
## 35  -3.21902965
## 70  -1.28457504
## 102  1.42207719
## 436 -4.09511555
## 
## , , 6 comps
## 
##          weight
## 225  0.33968451
## 31  -0.70102940
## 290  2.91261145
## 174 -0.75907931
## 505 -0.20648104
## 274 -2.10737258
## 493  1.52118712
## 440  3.50337905
## 385  4.52914359
## 196 -2.23190012
## 68  -3.27264424
## 55   0.52780275
## 310  2.33511410
## 319  3.31294469
## 79   0.23071247
## 238 -5.10528830
## 43   0.58423257
## 370  4.20780784
## 362  0.93806460
## 301  2.15285985
## 65   1.42445729
## 382 -0.58789943
## 16  -1.10569650
## 355 -4.15203768
## 89  -0.31071824
## 277  0.53898534
## 498  1.68754831
## 134 -2.64961855
## 152  4.12066890
## 282  0.73398175
## 112  0.72059361
## 147  0.58707740
## 42  -0.09886259
## 489  2.18924614
## 330 -0.59640816
## 415 -4.61419346
## 207  2.75425480
## 212  5.93343848
## 78  -2.65763620
## 99   0.90167500
## 376 -1.01341172
## 163 -3.17832791
## 243  4.91843651
## 391  0.84424551
## 221  9.22558328
## 86   0.34309908
## 144 -0.28959148
## 327  2.50378954
## 359  6.37574754
## 200  0.05207341
## 58  -2.25534500
## 241 -6.02074882
## 25  -0.42171539
## 45  -0.68768415
## 263 -0.66384283
## 183 -0.07600796
## 487 -1.80084603
## 326 -1.61956634
## 494 -1.05815066
## 349  2.36724505
## 442 -6.28612136
## 234 -1.82973474
## 95   3.62968598
## 271  2.41169258
## 345 -2.03938454
## 40   2.15108506
## 206 -0.15418440
## 185 -0.21897871
## 1   -0.26654521
## 322 -1.10262377
## 333  0.86630371
## 188  1.37280641
## 427 -0.19915025
## 469  2.71079908
## 438 -5.58783883
## 85   0.24876808
## 311 -0.72943391
## 167 -0.43074997
## 71  -4.73076458
## 46   2.05090765
## 281  2.19421445
## 193 -3.68963970
## 218 -0.59189094
## 194  3.12040006
## 133  2.45537817
## 216 -1.49724711
## 244  2.51992174
## 392 -1.13557088
## 20  -1.93510971
## 92   2.55579500
## 286  0.63462916
## 334  0.38179315
## 98  -1.75570517
## 298 -0.49675394
## 410  1.36553677
## 291  1.16249403
## 49   2.56224840
## 97  -0.37196156
## 66  -0.84658502
## 109  0.66746658
## 104  3.01841830
## 434  2.46300443
## 153  6.10404748
## 88  -1.33089032
## 158  1.73855352
## 324 -2.04198667
## 491  0.46350600
## 60   1.30040836
## 264  2.31118550
## 422 -0.32301733
## 375 -1.90895362
## 108 -1.42657604
## 266  5.38189591
## 157 -0.99591765
## 187  0.03171902
## 466  5.73752053
## 19  -4.86888628
## 418 -4.16091573
## 33  -1.72392179
## 429 -1.58661716
## 151  1.01295520
## 368  1.67765412
## 63  -0.39359586
## 120  1.33953126
## 474  4.55270094
## 354  0.90204397
## 265 -0.27175349
## 96  -0.84592048
## 454 -6.02350672
## 453 -1.59127560
## 395 -0.50635474
## 222  5.08146610
## 361  1.51528968
## 424 -2.73347043
## 171 -1.48121513
## 313  2.25316497
## 293  0.72872019
## 273  1.07668515
## 409 -3.51117907
## 471  1.01154631
## 54   2.60587258
## 154 -0.68580154
## 47   5.78305293
## 235  3.15750909
## 24   1.42776119
## 249  1.42239211
## 69   0.86839267
## 233  3.25866993
## 38  -3.46916130
## 335  1.79346549
## 433 -2.62002244
## 125 -2.27899977
## 192  5.02262487
## 126  4.80465572
## 30  -0.54098004
## 401 -4.27620829
## 170 -6.70044146
## 114 -3.36440102
## 145  2.91624121
## 197 -5.25977637
## 476  4.18685932
## 146  2.76777741
## 53  -2.93968777
## 384  0.71999839
## 247  4.82375957
## 118 -1.66048556
## 386 -2.10802781
## 331 -0.77856738
## 398 -0.96013239
## 159  4.21264073
## 123 -0.27941430
## 300 -1.21222864
## 283  0.62659230
## 230  4.23846983
## 437 -2.21691494
## 94   0.59467182
## 137  1.29808934
## 190  0.34983635
## 229  1.06218182
## 15  -4.27751852
## 284 -0.99971770
## 122 -0.45041914
## 75  -5.19239756
## 268 -0.64171676
## 226 -2.79659965
## 480 -2.55527784
## 251 -1.98308204
## 208  2.26828144
## 176 -1.24491195
## 232  0.48735795
## 164 -3.32381652
## 485  4.12854725
## 227  1.50734444
## 337 -0.08594908
## 179 -0.72898238
## 342  0.34214337
## 100 -2.54312483
## 460  5.56531686
## 470 -2.71288838
## 117  0.04321703
## 270  1.47673943
## 357 -2.21194203
## 215 -5.88696787
## 44   1.03190051
## 4    0.66268061
## 140 -9.01464384
## 14  -1.83081283
## 482  3.99309164
## 308  0.80235763
## 365 -0.90596451
## 364  1.40056369
## 90  -0.46580147
## 444 -0.05308713
## 350  1.84388330
## 239  0.81999090
## 91  -0.82167862
## 172  0.77552237
## 106 -4.62891400
## 9   -1.25900013
## 374  0.38129679
## 169 -1.06336561
## 447 -1.57803679
## 473  0.16133684
## 358 -1.64568993
## 383 -1.93816512
## 73  -1.96951320
## 461  0.39209037
## 278  0.44487652
## 344 -1.38803525
## 378  0.54548459
## 347 -2.71500721
## 201 -5.66087685
## 356  1.16770698
## 317  3.26197020
## 450 -6.44457619
## 210  1.69022458
## 105  1.51353476
## 173 -4.93844629
## 425  0.44771327
## 414 -3.68217695
## 205  3.21536528
## 186  3.36985511
## 388  0.27936346
## 387  1.48353836
## 237 -2.02597320
## 346 -3.25006189
## 236 -4.12769174
## 285  0.65023664
## 48  -1.61904001
## 416 -2.72629023
## 130 -1.42884379
## 17   6.05394198
## 412 -3.15628630
## 141  9.46546625
## 160  1.35931898
## 259  1.63096058
## 380 -0.19784223
## 379  1.07402700
## 61   1.02594946
## 110  0.49411120
## 83   1.52399438
## 287 -1.52219571
## 84   0.13128088
## 340  0.64131722
## 451  1.46092927
## 486 -3.03354932
## 363 -0.02206352
## 3    2.74401974
## 306  2.83311171
## 316 -2.07209766
## 13   0.23302412
## 341 -0.37615902
## 27  -3.65270975
## 36  -2.90432727
## 223  0.75528168
## 138  0.16890917
## 431 -0.70499468
## 240  2.60392322
## 490  2.03449406
## 446 -4.94093348
## 488  0.92236731
## 155  2.16496958
## 143  2.46040875
## 312  0.92787221
## 294 -0.36851310
## 305  1.40657289
## 127  2.02902185
## 111 -0.09362620
## 455 -1.84060873
## 393  3.63437781
## 289 -4.28217409
## 257 -2.53385738
## 12   1.59300002
## 432 -4.63388215
## 77   1.30752028
## 184  1.44028092
## 87  -4.98269211
## 296  3.07354966
## 74  -1.31285254
## 231 -2.21395063
## 59  -1.08155603
## 439  1.94065410
## 224 -0.14840878
## 492 -0.80248753
## 309 -0.42204385
## 421 -3.39262444
## 452 -2.79756230
## 10   1.27758812
## 307 -0.10708869
## 499  0.40060649
## 57  -0.72031117
## 397 -2.52083908
## 328  1.32620607
## 39  -0.02955054
## 260  0.73802527
## 394 -2.46854675
## 93  -1.11922822
## 329  0.85109662
## 302 -0.65797003
## 132 -0.31084732
## 477 -3.09600255
## 135  1.36172152
## 242  3.33689292
## 2   -2.50787311
## 178  0.40695835
## 62   0.31082657
## 445  0.89330355
## 403 -0.36942322
## 336  4.30082876
## 50   0.98248723
## 139  0.30676328
## 116  3.37457783
## 276 -1.39956416
## 150  2.74192404
## 129 -1.67496395
## 21   0.34747723
## 448 -2.42512632
## 280  2.16949621
## 288  1.04404427
## 177  3.70555960
## 390  0.01930083
## 204  4.68827599
## 338 -2.10459843
## 303  1.16643954
## 148  3.40813462
## 29  -1.05125070
## 128  2.62853189
## 161  0.89128070
## 22  -2.32527556
## 246 -4.21994106
## 162 -5.02002702
## 406 -2.34177299
## 339 -0.32754443
## 497  1.89206424
## 202  4.52931319
## 441 -3.41236452
## 325 -1.27908781
## 32  -2.19598019
## 211 -2.83445900
## 275  2.52187205
## 506 -0.05321822
## 255 -0.62664241
## 267  0.64368533
## 420 -2.04076899
## 168  1.06648302
## 245 -4.60763815
## 463 -0.99892980
## 373 -0.07353719
## 67   1.11591323
## 217 -2.70318334
## 64   0.78946617
## 198  0.57039931
## 456 -1.24439034
## 405 -0.04772308
## 203 -3.02036686
## 175 -1.06517630
## 299  0.75489736
## 7   -3.20000977
## 258  4.03271376
## 6   -2.40641570
## 481 -1.20542051
## 478  2.01004415
## 297 -1.15684011
## 80   0.86654602
## 321  0.43231592
## 252 -3.68320346
## 195  1.01427466
## 272 -0.19340195
## 449  0.72456341
## 199  2.16606721
## 166 -2.03714144
## 372 -1.41637163
## 41   0.48819362
## 315  1.41066480
## 292  1.94905098
## 56   1.01292086
## 367  1.33856517
## 475  5.27569779
## 314  3.54271843
## 351  0.11610016
## 462  0.42856221
## 34   1.02425273
## 35  -3.08331593
## 70  -1.19393446
## 102  1.64649072
## 436 -3.25396793
## 
## , , 7 comps
## 
##           weight
## 225  0.481330803
## 31  -0.675804240
## 290  2.687139660
## 174 -0.813828074
## 505 -0.550777669
## 274 -1.917653179
## 493  1.553736612
## 440  3.690454213
## 385  4.574395472
## 196 -2.356646827
## 68  -3.110420578
## 55   0.424666470
## 310  2.225693984
## 319  3.191996080
## 79   0.382693325
## 238 -5.197414240
## 43   0.370137856
## 370  4.228462551
## 362  0.947497802
## 301  2.137300083
## 65   1.251518215
## 382 -0.552294020
## 16  -0.919860883
## 355 -4.131310027
## 89   0.081342840
## 277  0.388168050
## 498  1.556706561
## 134 -2.726332279
## 152  3.912431062
## 282  0.656546303
## 112  0.682929640
## 147  0.470391509
## 42  -0.140641898
## 489  2.080462709
## 330 -0.737389810
## 415 -4.707662777
## 207  3.098873471
## 212  5.949923360
## 78  -2.792678650
## 99   1.058559927
## 376 -0.793935764
## 163 -3.018870017
## 243  5.049378698
## 391  1.036123581
## 221  8.984455384
## 86   0.764372628
## 144 -0.349173768
## 327  2.551794945
## 359  6.720750921
## 200  0.132543113
## 58  -2.237112465
## 241 -6.230622429
## 25  -0.159192863
## 45  -0.795716198
## 263 -0.331468207
## 183 -0.193110781
## 487 -1.903436760
## 326 -1.300151228
## 494 -1.001438740
## 349  2.458506771
## 442 -6.633544000
## 234 -1.853836516
## 95   3.833236620
## 271  2.616484360
## 345 -2.051314258
## 40   1.921150850
## 206 -0.077832366
## 185 -0.239228261
## 1   -0.057188103
## 322 -1.046080445
## 333  1.320323017
## 188  1.596255084
## 427 -0.410140216
## 469  2.621495743
## 438 -5.445873526
## 85   0.322087987
## 311 -0.584618098
## 167 -0.595012175
## 71  -4.603429982
## 46   1.796717719
## 281  2.355962286
## 193 -3.591553075
## 218 -0.797202901
## 194  3.256129923
## 133  2.376096497
## 216 -1.387067742
## 244  2.385616039
## 392 -1.077224360
## 20  -1.759219158
## 92   2.916948727
## 286  0.381904033
## 334  0.596144859
## 98  -1.396712205
## 298 -0.758855009
## 410  1.397083634
## 291  0.730508654
## 49   2.253707031
## 97  -0.209025702
## 66  -0.824107098
## 109  0.262530617
## 104  3.254364447
## 434  2.233690689
## 153  5.932536724
## 88  -1.113397035
## 158  1.866724538
## 324 -1.997349814
## 491  0.578724437
## 60   1.491120145
## 264  2.169240293
## 422 -0.570344788
## 375 -1.536452266
## 108 -1.478795515
## 266  5.401329389
## 157 -1.151254609
## 187 -0.197720123
## 466  5.339078889
## 19  -4.949767637
## 418 -4.199676686
## 33  -1.638386191
## 429 -1.558848932
## 151  1.086015417
## 368  1.718634968
## 63  -0.127767572
## 120  1.517556233
## 474  4.575987982
## 354  0.842656186
## 265 -0.200393721
## 96  -0.700976721
## 454 -5.864212235
## 453 -1.464027030
## 395 -0.631657867
## 222  5.192198828
## 361  1.585961991
## 424 -2.835948970
## 171 -1.318933440
## 313  2.361647929
## 293  0.567192049
## 273  1.129390530
## 409 -3.527087779
## 471  0.770158147
## 54   2.543923236
## 154 -0.828685624
## 47   5.570018205
## 235  2.818432440
## 24   1.717933479
## 249  1.525187091
## 69   1.015176189
## 233  3.207899162
## 38  -3.525249566
## 335  1.791896260
## 433 -2.618583627
## 125 -2.351235783
## 192  4.699998869
## 126  4.593684525
## 30  -0.559537417
## 401 -4.479865108
## 170 -6.707346299
## 114 -3.285401729
## 145  3.145116107
## 197 -5.340951473
## 476  3.923751480
## 146  2.699697786
## 53  -2.917400225
## 384  0.788964788
## 247  4.922021535
## 118 -1.723925741
## 386 -2.154982239
## 331 -0.420232384
## 398 -1.169195964
## 159  4.449335486
## 123 -0.386027683
## 300 -1.444648706
## 283  0.764475657
## 230  4.055741877
## 437 -2.474307895
## 94   1.000598298
## 137  1.098918835
## 190  0.426895434
## 229  1.183654054
## 15  -4.444694245
## 284 -1.017460254
## 122 -0.278514163
## 75  -5.150689779
## 268 -0.633737962
## 226 -2.770852323
## 480 -2.532230653
## 251 -2.112739123
## 208  1.940987329
## 176 -1.114922745
## 232  0.440993608
## 164 -3.219857392
## 485  3.990606558
## 227  1.641618282
## 337 -0.081578976
## 179 -0.725060302
## 342  0.251128158
## 100 -2.242345155
## 460  5.344220700
## 470 -2.750122196
## 117  0.001162436
## 270  1.494177766
## 357 -2.008988065
## 215 -5.778897397
## 44   0.848485962
## 4    0.691483941
## 140 -9.082091314
## 14  -1.872664662
## 482  3.840027202
## 308  0.967110560
## 365 -0.475207677
## 364  1.533149765
## 90  -0.202810778
## 444 -0.272844806
## 350  1.799066128
## 239  0.633102622
## 91  -0.729600228
## 172  0.743109792
## 106 -4.750581587
## 9   -0.917339500
## 374  0.406283964
## 169 -0.989126012
## 447 -1.785222354
## 473  0.100424051
## 358 -1.449947934
## 383 -1.895672418
## 73  -1.664339564
## 461  0.390096249
## 278  0.508060097
## 344 -1.287619042
## 378  0.634510028
## 347 -2.656300304
## 201 -5.748338924
## 356  1.313838622
## 317  3.238970013
## 450 -6.659954336
## 210  1.844002529
## 105  1.800243210
## 173 -5.064928647
## 425  0.679531187
## 414 -3.533214624
## 205  3.006873311
## 186  3.607969558
## 388  0.385922107
## 387  1.532186366
## 237 -2.309502325
## 346 -2.991806613
## 236 -4.407051151
## 285  0.906069365
## 48  -1.848962789
## 416 -2.706244463
## 130 -1.534902258
## 17   5.765254242
## 412 -3.226320431
## 141  9.341002329
## 160  1.231727053
## 259  1.683536062
## 380 -0.082425836
## 379  0.865501268
## 61   0.645077315
## 110  0.317314852
## 83   1.763165167
## 287 -1.721229320
## 84   0.197040710
## 340  0.884799756
## 451  1.353729871
## 486 -2.895049554
## 363 -0.011553957
## 3    2.875025518
## 306  2.907848741
## 316 -2.078140307
## 13   0.383870006
## 341 -0.121294906
## 27  -3.491528342
## 36  -2.915614360
## 223  0.712473417
## 138  0.019939229
## 431 -0.828925981
## 240  2.425310570
## 490  1.762498098
## 446 -5.115200293
## 488  0.798535824
## 155  1.955814557
## 143  2.404165843
## 312  1.027596218
## 294 -0.440462895
## 305  1.672041143
## 127  1.647381781
## 111 -0.606123028
## 455 -1.770136253
## 393  3.530500272
## 289 -4.509482485
## 257 -2.513750598
## 12   1.428700459
## 432 -4.579377892
## 77   1.473057303
## 184  1.578505430
## 87  -4.861069563
## 296  2.734495424
## 74  -1.276376320
## 231 -2.103492767
## 59  -0.915753675
## 439  2.000033664
## 224 -0.045943615
## 492 -0.957784227
## 309 -0.363881251
## 421 -3.414314403
## 452 -3.088080556
## 10   1.087346597
## 307  0.109344160
## 499  0.185683297
## 57  -0.625823413
## 397 -2.485432342
## 328  1.664024266
## 39  -0.386429606
## 260  0.959429861
## 394 -2.387725655
## 93  -0.995961977
## 329  1.042015301
## 302 -0.747835156
## 132 -0.412392909
## 477 -3.481064601
## 135  0.961440088
## 242  3.130062299
## 2   -2.346735274
## 178  0.328344959
## 62   0.366782850
## 445  0.670993064
## 403 -0.371199635
## 336  4.218655913
## 50   0.857728322
## 139  0.245900292
## 116  3.183897224
## 276 -1.184011074
## 150  2.595406037
## 129 -1.474771760
## 21   0.415921804
## 448 -2.241595739
## 280  2.229129335
## 288  0.961379352
## 177  3.750966445
## 390 -0.035141667
## 204  5.022482317
## 338 -2.451612413
## 303  1.207702779
## 148  3.329610589
## 29  -0.896390348
## 128  2.611611242
## 161  1.128691011
## 22  -2.269154990
## 246 -3.903297434
## 162 -4.860290184
## 406 -2.222396444
## 339 -0.348021324
## 497  1.834488361
## 202  4.415045729
## 441 -3.400814577
## 325 -1.465870932
## 32  -2.184466117
## 211 -2.649102313
## 275  2.676499652
## 506  0.098288090
## 255 -0.850173192
## 267  0.703290264
## 420 -2.342000422
## 168  1.005602837
## 245 -4.927379732
## 463 -1.087083694
## 373 -0.070086997
## 67   1.165183139
## 217 -2.523624471
## 64   0.639836240
## 198  0.565000503
## 456 -1.164509122
## 405 -0.093679596
## 203 -2.968421286
## 175 -1.082038763
## 299  0.517641543
## 7   -3.274702432
## 258  4.308005183
## 6   -2.199184091
## 481 -1.284790216
## 478  2.029660417
## 297 -1.281306348
## 80   0.801671041
## 321  0.408600995
## 252 -3.668198769
## 195  1.009710711
## 272 -0.115614781
## 449  0.664380687
## 199  1.932586774
## 166 -1.835873549
## 372 -1.215684535
## 41   0.245743131
## 315  1.453550295
## 292  1.909293101
## 56   1.103557471
## 367  1.614251850
## 475  5.401307371
## 314  3.718503394
## 351  0.027941014
## 462  0.192804916
## 34   0.789770629
## 35  -3.017046406
## 70  -1.083624615
## 102  1.706637361
## 436 -3.344529859
## 
## , , 8 comps
## 
##           weight
## 225  0.428002871
## 31  -0.641063187
## 290  2.740704826
## 174 -1.123904048
## 505 -1.073691340
## 274 -1.770454795
## 493  2.073662604
## 440  3.478903779
## 385  5.212612878
## 196 -2.177991301
## 68  -3.260174767
## 55   0.458069120
## 310  2.477858526
## 319  2.868131028
## 79   0.150931957
## 238 -4.865703878
## 43   0.372645182
## 370  4.379006070
## 362  0.354449018
## 301  1.998550796
## 65   1.166420207
## 382 -0.530482243
## 16  -1.071846153
## 355 -4.151632389
## 89   0.121136318
## 277  0.292628113
## 498  1.397740754
## 134 -2.718981246
## 152  4.035568770
## 282  0.769866152
## 112  0.551094687
## 147  0.520894037
## 42  -0.265071654
## 489  1.994493710
## 330 -0.806216106
## 415 -4.526177353
## 207  2.641958963
## 212  5.903283106
## 78  -3.757017404
## 99   0.763810181
## 376 -0.344428601
## 163 -2.963782727
## 243  4.917097760
## 391  0.635706672
## 221  9.151607537
## 86   0.458917162
## 144 -0.053261396
## 327  2.637234081
## 359  6.042717362
## 200  0.157249390
## 58  -2.357776468
## 241 -5.860765207
## 25  -0.274025144
## 45  -0.928290271
## 263 -0.288861086
## 183  0.148640176
## 487 -1.993690462
## 326 -0.621845583
## 494 -1.038039372
## 349  2.315425685
## 442 -6.499728140
## 234 -2.000073710
## 95   3.754586163
## 271  2.429258312
## 345 -2.285543246
## 40   1.924435882
## 206 -0.236654910
## 185 -0.299290661
## 1    0.154760023
## 322 -1.087070240
## 333  1.703299051
## 188  1.662840695
## 427  0.027232838
## 469  2.588300599
## 438 -5.412446208
## 85  -0.052853192
## 311 -0.253878605
## 167 -1.232676244
## 71  -5.049817565
## 46   1.896574836
## 281  2.531360746
## 193 -3.260227713
## 218 -0.650252379
## 194  3.210500180
## 133  2.041868828
## 216 -1.433944666
## 244  2.549771735
## 392 -1.448598455
## 20  -1.681608322
## 92   2.498322005
## 286  0.538621802
## 334  0.660516485
## 98  -1.420734253
## 298 -0.575752274
## 410  1.472168512
## 291  0.599240477
## 49   2.336400024
## 97  -0.522319073
## 66  -1.048988559
## 109 -0.098987711
## 104  3.118001526
## 434  2.543800463
## 153  5.625089615
## 88  -1.324695323
## 158  1.792833664
## 324 -2.226711557
## 491 -0.003569948
## 60   1.414766942
## 264  2.299665461
## 422 -0.298725758
## 375 -2.032100841
## 108 -1.277868847
## 266  5.488608710
## 157 -1.245314180
## 187  0.086240591
## 466  5.189676890
## 19  -5.186928845
## 418 -4.220607220
## 33  -1.570377494
## 429 -1.394229699
## 151  1.155202954
## 368  1.822814055
## 63  -0.065077172
## 120  1.671310960
## 474  4.249008924
## 354  0.360011754
## 265  0.002018011
## 96  -1.259637280
## 454 -5.683843716
## 453 -1.129927751
## 395 -0.845318137
## 222  5.386346830
## 361  1.764244035
## 424 -2.715017573
## 171 -1.276265888
## 313  2.228477681
## 293  0.740613976
## 273  1.107721826
## 409 -3.204190843
## 471  0.926574164
## 54   2.443523113
## 154 -0.990112657
## 47   5.852405217
## 235  2.972981222
## 24   1.679292695
## 249  1.043529198
## 69   0.820006754
## 233  3.552626872
## 38  -3.614865094
## 335  1.616765995
## 433 -2.288998103
## 125 -2.261955586
## 192  4.620700111
## 126  4.724273576
## 30  -0.444230906
## 401 -4.656194554
## 170 -6.745531432
## 114 -3.269484374
## 145  3.387619090
## 197 -4.919613450
## 476  3.945304957
## 146  2.824635875
## 53  -2.802657599
## 384 -0.026885691
## 247  5.185058985
## 118 -1.898991857
## 386 -1.866631778
## 331  0.666718241
## 398 -1.087372839
## 159  4.710622071
## 123 -0.494230491
## 300 -1.479733519
## 283  0.987094238
## 230  3.943099732
## 437 -2.503454712
## 94   0.349819607
## 137  1.147203732
## 190  0.720288712
## 229  1.467968060
## 15  -4.263531470
## 284 -0.933497370
## 122 -0.171989902
## 75  -4.803991391
## 268 -0.253648774
## 226 -2.849167296
## 480 -2.706461028
## 251 -2.075303413
## 208  1.709942692
## 176 -0.969784489
## 232  0.715918862
## 164 -3.185858928
## 485  4.130574763
## 227  1.939051535
## 337 -0.078828262
## 179 -0.170526515
## 342 -0.078875969
## 100 -2.321678840
## 460  5.466217331
## 470 -2.604689755
## 117 -0.175581003
## 270  1.584230432
## 357 -1.757775674
## 215 -5.313395362
## 44   0.876790775
## 4    0.633584518
## 140 -9.046468511
## 14  -2.169105973
## 482  3.701495178
## 308  0.992556441
## 365 -0.429022699
## 364  1.599612609
## 90  -0.431972740
## 444 -0.556815645
## 350  1.483311305
## 239  1.095444448
## 91  -0.963086538
## 172  0.936780659
## 106 -4.929801304
## 9   -0.804575396
## 374  0.207714479
## 169 -1.103725450
## 447 -1.944050364
## 473  0.080391284
## 358 -1.406110631
## 383 -2.195333978
## 73  -2.122433847
## 461  0.435563038
## 278  0.255477634
## 344 -1.227821387
## 378  0.342504458
## 347 -2.435470645
## 201 -5.438458678
## 356  1.180666833
## 317  3.206064025
## 450 -6.687503534
## 210  1.890787619
## 105  2.042811555
## 173 -5.192495469
## 425  0.517546587
## 414 -3.580521841
## 205  2.982849761
## 186  3.822637746
## 388  0.197489230
## 387  1.522868487
## 237 -2.048109116
## 346 -2.853289651
## 236 -4.064909684
## 285  1.020962184
## 48  -1.884098011
## 416 -2.155883855
## 130 -1.599758672
## 17   5.673657580
## 412 -3.726748138
## 141  8.915231382
## 160  1.500412168
## 259  1.971159309
## 380  0.223679009
## 379  0.482185982
## 61   0.092628674
## 110  0.432749582
## 83   1.511213266
## 287 -1.450715650
## 84   0.131302932
## 340  1.175031389
## 451  1.304359357
## 486 -2.648010471
## 363 -0.242705631
## 3    2.638902696
## 306  2.629472372
## 316 -1.743741623
## 13   0.588966503
## 341 -0.235831986
## 27  -3.463386636
## 36  -2.727947380
## 223  1.126210176
## 138 -0.075048187
## 431 -0.665304541
## 240  2.689489296
## 490  1.393700947
## 446 -5.088127749
## 488  0.404864136
## 155  1.888734909
## 143  2.368056946
## 312  0.551554929
## 294 -0.328860341
## 305  1.782853550
## 127  1.744699976
## 111 -0.738273270
## 455 -1.920457702
## 393  2.916701236
## 289 -4.902695820
## 257 -2.370321232
## 12   1.063831999
## 432 -4.232646775
## 77   1.311803553
## 184  1.375648875
## 87  -5.134380029
## 296  2.911281684
## 74  -1.249051492
## 231 -1.937821093
## 59  -1.153877767
## 439  2.343685293
## 224 -0.223803327
## 492 -0.440442453
## 309 -0.205200740
## 421 -3.293033951
## 452 -2.397753525
## 10   0.807956035
## 307  0.068031310
## 499  0.160888675
## 57  -0.755608389
## 397 -2.385482903
## 328  1.822946915
## 39  -0.375219160
## 260  0.632743498
## 394 -2.297159528
## 93  -1.269869090
## 329  1.291502846
## 302 -0.524708509
## 132 -0.608040800
## 477 -3.679793974
## 135  0.847349487
## 242  3.678037873
## 2   -2.036138996
## 178  0.202252743
## 62   0.464253637
## 445  0.725655270
## 403 -0.175345390
## 336  4.446562086
## 50   0.869796841
## 139 -0.329868556
## 116  3.091210595
## 276 -0.983211939
## 150  2.433286025
## 129 -1.343433367
## 21   0.190589341
## 448 -1.858702959
## 280  2.055950471
## 288  0.909270265
## 177  3.757613727
## 390 -0.620505491
## 204  5.194929582
## 338 -2.577161387
## 303  1.549426138
## 148  3.740627037
## 29  -1.185206973
## 128  2.066366486
## 161  0.880401356
## 22  -2.158976864
## 246 -3.826229011
## 162 -4.591610803
## 406 -1.549104774
## 339 -0.521164676
## 497  1.971083803
## 202  4.234960443
## 441 -3.545337130
## 325 -1.647179012
## 32  -2.405140768
## 211 -2.806962279
## 275  2.241997432
## 506  0.127930845
## 255 -1.015515323
## 267  0.496083603
## 420 -2.102635652
## 168  0.876770464
## 245 -5.304473521
## 463 -0.511636940
## 373  0.337853903
## 67   1.226587184
## 217 -2.584899697
## 64   0.843762219
## 198  1.805345948
## 456 -0.953971899
## 405  0.009671283
## 203 -2.767512025
## 175 -0.609296214
## 299  0.686317668
## 7   -3.578223452
## 258  4.313806881
## 6   -2.082967908
## 481 -1.413030616
## 478  2.087778014
## 297 -1.277015339
## 80   0.876241522
## 321  0.579341054
## 252 -3.806739117
## 195  1.451467682
## 272 -0.257652668
## 449  1.053960113
## 199  2.398892308
## 166 -1.833026230
## 372 -1.386908855
## 41   0.137579272
## 315  1.556322071
## 292  1.920189252
## 56   0.766810498
## 367  1.904731319
## 475  4.992700748
## 314  3.459549877
## 351  0.465314464
## 462 -0.039104020
## 34   0.240875263
## 35  -3.050329174
## 70  -1.294414662
## 102  1.534087067
## 436 -3.197136750
## 
## , , 9 comps
## 
##          weight
## 225 -0.25378476
## 31  -0.98512755
## 290  2.28126678
## 174 -0.80347325
## 505 -0.62171105
## 274 -2.98103386
## 493  2.34004697
## 440  2.87641945
## 385  3.78600056
## 196 -1.95316164
## 68  -1.86008400
## 55   1.34404488
## 310  1.95365379
## 319  2.37638233
## 79  -0.56590100
## 238 -4.41878987
## 43   0.80312889
## 370  3.59579658
## 362  0.24160943
## 301  3.34336069
## 65   1.49330395
## 382 -0.60865942
## 16  -1.93860942
## 355 -4.88484614
## 89   0.52195248
## 277  1.11051787
## 498  1.00500103
## 134 -2.62256199
## 152  3.97175098
## 282  1.89271184
## 112  0.33873291
## 147  0.76435447
## 42  -0.55368806
## 489  1.97674496
## 330 -1.44883728
## 415 -4.20285082
## 207  2.98078950
## 212  5.16569065
## 78  -3.93991443
## 99   0.37187680
## 376 -0.88954069
## 163 -1.50686250
## 243  3.74270535
## 391 -0.46977006
## 221  9.58664189
## 86  -0.14291166
## 144  0.10739218
## 327  1.68703012
## 359  5.80752683
## 200 -0.20513155
## 58  -3.26497504
## 241 -5.40622476
## 25   0.79868080
## 45  -0.24694420
## 263  1.02366386
## 183 -0.88815872
## 487 -1.12136163
## 326 -0.70068744
## 494  0.68913689
## 349  0.24965547
## 442 -7.69222302
## 234 -2.29622042
## 95   2.33855031
## 271  2.55619217
## 345 -1.02924929
## 40   1.92905330
## 206 -0.60475890
## 185 -0.88681302
## 1    0.97270876
## 322 -1.22992119
## 333  1.16592458
## 188  1.00533890
## 427  0.19207683
## 469  3.61637232
## 438 -4.44836184
## 85   0.21547269
## 311  0.10415431
## 167 -0.32198882
## 71  -4.89467137
## 46   1.07166828
## 281  3.68747638
## 193 -2.27553399
## 218  0.53617004
## 194  2.52326349
## 133  2.41060454
## 216 -1.24817900
## 244  0.85399268
## 392 -1.38466507
## 20   0.35811090
## 92   2.08047681
## 286  1.36404628
## 334  0.90051943
## 98  -2.05885581
## 298 -0.34747584
## 410  0.71977525
## 291  0.42089697
## 49   1.94268000
## 97   0.39434053
## 66  -1.35694284
## 109 -1.01246573
## 104  2.54304277
## 434  1.78899241
## 153  5.76411048
## 88  -1.60349477
## 158  2.52083962
## 324 -0.43824116
## 491  0.28449939
## 60   1.27202900
## 264  2.03542763
## 422 -0.47131214
## 375 -0.20097423
## 108  0.29473110
## 266  5.96531709
## 157 -0.79945849
## 187 -0.28208551
## 466  5.35577404
## 19  -5.09860396
## 418 -4.94537128
## 33  -1.91989025
## 429 -0.60393242
## 151  0.74690275
## 368  1.40959036
## 63   0.52048825
## 120  1.55275394
## 474  3.46108181
## 354 -0.20854098
## 265 -0.59087267
## 96  -1.45792965
## 454 -5.19816643
## 453 -0.89871767
## 395 -1.80895120
## 222  2.74820256
## 361  2.22255965
## 424 -2.07239259
## 171 -1.38081873
## 313  2.18866482
## 293  1.91754653
## 273  0.64230349
## 409 -3.04269735
## 471  0.37815965
## 54   2.27829292
## 154 -1.31310146
## 47   3.83663192
## 235  1.99440506
## 24   2.65031085
## 249  0.71085082
## 69   1.05311527
## 233  2.57915064
## 38  -3.20595695
## 335  1.76470589
## 433 -1.48935882
## 125 -1.63589103
## 192  5.37059010
## 126  4.17682354
## 30  -0.67257541
## 401 -3.54763841
## 170 -4.88938349
## 114 -1.07308148
## 145  2.77027144
## 197 -3.85699265
## 476  3.61423059
## 146  3.29067044
## 53  -1.95317601
## 384 -0.41452148
## 247  5.89325724
## 118 -1.29724725
## 386 -2.08773367
## 331 -1.24075556
## 398 -1.37750138
## 159  5.00895557
## 123 -0.63558017
## 300 -1.32892193
## 283  0.08252916
## 230  2.07671879
## 437 -2.16539272
## 94   1.00398151
## 137  1.74309543
## 190  0.32984618
## 229  1.41859233
## 15  -4.13995858
## 284 -0.52729880
## 122  1.33334976
## 75  -5.03671145
## 268  1.25878666
## 226 -3.50268861
## 480 -1.76709884
## 251 -1.26631440
## 208  0.37540681
## 176  1.38793275
## 232 -0.29609803
## 164 -2.78203426
## 485  5.42898136
## 227  0.60310927
## 337 -0.73939896
## 179 -0.64816674
## 342 -1.01392070
## 100 -3.12740211
## 460  3.75842853
## 470 -2.67905035
## 117  0.80504085
## 270  1.25547380
## 357 -1.79411810
## 215 -4.67755951
## 44   0.91056557
## 4    0.28483557
## 140 -8.31846209
## 14  -2.60337171
## 482  5.25989977
## 308  2.12257966
## 365 -0.56448865
## 364  1.81887544
## 90   0.31345332
## 444 -1.72439783
## 350  1.30530659
## 239  1.82238808
## 91  -0.46667470
## 172  1.37180037
## 106 -4.34177849
## 9   -0.50125727
## 374  0.51515485
## 169  0.19982640
## 447 -2.26921616
## 473  1.13250931
## 358 -1.79548110
## 383 -1.26874967
## 73  -1.78949772
## 461 -0.36052283
## 278 -0.14656918
## 344 -1.00397366
## 378 -0.02847525
## 347 -3.00639113
## 201 -5.25970031
## 356  0.93483240
## 317  2.00344201
## 450 -5.77694269
## 210  1.94249851
## 105  0.83786126
## 173 -5.76680352
## 425  0.91164572
## 414 -3.59090596
## 205  1.35357196
## 186  3.75100345
## 388 -0.18758233
## 387  1.10283882
## 237 -2.21877581
## 346 -4.77711983
## 236 -4.80888620
## 285  1.69287967
## 48   0.37710828
## 416 -1.97122299
## 130 -0.48852317
## 17   4.29796451
## 412 -3.12186170
## 141  7.01884529
## 160  1.59068358
## 259  1.25734306
## 380  0.49442378
## 379 -0.28507841
## 61  -0.34334456
## 110  1.06447612
## 83   0.52891730
## 287 -1.84734420
## 84  -0.31962414
## 340  0.41015144
## 451  2.08732510
## 486 -1.33768861
## 363  0.11327657
## 3    1.18673725
## 306  2.95999456
## 316 -1.71525095
## 13   0.21481611
## 341 -0.08925139
## 27  -2.47472136
## 36  -2.81160441
## 223  0.98065414
## 138  0.52682107
## 431 -0.40050239
## 240  3.62781795
## 490  0.79959512
## 446 -5.42382642
## 488  0.81394118
## 155  2.49482259
## 143  2.17402643
## 312  1.52416932
## 294 -0.69441895
## 305  1.37079230
## 127  2.26197752
## 111  1.32299244
## 455 -0.58683401
## 393  1.90416696
## 289 -4.82297955
## 257 -2.37778684
## 12   2.14326872
## 432 -3.23184874
## 77   1.31408450
## 184  1.50148515
## 87  -5.53354055
## 296  3.26024176
## 74  -1.53499419
## 231 -2.48353080
## 59  -0.67692761
## 439  1.97541801
## 224 -0.69693161
## 492  0.66564013
## 309  0.03397455
## 421 -3.54247341
## 452 -2.11796813
## 10  -1.00676229
## 307  0.59833393
## 499  1.20172535
## 57  -0.80807229
## 397 -2.10565017
## 328  0.19655107
## 39   0.02817774
## 260  0.65962807
## 394 -2.01251910
## 93  -0.25103813
## 329  1.72704273
## 302 -0.27136297
## 132 -1.37100997
## 477 -3.66436803
## 135 -0.92980441
## 242  3.78131963
## 2   -0.26290077
## 178 -0.52636129
## 62  -0.03574018
## 445 -0.16558163
## 403  0.08445260
## 336  4.02110977
## 50   1.12242997
## 139 -0.44598698
## 116  1.02830400
## 276 -0.92042296
## 150  3.04229485
## 129 -0.15840640
## 21  -0.25304651
## 448 -2.71990418
## 280  1.46370782
## 288 -0.32885839
## 177  3.74044541
## 390 -0.74147916
## 204  2.98225146
## 338 -3.21750714
## 303  1.62164074
## 148  2.93866608
## 29  -0.42776851
## 128  2.81937345
## 161  1.45889491
## 22  -2.29377610
## 246 -2.98394832
## 162 -4.33450309
## 406 -1.24672964
## 339 -0.35974417
## 497  1.88126716
## 202  3.87154063
## 441 -3.65659317
## 325 -0.81266316
## 32  -3.31401679
## 211 -2.09300845
## 275  1.38969880
## 506  0.07688722
## 255 -0.97201453
## 267  0.35358858
## 420 -1.35983859
## 168  1.51727794
## 245 -5.48101659
## 463  0.54939715
## 373 -1.32199246
## 67   1.88583764
## 217 -3.93967944
## 64   1.18567267
## 198  2.53113469
## 456 -2.27261049
## 405 -0.41599274
## 203 -1.47192936
## 175 -0.68964235
## 299  1.09931330
## 7   -3.35997304
## 258  3.94235966
## 6   -2.07462094
## 481 -1.03194237
## 478  1.89840511
## 297 -0.77186476
## 80  -0.92607041
## 321  1.22954963
## 252 -2.58705291
## 195  2.68351895
## 272 -0.37132540
## 449  0.64061411
## 199  2.55216264
## 166 -0.71816892
## 372 -1.25595393
## 41  -0.22007293
## 315 -0.32326351
## 292  3.10605004
## 56   1.49528408
## 367  0.12185590
## 475  3.28294872
## 314  3.80075552
## 351 -0.84046639
## 462  0.07597955
## 34  -0.40392538
## 35  -4.06483658
## 70  -2.11844808
## 102  2.03072868
## 436 -2.66053984
## 
## , , 10 comps
## 
##          weight
## 225  0.47972068
## 31  -0.80252045
## 290  2.14944179
## 174 -0.87005333
## 505 -1.25315107
## 274 -2.77829570
## 493  2.57877784
## 440  3.01001830
## 385  3.63731378
## 196 -1.30263035
## 68  -1.24198484
## 55   1.55271275
## 310  2.73379831
## 319  2.41911190
## 79  -0.29255650
## 238 -4.09302402
## 43   1.20339575
## 370  4.11181767
## 362 -0.01940350
## 301  3.28240335
## 65   2.11734412
## 382 -0.76861623
## 16  -2.19535697
## 355 -5.08947480
## 89   0.80227177
## 277  1.42902828
## 498  0.55989685
## 134 -3.27449839
## 152  4.18425831
## 282  2.00826154
## 112 -0.40782466
## 147  0.15080303
## 42   0.57034203
## 489  1.66239661
## 330 -1.37203545
## 415 -3.52072110
## 207  2.24727947
## 212  3.81314767
## 78  -3.41771081
## 99  -0.27716863
## 376 -0.75395088
## 163 -1.23925768
## 243  3.89158023
## 391 -0.38383674
## 221  8.75684716
## 86   0.39632166
## 144  0.88076918
## 327  2.32811118
## 359  5.08173650
## 200  0.07952636
## 58  -2.76750083
## 241 -5.23829650
## 25   1.38800688
## 45  -0.23629087
## 263  1.46333017
## 183 -1.32743946
## 487 -1.14716035
## 326 -1.20102102
## 494  0.34708173
## 349  0.46797955
## 442 -7.90872252
## 234 -2.36302781
## 95   2.24162973
## 271  2.43542885
## 345 -1.24817751
## 40   2.23161936
## 206 -0.10990423
## 185 -0.54541836
## 1    1.03412476
## 322 -0.37925061
## 333  1.49576994
## 188  1.34153764
## 427 -0.33854294
## 469  3.37712934
## 438 -4.47896240
## 85   0.76612781
## 311  0.47469696
## 167 -0.60280568
## 71  -4.96423162
## 46   1.06920938
## 281  3.51908457
## 193 -2.34239246
## 218 -0.45290531
## 194  2.14073588
## 133  2.05593651
## 216 -1.60104150
## 244  0.65540259
## 392 -1.12263933
## 20   0.41091605
## 92   2.55660466
## 286  1.47692721
## 334  0.74246006
## 98  -1.95807184
## 298 -0.57069450
## 410  0.29776341
## 291  0.51216865
## 49   2.18225018
## 97   0.17759963
## 66  -1.23925145
## 109 -1.96393887
## 104  2.45784031
## 434  2.37459123
## 153  6.03711138
## 88  -1.67102262
## 158  1.98026878
## 324 -0.31481488
## 491  0.81305021
## 60   1.56870269
## 264  1.56597739
## 422 -0.41361025
## 375 -0.37334060
## 108  0.34916212
## 266  6.57350558
## 157 -0.61932599
## 187 -0.36506661
## 466  4.64291056
## 19  -4.73397011
## 418 -5.47416791
## 33  -2.11765756
## 429 -1.19082047
## 151  1.05459455
## 368  1.37051788
## 63   0.59535645
## 120  0.77334249
## 474  3.09943897
## 354 -0.48668830
## 265  0.06425267
## 96  -1.54337250
## 454 -4.82258443
## 453 -1.30981096
## 395 -2.30063472
## 222  1.71159454
## 361  1.68507922
## 424 -1.84450967
## 171 -1.31939659
## 313  2.70213516
## 293  2.24837247
## 273  0.50248920
## 409 -3.17231028
## 471  0.57937934
## 54   2.37146487
## 154 -1.13955252
## 47   4.28002694
## 235  2.18859246
## 24   3.22680438
## 249  0.72308757
## 69   1.29134941
## 233  2.09781808
## 38  -3.10405963
## 335  2.14439440
## 433 -1.07354680
## 125 -1.14488169
## 192  6.02219153
## 126  3.77235712
## 30  -0.84483113
## 401 -3.65447399
## 170 -4.74202195
## 114 -1.18101199
## 145  2.59760953
## 197 -3.91185966
## 476  4.01360048
## 146  2.87978073
## 53  -1.57586771
## 384 -0.13986721
## 247  6.10374777
## 118 -2.07023974
## 386 -2.31595411
## 331 -1.51377135
## 398 -1.03714897
## 159  5.36064118
## 123 -0.41166769
## 300 -0.39759216
## 283  0.05773014
## 230  1.62795628
## 437 -1.95359758
## 94   0.82281284
## 137  2.02976150
## 190  0.01017109
## 229  1.09591702
## 15  -3.25885165
## 284 -0.11121413
## 122  1.05536487
## 75  -4.77988009
## 268  1.45145945
## 226 -3.54028000
## 480 -2.34100397
## 251 -1.22623041
## 208  0.60865975
## 176  1.15201151
## 232  0.07481217
## 164 -3.16650121
## 485  4.98122862
## 227  0.02149109
## 337 -0.59427057
## 179 -0.72092915
## 342 -1.22443676
## 100 -2.85644787
## 460  3.97634503
## 470 -2.55761909
## 117  1.16940299
## 270  0.60760440
## 357 -2.37707236
## 215 -4.21566657
## 44   0.76497887
## 4   -0.10033078
## 140 -8.45751880
## 14  -2.20397455
## 482  4.66511914
## 308  2.03247621
## 365 -0.31383779
## 364  2.25347674
## 90  -0.01913180
## 444 -1.63229839
## 350  0.91324618
## 239  1.85041028
## 91   0.07207084
## 172  0.67157607
## 106 -4.42881159
## 9   -0.23593406
## 374  0.12354446
## 169  0.46529526
## 447 -2.10247349
## 473  1.53732324
## 358 -1.79451511
## 383 -1.17384204
## 73  -2.08244404
## 461 -0.51123031
## 278  0.20498004
## 344 -0.67993777
## 378 -0.35718568
## 347 -3.15143854
## 201 -5.77125384
## 356  1.28392664
## 317  2.15055815
## 450 -5.39832810
## 210  1.40859587
## 105  0.69304035
## 173 -5.07309647
## 425  0.75337707
## 414 -3.24471385
## 205  1.31143066
## 186  3.92489009
## 388 -0.30649330
## 387  1.09004251
## 237 -2.37700862
## 346 -4.49282146
## 236 -4.45090678
## 285  1.43411081
## 48   0.39961677
## 416 -2.15296246
## 130 -0.32220584
## 17   4.44480156
## 412 -3.78084979
## 141  6.32786365
## 160  1.56715423
## 259  1.42770525
## 380  0.25690463
## 379 -0.04942292
## 61  -0.55289421
## 110  1.26892802
## 83   0.43679519
## 287 -1.84117158
## 84  -0.40946486
## 340  0.46901300
## 451  2.00942596
## 486 -1.95275965
## 363 -0.49630059
## 3    1.26478201
## 306  3.13914877
## 316 -2.32625423
## 13  -0.18072340
## 341  0.16387834
## 27  -2.56823918
## 36  -3.20385826
## 223  0.05995240
## 138  0.20132907
## 431 -0.02970882
## 240  4.07325530
## 490  0.43687431
## 446 -5.00235101
## 488  0.17455841
## 155  1.33793367
## 143  1.87817512
## 312  1.65488366
## 294 -0.45028517
## 305  1.46955628
## 127  1.67796835
## 111  1.37497521
## 455 -0.60959316
## 393  2.00794556
## 289 -4.65035190
## 257 -3.01273281
## 12   2.02379751
## 432 -3.74218380
## 77   1.34493463
## 184  1.68576147
## 87  -5.64063719
## 296  2.90408854
## 74  -2.04792955
## 231 -1.78623454
## 59  -0.18276979
## 439  2.18705335
## 224  0.27029410
## 492  0.78868188
## 309  0.13581287
## 421 -3.99517742
## 452 -2.25344258
## 10  -0.22352839
## 307  0.48271322
## 499  1.30328949
## 57  -0.71205151
## 397 -2.06551394
## 328 -0.52422661
## 39  -0.25752477
## 260  0.31350262
## 394 -1.11874902
## 93  -0.62945114
## 329  1.84694690
## 302  0.46820431
## 132 -2.38051040
## 477 -3.04932398
## 135 -0.99216712
## 242  3.86283081
## 2   -0.81950156
## 178 -0.57026553
## 62  -0.09992744
## 445 -0.58701571
## 403 -0.36113319
## 336  4.29507429
## 50   1.40343089
## 139 -0.91725220
## 116  1.22626454
## 276 -0.51938401
## 150  2.75258380
## 129 -0.07364222
## 21  -1.07698922
## 448 -3.21398280
## 280  1.00880149
## 288 -0.32043959
## 177  3.10367294
## 390 -0.71742265
## 204  2.61988035
## 338 -3.53390258
## 303  1.97642268
## 148  2.58485440
## 29  -0.77011764
## 128  2.24431466
## 161  1.43962285
## 22  -2.20669110
## 246 -2.88767984
## 162 -4.29097893
## 406 -0.87836996
## 339 -0.70915191
## 497  1.28154939
## 202  4.20233846
## 441 -3.22756744
## 325 -1.21127667
## 32  -2.48023478
## 211 -1.88840019
## 275  0.78627873
## 506 -0.28489639
## 255 -0.72174493
## 267  0.65118052
## 420 -1.97875119
## 168  1.45564593
## 245 -4.55200255
## 463  0.26022034
## 373 -1.79379968
## 67   1.56842688
## 217 -4.04871693
## 64   1.20016907
## 198  2.18624088
## 456 -1.74510824
## 405 -0.44676929
## 203 -0.88514475
## 175  0.75706941
## 299  0.94209674
## 7   -2.50363598
## 258  4.13305857
## 6   -2.27686988
## 481 -0.62856122
## 478  1.87804453
## 297 -0.38480280
## 80  -0.38794823
## 321  1.66605416
## 252 -2.50863677
## 195  2.87079581
## 272  0.24021076
## 449  0.27792883
## 199  3.14269426
## 166 -0.55869109
## 372 -1.63828546
## 41   0.02837986
## 315 -0.11139469
## 292  3.01963518
## 56   2.10925989
## 367  0.24788025
## 475  3.67841014
## 314  3.28601089
## 351 -1.27169325
## 462  0.08318154
## 34   0.15777102
## 35  -3.58055624
## 70  -2.37629958
## 102  1.99396048
## 436 -2.73511610
## 
## , , 11 comps
## 
##           weight
## 225  0.327814286
## 31  -0.675675716
## 290  2.174746693
## 174 -0.741555413
## 505 -1.382749496
## 274 -2.833225462
## 493  2.595662703
## 440  3.195423073
## 385  3.716094882
## 196 -1.268943293
## 68  -1.363604601
## 55   1.422407139
## 310  2.871457075
## 319  2.533078480
## 79  -0.213201322
## 238 -3.934906748
## 43   1.202488767
## 370  4.217366720
## 362 -0.074387153
## 301  3.556547440
## 65   1.916702466
## 382 -0.667683657
## 16  -2.170434142
## 355 -4.960339522
## 89   0.658046187
## 277  1.394978114
## 498  0.464605968
## 134 -3.170740627
## 152  4.108791806
## 282  2.026278953
## 112 -0.350088829
## 147  0.096649705
## 42   0.428266538
## 489  1.438127638
## 330 -1.459452844
## 415 -3.526121785
## 207  2.301293249
## 212  4.032779723
## 78  -3.333680630
## 99   0.073568003
## 376 -0.820553664
## 163 -1.490056645
## 243  3.639839230
## 391 -0.386529374
## 221  8.832401877
## 86   0.245080148
## 144  0.747105895
## 327  2.131871944
## 359  4.807630683
## 200 -0.091179399
## 58  -2.611188426
## 241 -5.336135480
## 25   1.165918978
## 45  -0.231739475
## 263  1.780158091
## 183 -1.308213758
## 487 -1.152306355
## 326 -1.391424733
## 494  0.106733827
## 349  1.011942157
## 442 -7.984607419
## 234 -1.971117099
## 95   2.259859336
## 271  2.411510289
## 345 -1.195141595
## 40   2.079703980
## 206 -0.153958463
## 185 -0.354671633
## 1    1.143279607
## 322 -0.314072082
## 333  1.607189662
## 188  1.089878213
## 427 -0.401934114
## 469  3.385053651
## 438 -4.042045300
## 85   0.588242806
## 311  0.718707320
## 167 -0.756227315
## 71  -4.790703120
## 46   1.095323036
## 281  3.526597118
## 193 -2.331714159
## 218 -0.519139958
## 194  2.208801650
## 133  2.411049390
## 216 -1.463878978
## 244  1.149889875
## 392 -1.198576912
## 20   0.591937215
## 92   2.607342404
## 286  1.508795564
## 334  0.696989553
## 98  -1.759928774
## 298 -0.712085180
## 410  0.151288322
## 291  0.452206708
## 49   2.119786640
## 97   0.003380939
## 66  -1.286587505
## 109 -2.210825878
## 104  2.280767494
## 434  2.510549748
## 153  5.863089487
## 88  -1.690242117
## 158  2.261048161
## 324 -0.182781030
## 491  0.286908365
## 60   1.494487789
## 264  1.305753880
## 422 -0.109966958
## 375 -0.341103069
## 108  0.528997467
## 266  6.816323159
## 157 -0.543872762
## 187 -0.222099506
## 466  4.697580457
## 19  -4.742268653
## 418 -5.453345759
## 33  -1.972619561
## 429 -1.111785754
## 151  0.911452567
## 368  1.151112818
## 63   0.780805426
## 120  0.593302855
## 474  2.567421226
## 354 -0.626539356
## 265 -0.124962344
## 96  -1.510708360
## 454 -4.764922490
## 453 -1.231490688
## 395 -2.363943691
## 222  1.772088249
## 361  1.383704454
## 424 -1.669403051
## 171 -1.133804508
## 313  2.822098729
## 293  2.075018947
## 273  0.334272103
## 409 -3.203797007
## 471  0.519600322
## 54   2.424970629
## 154 -1.230529703
## 47   4.368949950
## 235  1.960205307
## 24   3.457940813
## 249  0.741773920
## 69   0.804331094
## 233  2.155340364
## 38  -3.056870667
## 335  2.224987905
## 433 -1.206884240
## 125 -1.185229455
## 192  6.058027117
## 126  3.220944927
## 30  -0.851929473
## 401 -3.422938419
## 170 -4.774659100
## 114 -1.220492175
## 145  2.503676267
## 197 -4.199224940
## 476  3.563257258
## 146  2.868318961
## 53  -1.500032647
## 384 -0.031688968
## 247  6.266720809
## 118 -1.796258059
## 386 -2.560593390
## 331 -1.270263530
## 398 -1.090927973
## 159  5.028891613
## 123 -0.552631422
## 300 -0.361092143
## 283  0.021183626
## 230  1.402313222
## 437 -2.008229796
## 94   0.802473531
## 137  1.955368358
## 190 -0.015928640
## 229  1.252960970
## 15  -3.248226859
## 284 -0.395383492
## 122  1.031430646
## 75  -4.870349734
## 268  1.376114061
## 226 -3.640202225
## 480 -2.385383045
## 251 -1.000183112
## 208  0.488132864
## 176  1.213265861
## 232  0.084046611
## 164 -3.231268215
## 485  5.081820257
## 227 -0.067156331
## 337 -0.709343980
## 179 -0.384470122
## 342 -1.348155298
## 100 -2.547687841
## 460  4.002685458
## 470 -2.616296467
## 117  1.223959474
## 270  0.498510922
## 357 -2.493909175
## 215 -4.327794715
## 44   0.967440644
## 4   -0.039368699
## 140 -8.445445790
## 14  -2.305340654
## 482  4.677685875
## 308  2.220434213
## 365 -0.570934697
## 364  2.181719630
## 90   0.057985824
## 444 -1.866523864
## 350  0.780796255
## 239  1.971257678
## 91  -0.058547215
## 172  0.630413018
## 106 -4.429729971
## 9   -0.514291922
## 374  0.072401291
## 169  0.539884322
## 447 -2.110325293
## 473  1.350213653
## 358 -2.056717083
## 383 -1.058956446
## 73  -1.869427290
## 461 -0.507722622
## 278  0.487340392
## 344 -0.839520601
## 378 -0.415331098
## 347 -3.275828480
## 201 -5.685836152
## 356  1.066660792
## 317  2.268873103
## 450 -5.200593832
## 210  1.402360518
## 105  0.656532795
## 173 -5.118396151
## 425  0.130986444
## 414 -2.997229642
## 205  1.381312670
## 186  3.997443001
## 388 -0.398705867
## 387  1.165745957
## 237 -2.344155385
## 346 -4.322425293
## 236 -4.328165122
## 285  1.402203976
## 48   0.490619786
## 416 -2.097622774
## 130 -0.260100742
## 17   4.358420083
## 412 -3.679942991
## 141  6.535553131
## 160  1.556490402
## 259  1.419964267
## 380  0.157893975
## 379 -0.036023963
## 61  -0.216247971
## 110  1.043658551
## 83   0.494652871
## 287 -1.751540723
## 84  -0.471787780
## 340  0.544072798
## 451  2.150689114
## 486 -2.048329925
## 363 -0.510756377
## 3    1.235177242
## 306  3.222922166
## 316 -2.485940779
## 13  -0.074050662
## 341  0.060859601
## 27  -2.320720303
## 36  -3.358031011
## 223 -0.188064227
## 138  0.138189094
## 431 -0.195540423
## 240  4.350551261
## 490  0.194635262
## 446 -4.644857044
## 488  0.470555109
## 155  1.531084997
## 143  1.736948148
## 312  1.640904812
## 294 -0.368662450
## 305  1.690507015
## 127  1.664050758
## 111  1.297298541
## 455 -0.697080078
## 393  1.953337762
## 289 -4.810036767
## 257 -3.150856156
## 12   2.010356990
## 432 -3.526923310
## 77   1.340074861
## 184  1.780260530
## 87  -5.929165498
## 296  2.932296034
## 74  -2.269418393
## 231 -2.000292769
## 59   0.212187316
## 439  2.340108427
## 224  0.206729610
## 492  0.406493450
## 309  0.133558458
## 421 -3.822684827
## 452 -2.287240559
## 10  -0.163456936
## 307  0.608819115
## 499  0.804203298
## 57  -0.565432223
## 397 -1.954300291
## 328 -0.325949381
## 39  -0.266578776
## 260  0.327342368
## 394 -0.981140836
## 93  -0.696590883
## 329  1.800429435
## 302  0.506441743
## 132 -1.949400541
## 477 -2.744767299
## 135 -1.006827786
## 242  3.978150488
## 2   -0.857108142
## 178 -0.697773145
## 62  -0.085718219
## 445 -0.480866550
## 403 -0.259831279
## 336  4.223532368
## 50   1.289456823
## 139 -0.740274995
## 116  1.158080383
## 276 -0.513861425
## 150  2.930227201
## 129 -0.364264891
## 21  -1.137108822
## 448 -3.147522423
## 280  1.131387542
## 288 -0.167579669
## 177  3.060892974
## 390 -0.710186280
## 204  2.673380956
## 338 -3.411436013
## 303  2.110647218
## 148  2.509709125
## 29  -0.878460386
## 128  2.301823563
## 161  1.440281027
## 22  -2.301521763
## 246 -2.729263662
## 162 -4.562409387
## 406 -0.482041360
## 339 -0.786520155
## 497  1.082311439
## 202  4.265433351
## 441 -3.296962554
## 325 -0.991170261
## 32  -2.389846665
## 211 -1.698987914
## 275  0.793475190
## 506 -0.619096094
## 255 -0.767348116
## 267  0.733753590
## 420 -2.042027529
## 168  1.408699402
## 245 -4.116881311
## 463  0.239306914
## 373 -2.014194553
## 67   1.481222656
## 217 -4.127572626
## 64   1.374345024
## 198  2.240434989
## 456 -1.870496803
## 405 -0.310510915
## 203 -1.123087870
## 175  0.755213808
## 299  0.980870696
## 7   -2.689686284
## 258  4.141258251
## 6   -2.364245003
## 481 -0.554982923
## 478  1.781789893
## 297 -0.149092681
## 80  -0.443417173
## 321  2.028343082
## 252 -2.319679223
## 195  2.875311356
## 272  0.362477569
## 449  0.225879611
## 199  3.183557153
## 166 -0.569616552
## 372 -1.537738043
## 41   0.192702275
## 315 -0.296884975
## 292  2.942006249
## 56   2.152159179
## 367  0.466925006
## 475  3.750853744
## 314  3.326318540
## 351 -1.313626086
## 462 -0.021659296
## 34   0.198340907
## 35  -3.763570622
## 70  -2.353002664
## 102  1.943275916
## 436 -2.889302128
## 
## , , 12 comps
## 
##          weight
## 225 -0.02068021
## 31  -0.96060411
## 290  2.00709504
## 174 -1.02254421
## 505 -1.71253024
## 274 -2.57717358
## 493  3.26243008
## 440  3.09125853
## 385  3.65130986
## 196 -1.41070965
## 68  -0.97359236
## 55   1.77487780
## 310  3.12918713
## 319  2.56932418
## 79  -0.05446805
## 238 -4.38780604
## 43   0.64591648
## 370  4.67111118
## 362 -0.04572204
## 301  3.61480763
## 65   1.96609325
## 382 -0.77635557
## 16  -1.45676270
## 355 -4.55143972
## 89   0.42689631
## 277  1.89584352
## 498  0.66199964
## 134 -3.48723674
## 152  3.78480460
## 282  2.74540617
## 112 -0.86897313
## 147  0.37083079
## 42   0.20981760
## 489  1.38217703
## 330 -1.20258611
## 415 -3.75473615
## 207  2.13089639
## 212  4.44635672
## 78  -2.83409586
## 99  -0.04708818
## 376 -1.01544461
## 163 -1.37591317
## 243  3.76767602
## 391 -0.93223892
## 221  9.80629898
## 86   0.05332061
## 144  1.10968589
## 327  1.79817037
## 359  5.66742685
## 200 -0.18859554
## 58  -2.99055657
## 241 -4.99305751
## 25   0.45609952
## 45  -0.82283067
## 263  2.28572332
## 183 -1.24398944
## 487 -0.89588917
## 326 -1.57193005
## 494  0.62086930
## 349  0.74970264
## 442 -8.01130438
## 234 -1.61281678
## 95   2.63145353
## 271  2.31680851
## 345 -0.98125056
## 40   1.83709941
## 206 -0.18019112
## 185 -0.72624052
## 1    1.26134502
## 322 -0.95949320
## 333  1.75970090
## 188  1.44993119
## 427 -0.14789910
## 469  3.49289827
## 438 -3.72252969
## 85   0.64594510
## 311  0.75201002
## 167 -0.49254694
## 71  -4.75820848
## 46   1.29274237
## 281  3.78319145
## 193 -1.77459351
## 218 -0.84748475
## 194  2.73186731
## 133  2.56223843
## 216 -1.62382641
## 244  1.25292972
## 392 -1.54974422
## 20   0.55440949
## 92   1.92616006
## 286  0.89458255
## 334  0.43265920
## 98  -1.28840175
## 298 -0.56306343
## 410 -0.59023627
## 291  0.66713442
## 49   1.14529052
## 97  -0.04404922
## 66  -0.88762594
## 109 -2.52779710
## 104  1.99180243
## 434  2.76021660
## 153  5.59797069
## 88  -2.04263125
## 158  2.08759035
## 324 -0.66417245
## 491 -0.32316504
## 60   1.62306372
## 264  1.35081583
## 422 -0.19884409
## 375  0.05294892
## 108  0.77155410
## 266  6.48093569
## 157 -0.34952650
## 187 -0.29442762
## 466  5.56113068
## 19  -3.61559940
## 418 -5.77924844
## 33  -1.45481506
## 429 -1.12095822
## 151  1.77365545
## 368  1.30710803
## 63   1.08838375
## 120  0.44003215
## 474  3.22960447
## 354 -0.62230688
## 265  0.01387384
## 96  -1.70923727
## 454 -4.64825834
## 453 -1.75558047
## 395 -2.39487109
## 222  1.69832788
## 361  0.70572377
## 424 -2.04080618
## 171 -0.55170557
## 313  2.80176050
## 293  1.98932534
## 273  0.62030557
## 409 -2.37406801
## 471  0.54543295
## 54   1.28960590
## 154 -1.17457180
## 47   4.10095237
## 235  2.00554561
## 24   3.51094056
## 249  0.75932196
## 69   0.18521009
## 233  2.21752364
## 38  -2.77800406
## 335  2.41862615
## 433 -0.86551842
## 125 -0.89181658
## 192  6.09399300
## 126  3.10220132
## 30  -0.17171112
## 401 -3.83124426
## 170 -4.63384514
## 114 -1.12785330
## 145  2.77697704
## 197 -3.98178111
## 476  3.41292866
## 146  2.71204827
## 53  -1.97673052
## 384  0.13642317
## 247  5.59502338
## 118 -1.80504983
## 386 -2.79875258
## 331 -1.51930533
## 398 -1.26386111
## 159  4.57872604
## 123 -0.75737139
## 300  0.12712792
## 283 -0.17322670
## 230  1.19796453
## 437 -2.30402213
## 94   0.59676523
## 137  2.11994451
## 190 -0.34251000
## 229  1.33159697
## 15  -3.33918910
## 284 -0.11279990
## 122  0.99246457
## 75  -5.14781991
## 268  1.44310414
## 226 -3.83145673
## 480 -2.86202916
## 251 -0.63092052
## 208  0.53218534
## 176  0.79254491
## 232  0.40874724
## 164 -3.94756376
## 485  4.73308629
## 227 -0.32600052
## 337 -0.68980879
## 179  0.56559461
## 342 -1.35319238
## 100 -2.55502835
## 460  3.99642101
## 470 -2.68208058
## 117  0.73770209
## 270  0.39632312
## 357 -2.72665358
## 215 -3.37168346
## 44   0.39194736
## 4    0.45767280
## 140 -8.08850724
## 14  -2.35768966
## 482  4.23418438
## 308  2.39874006
## 365 -0.46333760
## 364  1.97580769
## 90  -0.30711820
## 444 -2.03568565
## 350  0.48069651
## 239  1.63374864
## 91   0.19249239
## 172  0.59379952
## 106 -3.90679081
## 9   -0.24036639
## 374  0.18515001
## 169  0.53411042
## 447 -2.59326323
## 473  1.07991620
## 358 -2.09629756
## 383 -0.84175239
## 73  -2.21471483
## 461 -0.18286599
## 278  0.64161134
## 344 -0.39742893
## 378 -0.74788529
## 347 -3.34956076
## 201 -4.95211409
## 356  1.30754946
## 317  1.81177863
## 450 -5.02480577
## 210  1.72777477
## 105  0.95000904
## 173 -4.66081484
## 425 -0.20880400
## 414 -3.07878514
## 205  1.23111706
## 186  4.14264390
## 388 -0.51556786
## 387  1.06715448
## 237 -1.86493503
## 346 -4.33179670
## 236 -4.35967356
## 285  1.26483689
## 48  -0.19322346
## 416 -1.70069183
## 130 -0.75636917
## 17   3.71888812
## 412 -3.44986186
## 141  6.87498290
## 160  1.37955188
## 259  1.18582226
## 380 -0.03846575
## 379  0.22953167
## 61  -0.55278227
## 110  0.90369047
## 83   0.55064634
## 287 -1.21275684
## 84  -0.09848251
## 340  0.05259858
## 451  1.53123905
## 486 -1.98548455
## 363 -0.90225538
## 3    0.73723065
## 306  3.21667129
## 316 -2.23131327
## 13   0.20684822
## 341  0.14432819
## 27  -2.74717829
## 36  -2.55642613
## 223 -0.23653405
## 138  1.00823225
## 431 -0.54347139
## 240  4.17620135
## 490  0.30648774
## 446 -4.60981649
## 488  0.41671704
## 155  1.70915338
## 143  1.38619535
## 312  2.63630827
## 294 -0.73453006
## 305  1.86450772
## 127  1.58658031
## 111  1.18790306
## 455 -0.07015348
## 393  1.84991867
## 289 -4.37019982
## 257 -2.19808779
## 12   1.88985742
## 432 -4.09280232
## 77   1.18103665
## 184  1.23655469
## 87  -5.69912973
## 296  2.72453921
## 74  -2.50602194
## 231 -1.51344535
## 59  -0.04601196
## 439  1.98142475
## 224  0.39319253
## 492  0.59384201
## 309  0.65931570
## 421 -3.92933153
## 452 -1.46503124
## 10   0.09259065
## 307  0.87150247
## 499  1.16513837
## 57  -1.08326966
## 397 -1.97193344
## 328 -0.31334693
## 39  -0.63049511
## 260  0.01113511
## 394 -1.04541227
## 93  -0.24692740
## 329  1.70366876
## 302  0.81128187
## 132 -1.53825127
## 477 -2.29947161
## 135 -0.79732936
## 242  3.81137003
## 2   -0.28634753
## 178 -0.17432211
## 62  -0.35890698
## 445 -0.52376284
## 403 -0.64379504
## 336  4.08317449
## 50   1.00825638
## 139 -1.26829568
## 116  1.37053225
## 276 -0.27727743
## 150  2.58020288
## 129  0.11877406
## 21  -0.69590180
## 448 -3.62513020
## 280  0.94446336
## 288 -0.32534210
## 177  2.51306547
## 390 -0.85765070
## 204  2.91369579
## 338 -3.06568448
## 303  1.43786264
## 148  2.09239572
## 29  -0.48920663
## 128  2.07051354
## 161  1.63926173
## 22  -1.95661534
## 246 -2.77775078
## 162 -4.78683440
## 406 -0.68522154
## 339 -0.44372308
## 497  0.92699006
## 202  4.48131771
## 441 -3.36641839
## 325 -0.69910330
## 32  -2.28868183
## 211 -1.78786454
## 275  0.26982800
## 506 -1.10604023
## 255 -0.40767630
## 267  1.10343867
## 420 -2.55000349
## 168  1.03372685
## 245 -4.01706335
## 463  0.02837310
## 373 -2.14591851
## 67   1.32904339
## 217 -4.03879949
## 64   1.66285238
## 198  1.90978816
## 456 -2.37987992
## 405 -0.11697697
## 203 -1.19938217
## 175  0.84144658
## 299  0.84441346
## 7   -2.93865976
## 258  3.74144587
## 6   -2.46680355
## 481 -0.81013245
## 478  1.33322183
## 297 -0.49715150
## 80  -0.32624816
## 321  2.07470858
## 252 -2.07691651
## 195  2.70294314
## 272  0.67921284
## 449  0.07306921
## 199  2.45677893
## 166 -0.91865687
## 372 -1.57043003
## 41  -0.08182815
## 315 -0.23356253
## 292  2.81469568
## 56   2.41951585
## 367  0.95789411
## 475  3.22703297
## 314  3.29564052
## 351 -1.32146974
## 462 -0.01698365
## 34   0.72104117
## 35  -3.26917508
## 70  -2.29765491
## 102  2.27293240
## 436 -3.02938479
## 
## , , 13 comps
## 
##          weight
## 225  0.41897840
## 31  -1.28487716
## 290  2.24187178
## 174 -1.50676605
## 505 -1.81270839
## 274 -2.76631110
## 493  2.95266273
## 440  2.87869758
## 385  3.56230662
## 196 -1.47170727
## 68  -0.97268121
## 55   1.91488033
## 310  2.78792807
## 319  2.63886774
## 79   0.51446187
## 238 -3.71110541
## 43   0.84883629
## 370  4.52520011
## 362  0.05808325
## 301  3.38202315
## 65   2.26714658
## 382 -1.04424587
## 16  -0.73709845
## 355 -4.48941063
## 89   0.02205468
## 277  2.01152301
## 498  0.28354863
## 134 -3.42263069
## 152  3.96170774
## 282  2.79629824
## 112 -0.83594108
## 147  0.14531138
## 42   0.69965927
## 489  1.09239252
## 330 -1.36335388
## 415 -3.94290846
## 207  2.48715308
## 212  4.30162658
## 78  -2.99011407
## 99  -0.18319622
## 376 -1.29157968
## 163 -2.31864392
## 243  3.65748314
## 391 -0.81060389
## 221  8.80491943
## 86  -0.09133918
## 144  0.63444879
## 327  1.63955750
## 359  5.91211326
## 200  0.05083610
## 58  -3.57133076
## 241 -4.56534242
## 25   0.34021242
## 45  -1.22731129
## 263  2.21522452
## 183 -1.86939896
## 487 -0.97114081
## 326 -1.84771563
## 494  0.35234894
## 349  1.36991854
## 442 -8.42692658
## 234 -2.31497250
## 95   2.51418663
## 271  2.50447505
## 345 -0.81895692
## 40   1.99496330
## 206 -0.33965302
## 185 -0.70766025
## 1    1.69074849
## 322 -0.92280967
## 333  1.66137256
## 188  1.26917734
## 427 -0.40026535
## 469  3.30885281
## 438 -3.59633058
## 85   0.04571427
## 311  0.55085059
## 167 -0.10956312
## 71  -4.10154813
## 46   1.09220989
## 281  3.46157552
## 193 -1.51537218
## 218 -0.94519589
## 194  2.58794650
## 133  2.32955489
## 216 -1.14916291
## 244  1.63471775
## 392 -0.91929056
## 20   0.98059141
## 92   2.10688420
## 286  0.57948415
## 334  0.57039558
## 98  -0.83195742
## 298 -1.05132265
## 410 -0.66975267
## 291  0.53212875
## 49   1.46049198
## 97   0.05528034
## 66  -1.00501249
## 109 -2.79769549
## 104  2.16300920
## 434  3.19049582
## 153  5.42408031
## 88  -2.16688929
## 158  2.01048258
## 324 -0.88927807
## 491 -0.46031664
## 60   1.45916575
## 264  1.20728270
## 422 -0.21078667
## 375  0.26560450
## 108  0.85570090
## 266  6.61592926
## 157 -0.45593731
## 187 -0.43962246
## 466  5.29924515
## 19  -3.61894841
## 418 -5.81756704
## 33  -1.25549898
## 429 -1.15005617
## 151  1.45738688
## 368  1.29526496
## 63   0.89510272
## 120  1.28589542
## 474  3.46802557
## 354 -0.97979601
## 265  0.07889550
## 96  -1.17766548
## 454 -4.40299753
## 453 -1.85050204
## 395 -1.87658864
## 222  2.44447318
## 361 -0.02084751
## 424 -2.07443291
## 171 -0.47408422
## 313  2.79786372
## 293  1.61802322
## 273  0.51940828
## 409 -1.76450861
## 471  0.76522782
## 54   1.42137658
## 154 -1.86778474
## 47   4.55695373
## 235  2.16281779
## 24   3.14147966
## 249  0.90123817
## 69  -0.37848481
## 233  2.19674404
## 38  -2.87571204
## 335  2.25656817
## 433 -0.68814128
## 125 -0.82726614
## 192  6.34232800
## 126  3.19148120
## 30   0.09715961
## 401 -3.78569857
## 170 -4.27884536
## 114 -1.49324352
## 145  2.71822172
## 197 -3.34844975
## 476  3.47286166
## 146  2.82199598
## 53  -1.67716915
## 384  0.07910076
## 247  6.00827120
## 118 -2.10023946
## 386 -3.33025461
## 331 -1.67131127
## 398 -0.71606795
## 159  4.39857279
## 123 -0.73087806
## 300 -0.31504888
## 283 -0.62746167
## 230  0.80391031
## 437 -2.43246566
## 94   0.43585520
## 137  2.39220660
## 190 -0.70447991
## 229  0.91746032
## 15  -3.04188330
## 284  0.18528781
## 122  0.93580733
## 75  -5.12744006
## 268  1.80793151
## 226 -3.12949617
## 480 -3.00054171
## 251 -0.35946863
## 208  0.50717589
## 176  1.29371732
## 232  0.81953439
## 164 -3.59828885
## 485  5.03656862
## 227 -1.03181592
## 337 -0.53386397
## 179  0.93299142
## 342 -1.20833774
## 100 -2.65892569
## 460  4.25759224
## 470 -2.49819820
## 117  0.53666179
## 270  0.88164721
## 357 -2.68092318
## 215 -3.76868085
## 44   0.51153113
## 4    0.82565548
## 140 -7.48401524
## 14  -1.92247082
## 482  3.89789679
## 308  2.26768145
## 365 -0.46491870
## 364  2.00476604
## 90  -0.65919249
## 444 -1.96092024
## 350  0.43171492
## 239  1.98156174
## 91   0.58339389
## 172  0.86876738
## 106 -3.87806719
## 9    0.04214213
## 374  0.26786004
## 169  0.67901269
## 447 -2.36675012
## 473  1.44953168
## 358 -1.73362200
## 383 -0.85486368
## 73  -2.60860007
## 461 -0.46988618
## 278  0.89807010
## 344 -0.45064941
## 378 -0.43418070
## 347 -3.47257829
## 201 -4.64373487
## 356  0.91421046
## 317  1.78658520
## 450 -5.00843351
## 210  1.38613555
## 105  0.51749321
## 173 -4.47427644
## 425  1.07571274
## 414 -2.65023165
## 205  0.96287514
## 186  3.84419636
## 388 -0.63240928
## 387  1.10468329
## 237 -1.81924728
## 346 -5.04886978
## 236 -3.33112613
## 285  1.23605698
## 48  -0.30649767
## 416 -2.01772177
## 130 -0.17704909
## 17   3.41378192
## 412 -3.56642951
## 141  6.81547971
## 160  1.67086345
## 259  1.05678194
## 380  0.42141102
## 379  0.04470530
## 61  -0.79895441
## 110  1.22077102
## 83   0.62295049
## 287 -1.09128198
## 84  -0.56356361
## 340  0.16457479
## 451  1.47079154
## 486 -2.07857959
## 363 -0.72931584
## 3    0.57439785
## 306  3.43325175
## 316 -2.43143623
## 13   0.77298314
## 341 -0.07929999
## 27  -2.58776384
## 36  -2.41371579
## 223 -0.44684879
## 138  1.06370663
## 431 -1.08163183
## 240  4.33785468
## 490  0.07406089
## 446 -4.96066358
## 488  0.17617508
## 155  1.60949054
## 143  1.56119352
## 312  2.94521573
## 294 -0.50949896
## 305  1.32545574
## 127  1.95457906
## 111  1.35984387
## 455 -0.18646032
## 393  1.83655293
## 289 -5.16784200
## 257 -2.07032184
## 12   2.24684728
## 432 -4.28207210
## 77   0.87572354
## 184  1.32932689
## 87  -5.72899878
## 296  2.04686522
## 74  -2.63833529
## 231 -1.38794165
## 59  -0.18898999
## 439  1.70081884
## 224 -0.14439467
## 492  0.45942020
## 309  0.64236946
## 421 -3.61410622
## 452 -1.14374964
## 10   0.07784802
## 307  1.22449189
## 499  2.04678844
## 57  -0.92009249
## 397 -2.26045748
## 328  0.17673294
## 39  -0.72859251
## 260  0.08444186
## 394 -1.47509946
## 93  -0.82908679
## 329  1.11083823
## 302  0.65291107
## 132 -1.58466814
## 477 -2.60964897
## 135  0.01057056
## 242  3.76806133
## 2   -0.15858134
## 178  0.63581909
## 62  -0.77430773
## 445 -0.28234472
## 403 -0.57483242
## 336  3.79673399
## 50   0.81196577
## 139 -1.53921007
## 116  1.07178247
## 276 -0.44381856
## 150  2.42228996
## 129 -0.61830266
## 21  -1.18646471
## 448 -3.47052182
## 280  1.15438014
## 288 -0.05742743
## 177  2.18406950
## 390 -0.80627278
## 204  2.71329491
## 338 -3.12468953
## 303  1.01079268
## 148  2.16161223
## 29  -0.34121022
## 128  2.12580045
## 161  1.56155767
## 22  -1.58741972
## 246 -2.07102999
## 162 -4.18859859
## 406 -0.25653485
## 339 -0.69798100
## 497  0.71669340
## 202  4.01153686
## 441 -3.07726709
## 325 -0.18333880
## 32  -2.36455367
## 211 -2.31229538
## 275  0.03448061
## 506 -0.61111891
## 255 -0.69342124
## 267  0.58411978
## 420 -2.55447367
## 168  0.75477213
## 245 -3.54641061
## 463  0.14641896
## 373 -2.33085205
## 67   0.66925934
## 217 -3.74352844
## 64   2.11011548
## 198  1.96092256
## 456 -2.00358412
## 405  1.24481819
## 203 -1.04239500
## 175  0.14374153
## 299  0.92887245
## 7   -3.00667509
## 258  4.20230632
## 6   -2.73621611
## 481 -0.98848031
## 478  1.37510906
## 297 -0.54048378
## 80  -0.90992094
## 321  1.46607280
## 252 -2.13891286
## 195  2.03843146
## 272  0.80124685
## 449 -0.10625207
## 199  2.39819834
## 166 -0.41486377
## 372 -1.51672711
## 41  -0.55315092
## 315 -0.51469325
## 292  2.99495663
## 56   2.36045541
## 367  0.73971978
## 475  3.15514964
## 314  3.05583791
## 351 -1.27567943
## 462 -0.54696663
## 34   0.86991941
## 35  -2.68334035
## 70  -1.90102986
## 102  2.40421390
## 436 -3.12346067
## 
## , , 14 comps
## 
##           weight
## 225  0.490311080
## 31  -1.407186656
## 290  2.472405279
## 174 -1.391976641
## 505 -1.396695920
## 274 -2.890755989
## 493  3.333565384
## 440  2.139492904
## 385  3.799818917
## 196 -1.193470527
## 68  -0.800221437
## 55   1.623273407
## 310  3.016301069
## 319  2.727197609
## 79   0.377886187
## 238 -3.498435287
## 43   0.668659129
## 370  4.466978082
## 362  0.015809547
## 301  3.346524328
## 65   2.209167391
## 382 -0.689102693
## 16  -0.434563925
## 355 -4.167874890
## 89  -0.026922996
## 277  1.663104197
## 498  0.092816662
## 134 -3.688390113
## 152  4.217964554
## 282  2.793427335
## 112 -0.812562261
## 147 -0.129160090
## 42   1.210424693
## 489  1.457769079
## 330 -1.269160312
## 415 -4.147597077
## 207  2.890080935
## 212  4.057057497
## 78  -3.544911570
## 99   0.026515045
## 376 -1.679702997
## 163 -2.296079550
## 243  3.599822300
## 391 -0.640840663
## 221  8.678360606
## 86  -0.199042975
## 144  0.671379075
## 327  1.441472719
## 359  5.771487643
## 200 -0.116225720
## 58  -3.501125484
## 241 -4.717512452
## 25   0.413689919
## 45  -1.285340318
## 263  1.946593567
## 183 -1.983177702
## 487 -0.931174172
## 326 -1.618169789
## 494  0.680232101
## 349  1.809624595
## 442 -8.397930562
## 234 -2.014379694
## 95   3.057530943
## 271  3.369694931
## 345 -0.366288296
## 40   1.708288989
## 206 -0.380504196
## 185 -0.666529979
## 1    1.893432094
## 322 -0.780361793
## 333  1.521393099
## 188  1.531620443
## 427 -0.465897066
## 469  3.748655925
## 438 -3.573248892
## 85  -0.198797619
## 311  0.765536638
## 167 -0.516233031
## 71  -3.763328748
## 46   1.392496509
## 281  3.316184594
## 193 -1.545694959
## 218 -0.844958191
## 194  2.536987051
## 133  2.171690824
## 216 -1.435895362
## 244  1.339599691
## 392 -0.966072886
## 20   0.756154439
## 92   1.899155899
## 286  0.588807076
## 334  0.471172290
## 98  -0.563505149
## 298 -0.929821086
## 410 -0.812475432
## 291  0.313668281
## 49   1.550702641
## 97   0.107266571
## 66  -0.753166955
## 109 -2.793244115
## 104  2.100905663
## 434  3.011935173
## 153  5.189206826
## 88  -1.647326274
## 158  2.233922207
## 324 -0.792734460
## 491 -0.768104226
## 60   1.574771010
## 264  1.449607970
## 422 -0.158206943
## 375  0.018686350
## 108  0.553031569
## 266  6.545998783
## 157 -0.501298573
## 187 -0.470029330
## 466  5.216942934
## 19  -3.345688215
## 418 -5.874008021
## 33  -1.279130792
## 429 -1.037736404
## 151  1.593209077
## 368  1.272502547
## 63   1.143251309
## 120  1.103847447
## 474  2.768099747
## 354 -0.794728645
## 265  0.252436200
## 96  -1.269822702
## 454 -4.272306265
## 453 -2.143232376
## 395 -1.284523567
## 222  2.832502897
## 361 -0.109823004
## 424 -1.780221836
## 171 -0.648123795
## 313  3.118234540
## 293  1.434944633
## 273  0.426741962
## 409 -1.906177035
## 471  0.850865907
## 54   1.042747891
## 154 -2.161648675
## 47   4.093303118
## 235  2.194962729
## 24   3.023083459
## 249  0.778581012
## 69  -0.170653734
## 233  2.290503647
## 38  -2.929729176
## 335  2.480752446
## 433 -1.027047811
## 125 -0.829507974
## 192  6.502039906
## 126  2.832098736
## 30  -0.024526506
## 401 -4.065465816
## 170 -4.414303288
## 114 -1.251256061
## 145  2.416079967
## 197 -3.652143983
## 476  3.456607764
## 146  2.669786811
## 53  -1.952995129
## 384 -0.117980860
## 247  5.992616277
## 118 -2.153575233
## 386 -3.069221002
## 331 -1.682390971
## 398 -0.948248936
## 159  4.399512112
## 123 -0.569962586
## 300 -0.609751602
## 283 -0.406071612
## 230  0.607247771
## 437 -2.592002941
## 94   0.443131798
## 137  2.802281537
## 190 -0.622729693
## 229  1.009818910
## 15  -3.182441342
## 284  0.534636468
## 122  1.198529583
## 75  -5.100819838
## 268  2.089658486
## 226 -3.410823606
## 480 -2.938617548
## 251 -0.208368000
## 208  0.002263150
## 176  1.580804333
## 232  0.663217259
## 164 -3.872535870
## 485  5.012088725
## 227 -1.503204731
## 337 -0.469115122
## 179  0.626544207
## 342 -1.203085737
## 100 -2.227850444
## 460  4.389498721
## 470 -2.605764532
## 117  0.842426492
## 270  0.521869765
## 357 -2.601259846
## 215 -3.357563452
## 44   0.654986876
## 4    1.062632348
## 140 -7.954010439
## 14  -1.809512843
## 482  3.208563089
## 308  2.430335672
## 365 -0.422421055
## 364  1.870346970
## 90  -0.805204646
## 444 -2.072208189
## 350  0.463273298
## 239  2.313172988
## 91   0.478753264
## 172  0.996772299
## 106 -3.791427343
## 9    0.032351661
## 374  0.519743411
## 169  0.231554975
## 447 -2.649090054
## 473  1.743736473
## 358 -1.498608606
## 383 -0.833375024
## 73  -2.258101827
## 461 -0.198908333
## 278  1.216942194
## 344 -0.384942662
## 378 -0.636733536
## 347 -3.330016483
## 201 -4.821889605
## 356  1.156965988
## 317  1.577558170
## 450 -5.093774945
## 210  0.976374787
## 105  0.427589129
## 173 -4.500180042
## 425  1.128188069
## 414 -2.373009308
## 205  0.862812917
## 186  3.614081729
## 388 -0.260902018
## 387  1.160316597
## 237 -1.751434647
## 346 -4.965831112
## 236 -3.697370631
## 285  1.001781504
## 48   0.114658689
## 416 -2.011594192
## 130  0.165438933
## 17   3.319062696
## 412 -3.639230835
## 141  7.137080962
## 160  1.498790451
## 259  0.799089619
## 380 -0.023305321
## 379 -0.011293034
## 61  -0.692029135
## 110  1.540218098
## 83   0.672119355
## 287 -1.193157323
## 84  -0.670064997
## 340  0.302220575
## 451  1.343953351
## 486 -2.089683131
## 363 -0.643169186
## 3    0.389498132
## 306  3.534472380
## 316 -2.411643079
## 13   0.671948738
## 341 -0.564531294
## 27  -2.573759348
## 36  -2.457115180
## 223 -0.239216030
## 138  1.011832314
## 431 -1.372511689
## 240  4.538756153
## 490  0.413436579
## 446 -4.725954086
## 488  0.504684050
## 155  1.007176027
## 143  1.736905301
## 312  2.381519752
## 294 -0.790672076
## 305  0.980355203
## 127  2.316511673
## 111  1.198074763
## 455 -0.432218113
## 393  1.870997907
## 289 -5.079431758
## 257 -1.854879359
## 12   2.523994722
## 432 -4.239031223
## 77   0.696672506
## 184  1.403366122
## 87  -5.381424468
## 296  2.030852662
## 74  -2.492987163
## 231 -1.007554135
## 59  -0.200312594
## 439  1.585609265
## 224  0.002683441
## 492  0.843942419
## 309  0.607733795
## 421 -3.747814507
## 452 -1.275305444
## 10  -0.018637712
## 307  1.195440919
## 499  2.160542146
## 57  -1.018850737
## 397 -2.475302062
## 328 -0.178900502
## 39  -0.779193458
## 260 -0.069392977
## 394 -1.527600510
## 93  -0.581617459
## 329  1.189468303
## 302  0.496467710
## 132 -1.920197912
## 477 -2.142170438
## 135  0.202917450
## 242  3.352202639
## 2   -0.192445483
## 178  1.257343511
## 62  -0.834851870
## 445 -0.451128369
## 403 -0.635995761
## 336  3.900197638
## 50   0.618750010
## 139 -1.296535313
## 116  1.053263934
## 276 -0.296390297
## 150  2.438868090
## 129 -0.459754931
## 21  -0.920444079
## 448 -3.399397157
## 280  1.114977343
## 288 -0.001277559
## 177  2.202793731
## 390 -0.710204277
## 204  2.580923195
## 338 -3.020115760
## 303  0.641842642
## 148  2.333596979
## 29  -0.737023108
## 128  1.839881986
## 161  1.052281567
## 22  -1.426640975
## 246 -1.892285076
## 162 -4.369651228
## 406 -0.244356571
## 339 -0.223724949
## 497  0.793177442
## 202  3.863342061
## 441 -3.109918030
## 325  0.008760066
## 32  -2.335001235
## 211 -2.357232614
## 275  0.113176291
## 506 -0.637949528
## 255 -0.466654750
## 267  0.398311489
## 420 -2.434408792
## 168  0.579108456
## 245 -3.291860248
## 463  0.655472234
## 373 -2.096749009
## 67   0.638954267
## 217 -4.016415599
## 64   2.102538052
## 198  1.933512263
## 456 -1.753667280
## 405  1.102374940
## 203 -1.191564286
## 175  0.129973208
## 299  0.560961636
## 7   -2.988878683
## 258  4.100470519
## 6   -2.383362542
## 481 -0.789992415
## 478  1.186707165
## 297 -0.625370244
## 80  -0.843305570
## 321  1.598433866
## 252 -2.255986720
## 195  1.828833124
## 272  0.544049167
## 449 -0.084301139
## 199  2.322875009
## 166 -0.456514840
## 372 -1.415153337
## 41  -0.491169426
## 315 -0.188245192
## 292  3.000192054
## 56   2.019760675
## 367  0.377690734
## 475  2.984363671
## 314  2.866386144
## 351 -1.561208669
## 462 -0.446449527
## 34   0.532721066
## 35  -2.601689468
## 70  -1.628582083
## 102  2.016092638
## 436 -3.053918510
## 
## , , 15 comps
## 
##           weight
## 225  0.293796024
## 31  -1.180600343
## 290  2.284125456
## 174 -1.406934481
## 505 -1.324767364
## 274 -2.752707901
## 493  3.481931544
## 440  2.246577047
## 385  3.796420875
## 196 -1.378664475
## 68  -0.857425534
## 55   1.697620101
## 310  2.889181069
## 319  2.840608449
## 79   0.401032019
## 238 -3.517569770
## 43   0.620788732
## 370  4.468241966
## 362 -0.017815898
## 301  3.368459037
## 65   2.181171993
## 382 -0.981094364
## 16  -0.553329481
## 355 -3.966797063
## 89  -0.067206412
## 277  1.752343723
## 498  0.247234343
## 134 -3.857810561
## 152  4.270454130
## 282  2.886720622
## 112 -0.932446851
## 147 -0.127678588
## 42   1.210590355
## 489  1.490595294
## 330 -1.379773912
## 415 -4.142115235
## 207  2.785239848
## 212  3.738754939
## 78  -3.933786392
## 99   0.139520632
## 376 -1.793318093
## 163 -2.236771612
## 243  3.700325361
## 391 -0.678531856
## 221  8.340445214
## 86  -0.484072774
## 144  0.751284558
## 327  1.350502579
## 359  5.469124809
## 200 -0.169655192
## 58  -3.455126526
## 241 -4.780705308
## 25   0.754263326
## 45  -1.114564750
## 263  1.901475422
## 183 -2.186174214
## 487 -1.010081369
## 326 -1.838871597
## 494  0.617713050
## 349  1.845748651
## 442 -8.409891503
## 234 -2.023910391
## 95   3.039891330
## 271  3.284891774
## 345 -0.206813057
## 40   1.876140404
## 206 -0.194070074
## 185 -0.397391404
## 1    2.007519607
## 322 -0.831750589
## 333  1.457335118
## 188  1.626346336
## 427 -0.363113391
## 469  3.604540107
## 438 -3.737811928
## 85  -0.447691168
## 311  0.831956022
## 167 -0.458847770
## 71  -3.524662254
## 46   1.482706409
## 281  3.346419666
## 193 -1.527136003
## 218 -0.752457158
## 194  2.722181738
## 133  2.255724511
## 216 -1.556111733
## 244  1.288896844
## 392 -1.176805036
## 20   0.772080267
## 92   2.117793064
## 286  0.853072905
## 334  0.245976533
## 98  -0.781839366
## 298 -0.882654227
## 410 -0.742846005
## 291  0.370644449
## 49   1.885428995
## 97   0.164659150
## 66  -1.174190425
## 109 -2.639603613
## 104  2.152188455
## 434  2.942115104
## 153  5.047831741
## 88  -1.522903489
## 158  2.505971625
## 324 -0.979471808
## 491 -0.693962186
## 60   1.424870632
## 264  1.490559235
## 422 -0.030619549
## 375  0.073772743
## 108  0.755928953
## 266  6.472375027
## 157 -0.596652458
## 187 -0.292238925
## 466  5.199021499
## 19  -3.280238300
## 418 -5.936421643
## 33  -1.446416130
## 429 -1.201110209
## 151  1.644369481
## 368  1.260587099
## 63   1.329494482
## 120  1.331187501
## 474  3.011825597
## 354 -0.669622045
## 265  0.257797945
## 96  -1.202688867
## 454 -4.376036252
## 453 -2.188712891
## 395 -1.332649008
## 222  2.787706922
## 361 -0.228578406
## 424 -1.784191484
## 171 -0.842504299
## 313  2.898861962
## 293  1.075624157
## 273  0.195218630
## 409 -1.611651938
## 471  0.877832631
## 54   1.009417677
## 154 -2.374685719
## 47   4.100798828
## 235  2.016267873
## 24   3.038112323
## 249  0.687610225
## 69  -0.193675859
## 233  2.439628736
## 38  -2.866679572
## 335  2.406731464
## 433 -1.096853584
## 125 -0.665497947
## 192  6.537140939
## 126  2.781246716
## 30   0.121855239
## 401 -4.155342420
## 170 -4.357669769
## 114 -1.533052724
## 145  2.679512204
## 197 -3.661980376
## 476  3.532664211
## 146  2.564269468
## 53  -2.115428279
## 384 -0.034519221
## 247  6.065166385
## 118 -2.353504991
## 386 -3.093826939
## 331 -1.494957071
## 398 -0.924774037
## 159  4.453577741
## 123 -0.386916748
## 300 -0.776874036
## 283 -0.398437093
## 230  0.536857817
## 437 -2.629079731
## 94   0.665055310
## 137  2.623558712
## 190 -0.330765633
## 229  1.149614175
## 15  -2.997098952
## 284  0.648721579
## 122  1.286171033
## 75  -5.307857491
## 268  2.008173173
## 226 -3.571100440
## 480 -2.543547893
## 251 -0.003637946
## 208  0.027349888
## 176  1.485498133
## 232  0.366669318
## 164 -3.704500236
## 485  4.795565403
## 227 -1.336286857
## 337 -0.500522959
## 179  0.573890393
## 342 -1.075316523
## 100 -2.239553397
## 460  4.475002655
## 470 -2.440765088
## 117  0.606543293
## 270  0.595476012
## 357 -2.764309968
## 215 -3.060334778
## 44   0.459872399
## 4    1.044350950
## 140 -7.832393468
## 14  -1.734514790
## 482  3.171086501
## 308  2.648607333
## 365 -0.637139358
## 364  1.845014372
## 90  -0.734353881
## 444 -2.029670218
## 350  0.400618409
## 239  2.216964932
## 91   0.380951580
## 172  1.113401521
## 106 -3.525531119
## 9    0.125820533
## 374  0.450457908
## 169  0.257944396
## 447 -2.697227602
## 473  1.762939142
## 358 -1.373466300
## 383 -0.821495497
## 73  -1.915265171
## 461 -0.065124472
## 278  1.083729718
## 344 -0.349742427
## 378 -0.513092459
## 347 -3.208036378
## 201 -4.726119876
## 356  1.096567640
## 317  1.719190726
## 450 -4.967779260
## 210  0.704447090
## 105  0.640888209
## 173 -4.428960710
## 425  1.187898183
## 414 -2.513935074
## 205  1.017166801
## 186  3.645741440
## 388 -0.332264780
## 387  1.201451292
## 237 -1.507631482
## 346 -5.102680014
## 236 -3.884327465
## 285  0.979681056
## 48   0.082417198
## 416 -2.110131275
## 130 -0.011216019
## 17   3.315785599
## 412 -3.392335033
## 141  7.021023924
## 160  1.636952414
## 259  0.754365201
## 380 -0.107743767
## 379 -0.114968800
## 61  -0.344735041
## 110  1.474479386
## 83   0.771737883
## 287 -1.417447481
## 84  -0.943731936
## 340  0.028588628
## 451  1.365404812
## 486 -2.292908240
## 363 -0.529235021
## 3    0.041618829
## 306  3.634663559
## 316 -2.635140616
## 13   0.938084416
## 341 -0.875618546
## 27  -2.294884325
## 36  -2.104519691
## 223 -0.170485518
## 138  0.992561710
## 431 -1.645793242
## 240  4.471049926
## 490  0.371578573
## 446 -4.557471404
## 488  0.342534695
## 155  0.989177832
## 143  1.650895795
## 312  2.816893775
## 294 -0.674879579
## 305  1.057431520
## 127  2.181560748
## 111  1.122395961
## 455 -0.551125527
## 393  1.710132087
## 289 -4.929733645
## 257 -1.809716538
## 12   2.625173712
## 432 -4.157110463
## 77   0.767940959
## 184  1.267776274
## 87  -5.505862790
## 296  2.180439498
## 74  -2.738389793
## 231 -0.967846323
## 59  -0.337043631
## 439  1.512406651
## 224  0.192859337
## 492  0.936798568
## 309  0.826096703
## 421 -3.957070276
## 452 -1.329836795
## 10   0.078373161
## 307  1.309684997
## 499  1.995382106
## 57  -0.889132142
## 397 -2.250092278
## 328 -0.281877327
## 39  -1.101743718
## 260  0.015646245
## 394 -1.437856814
## 93  -0.585011043
## 329  1.043510655
## 302  0.435486116
## 132 -2.006328829
## 477 -2.156607370
## 135  0.201951520
## 242  3.566052313
## 2   -0.157036715
## 178  1.083571634
## 62  -0.709229759
## 445 -0.567274959
## 403 -0.629579200
## 336  3.834814459
## 50   0.801342021
## 139 -1.112261157
## 116  1.083388013
## 276 -0.201321482
## 150  2.262743658
## 129 -0.498644642
## 21  -0.861797583
## 448 -3.186705756
## 280  1.006242644
## 288  0.075076091
## 177  2.221368144
## 390 -0.469178659
## 204  2.551008506
## 338 -3.107789260
## 303  0.555540238
## 148  2.212595946
## 29  -0.527952047
## 128  1.703964982
## 161  1.104863772
## 22  -1.493891207
## 246 -2.092144002
## 162 -4.162710992
## 406 -0.358741216
## 339 -0.286045677
## 497  0.807833824
## 202  3.952211399
## 441 -3.056163477
## 325 -0.087742524
## 32  -2.382934604
## 211 -2.278797767
## 275  0.263883689
## 506 -0.608491928
## 255 -0.391992465
## 267  0.254317886
## 420 -2.552321814
## 168  0.201141376
## 245 -3.366982433
## 463  0.475999881
## 373 -2.130149266
## 67   0.474902104
## 217 -4.155331325
## 64   2.230808488
## 198  2.170357545
## 456 -1.493304191
## 405  1.050414640
## 203 -1.182039069
## 175  0.068144864
## 299  0.632988628
## 7   -3.059273789
## 258  4.085757193
## 6   -2.462097300
## 481 -0.742307634
## 478  1.019166973
## 297 -0.512292825
## 80  -0.806233437
## 321  1.769999656
## 252 -2.356282616
## 195  1.945859822
## 272  0.401817517
## 449  0.002193745
## 199  2.189990206
## 166 -0.697102039
## 372 -1.476576558
## 41  -0.561715506
## 315 -0.008851542
## 292  3.111640316
## 56   2.126214093
## 367  0.052393108
## 475  3.150064452
## 314  2.693083444
## 351 -1.585288748
## 462 -0.493563677
## 34   0.580160203
## 35  -2.635773935
## 70  -1.638780996
## 102  2.146772810
## 436 -2.883030540
## 
## , , 16 comps
## 
##           weight
## 225  0.240076020
## 31   0.275536489
## 290  1.313559980
## 174 -1.036074235
## 505 -0.937408992
## 274 -2.340854254
## 493  4.391914575
## 440  3.529889071
## 385  2.879192241
## 196 -0.731550003
## 68  -1.474632094
## 55   1.230987692
## 310  2.603462105
## 319  3.146855411
## 79   1.123284684
## 238 -4.192159795
## 43   0.326674203
## 370  5.267121606
## 362 -0.593069511
## 301  2.815267470
## 65   0.983211711
## 382 -1.573013483
## 16  -0.210849498
## 355 -4.793040531
## 89  -0.037705247
## 277  1.679645258
## 498  0.643569050
## 134 -2.867490237
## 152  3.386070626
## 282  3.038451435
## 112  1.050319417
## 147 -0.282988178
## 42   0.880133813
## 489  2.768580112
## 330 -0.055901866
## 415 -4.351905925
## 207  2.765026220
## 212  4.645186433
## 78  -4.607802222
## 99  -0.390077913
## 376 -1.251105224
## 163 -1.239083370
## 243  3.868077282
## 391 -0.538933251
## 221  6.229644206
## 86  -2.024168633
## 144  0.220892168
## 327  0.536675883
## 359  3.995036214
## 200  0.078011259
## 58  -2.662961257
## 241 -3.776213326
## 25   1.444424491
## 45  -2.415051754
## 263  2.384538405
## 183 -3.665204944
## 487 -0.227448697
## 326 -0.872709000
## 494  1.389251363
## 349  1.249723990
## 442 -7.826214345
## 234 -2.659999376
## 95   2.574508300
## 271  2.406606617
## 345 -0.828022832
## 40   1.138101943
## 206  1.230824817
## 185  0.206169195
## 1    0.963773916
## 322 -1.139042113
## 333  3.101319359
## 188  1.658391540
## 427  0.645010091
## 469  3.098788769
## 438 -4.675409558
## 85  -1.192808250
## 311  2.237098110
## 167  1.129087217
## 71  -2.781505720
## 46   0.594197141
## 281  2.418378797
## 193 -1.143013062
## 218 -1.007722787
## 194  1.480800044
## 133  1.553036552
## 216 -0.896786122
## 244  3.204278086
## 392 -1.702558772
## 20   0.909832894
## 92   2.021578807
## 286  0.334204665
## 334  0.434667677
## 98  -0.405575133
## 298 -0.497183401
## 410 -0.258404494
## 291  0.495878317
## 49   1.330632168
## 97   0.398121449
## 66   0.419717007
## 109 -1.011626372
## 104  2.422999285
## 434  3.793693070
## 153  4.973783792
## 88  -1.040341647
## 158  1.906556365
## 324 -0.866688425
## 491  0.205131992
## 60   1.018562630
## 264  1.496557905
## 422 -1.067875620
## 375 -1.574032855
## 108  0.403868671
## 266  4.038404335
## 157 -0.173459229
## 187  1.269234315
## 466  4.014530598
## 19  -2.036606555
## 418 -5.251002715
## 33  -0.997795800
## 429 -0.662752686
## 151  0.642612449
## 368  1.584331823
## 63   1.741902129
## 120 -0.377356248
## 474  3.859006893
## 354  0.029117348
## 265  0.489749205
## 96  -1.701989526
## 454 -3.356274995
## 453 -3.338471566
## 395  0.324840566
## 222  3.504772115
## 361 -0.454801704
## 424 -1.438954126
## 171 -0.596434873
## 313  3.262497876
## 293 -0.698564579
## 273 -0.393662788
## 409 -0.468906960
## 471  0.834963899
## 54   0.195600906
## 154 -1.433569283
## 47   3.188098717
## 235  1.279630311
## 24   1.234954524
## 249  0.794558414
## 69   0.398017622
## 233  2.019445889
## 38  -3.208548666
## 335  0.837237988
## 433 -2.094122037
## 125 -1.387958281
## 192  6.759428816
## 126  2.643477195
## 30  -0.322610963
## 401 -3.252410531
## 170 -3.654480232
## 114 -1.507546883
## 145  1.954096322
## 197 -3.483462316
## 476  2.702672533
## 146  1.955918958
## 53  -2.195400783
## 384  1.148209500
## 247  4.909893620
## 118 -0.875094566
## 386 -2.238103291
## 331 -1.176595716
## 398 -0.686383436
## 159  5.977985933
## 123 -0.562210570
## 300 -1.077556206
## 283  0.601917495
## 230 -0.908039843
## 437 -2.759246440
## 94   0.122059408
## 137  3.706647944
## 190 -0.216118043
## 229  0.776125649
## 15  -2.016513579
## 284  0.538272210
## 122  1.143471566
## 75  -3.473819354
## 268  2.027002126
## 226 -3.453778285
## 480 -1.282484475
## 251 -0.499004543
## 208  1.363262733
## 176  0.214597990
## 232  0.324451710
## 164 -2.823303823
## 485  4.733994288
## 227 -0.520989227
## 337 -0.834799837
## 179  1.705904982
## 342 -1.874505870
## 100 -3.740286669
## 460  2.924774168
## 470 -2.292484681
## 117  1.467397027
## 270  1.497169537
## 357 -3.071762304
## 215 -4.711823940
## 44   0.697624491
## 4    0.564126516
## 140 -7.647927587
## 14  -2.824470925
## 482  2.130089366
## 308  2.521913358
## 365  0.295046082
## 364  2.307523383
## 90  -0.185293276
## 444 -2.438704106
## 350  0.709344110
## 239  1.689986789
## 91   1.465736955
## 172 -0.764206547
## 106 -2.810371730
## 9    0.476334680
## 374 -0.086232208
## 169  1.333385541
## 447 -2.676198903
## 473  1.085321598
## 358 -1.325673086
## 383 -0.879453258
## 73  -2.541526324
## 461 -1.828484069
## 278  2.343271849
## 344  0.056723274
## 378 -0.746888070
## 347 -3.036729334
## 201 -4.007464801
## 356  2.738834265
## 317  2.258655783
## 450 -3.949168375
## 210  0.488042383
## 105  0.971011498
## 173 -4.178432513
## 425 -0.059773822
## 414 -1.432648419
## 205  1.859441232
## 186  3.177149391
## 388 -0.007052283
## 387  0.865576796
## 237 -2.561611887
## 346 -4.606174546
## 236 -4.271017089
## 285 -0.185120724
## 48   1.180385306
## 416 -1.932664851
## 130 -0.487247207
## 17   2.378389652
## 412 -3.177723424
## 141  7.045257570
## 160  0.742490063
## 259  0.482783521
## 380  1.038551829
## 379 -0.437132384
## 61  -0.129711450
## 110  1.721519794
## 83   0.844758728
## 287 -1.151990840
## 84  -1.732618959
## 340 -0.432643410
## 451  1.012043446
## 486 -1.607188312
## 363 -1.369299318
## 3   -1.351294009
## 306  3.811005915
## 316 -2.393719809
## 13   1.307005620
## 341 -0.081116125
## 27  -2.373134683
## 36  -1.887446186
## 223  0.801309746
## 138  0.483160313
## 431 -2.063053879
## 240  2.578357862
## 490 -0.421347370
## 446 -3.006851687
## 488  0.942293685
## 155  0.422824252
## 143  0.979460623
## 312  1.101821313
## 294 -0.681165194
## 305  0.328529220
## 127  2.069273220
## 111  0.566856638
## 455  0.664169268
## 393  1.029914353
## 289 -3.711828056
## 257 -2.345051237
## 12   3.199458757
## 432 -1.973820869
## 77  -0.766266429
## 184  0.601443852
## 87  -4.355451657
## 296  1.142545451
## 74  -3.142953770
## 231 -1.827856092
## 59  -0.470888761
## 439  0.356723047
## 224 -0.187640521
## 492  1.764196842
## 309  1.431310521
## 421 -2.683871101
## 452 -1.384591591
## 10   0.177579815
## 307  2.632597128
## 499  1.876572541
## 57  -0.146547835
## 397 -2.107476922
## 328 -0.555585626
## 39  -1.493099107
## 260  0.649005308
## 394 -1.107837003
## 93  -0.374444648
## 329  1.263720694
## 302  0.858316603
## 132 -3.252737247
## 477 -0.908918538
## 135 -0.312458282
## 242  3.165589600
## 2   -1.034815197
## 178  0.509589949
## 62  -0.463915136
## 445  0.351958673
## 403  0.203086026
## 336  3.289683827
## 50   0.600746659
## 139 -1.258440695
## 116 -0.529720467
## 276 -1.244262804
## 150  3.329609477
## 129 -1.613107548
## 21  -0.982305336
## 448 -1.409626060
## 280  0.465231173
## 288  0.132285355
## 177  1.083745820
## 390 -0.894343335
## 204  2.183893605
## 338 -1.865289044
## 303  0.555333501
## 148  1.506881905
## 29  -0.859676097
## 128  2.073099223
## 161  2.643013846
## 22  -0.644852921
## 246 -3.294622088
## 162 -3.279403717
## 406 -0.020906016
## 339 -0.798335747
## 497  1.504767962
## 202  4.001137607
## 441 -1.757764146
## 325  0.524704217
## 32  -1.500061908
## 211 -2.598867775
## 275 -1.153943891
## 506 -1.222072788
## 255  0.045370125
## 267  0.933262109
## 420 -2.146505771
## 168  0.187657113
## 245 -2.533383196
## 463  0.071095265
## 373 -2.688741784
## 67  -0.111348304
## 217 -3.192197364
## 64   1.493990066
## 198  1.505570198
## 456 -1.143039958
## 405  0.004937347
## 203 -0.243575008
## 175 -0.303585500
## 299 -0.085617151
## 7   -2.090414806
## 258  3.002684215
## 6   -2.066678095
## 481 -0.412453328
## 478  1.771091209
## 297 -0.810507245
## 80  -1.114263180
## 321  2.423587387
## 252 -2.401742899
## 195  2.179969997
## 272 -0.481981478
## 449 -0.298518742
## 199  2.844177228
## 166 -0.018569508
## 372 -0.191091450
## 41  -2.294969956
## 315 -1.173943768
## 292  2.309158542
## 56   0.887577083
## 367  0.045327310
## 475  1.457295284
## 314  2.012700632
## 351 -2.118294745
## 462  0.056939667
## 34   0.694595259
## 35  -1.681317778
## 70  -1.468074320
## 102  1.687050054
## 436 -2.907144381
## 
## , , 17 comps
## 
##          weight
## 225 -0.23982220
## 31  -0.48456657
## 290  0.29825730
## 174 -0.75634654
## 505 -0.48461351
## 274 -2.67127182
## 493  3.27187728
## 440  4.47748462
## 385  3.18284456
## 196 -1.81746155
## 68  -2.00618124
## 55   0.83741803
## 310  1.99725137
## 319  2.93164160
## 79   0.81066949
## 238 -3.70345022
## 43  -0.14832510
## 370  5.40378873
## 362  0.22987713
## 301  3.19792463
## 65   0.28102869
## 382 -1.44360440
## 16  -0.50939703
## 355 -4.86356657
## 89   0.09513400
## 277  1.86050547
## 498  1.85288373
## 134 -3.42825488
## 152  3.23011869
## 282  2.97837238
## 112  1.36448400
## 147  0.15436019
## 42   0.28182571
## 489  2.53229709
## 330  0.46131213
## 415 -4.05585019
## 207  2.46448020
## 212  4.49398960
## 78  -4.30617932
## 99  -0.19351073
## 376 -1.48510474
## 163 -1.33869211
## 243  4.62363741
## 391 -0.21898034
## 221  5.89421102
## 86  -2.34249030
## 144 -0.19487884
## 327  0.55737798
## 359  4.65870835
## 200  0.72210407
## 58  -2.67546218
## 241 -2.94815151
## 25   1.06862543
## 45  -3.15552964
## 263  1.69188212
## 183 -3.33478362
## 487 -0.03337778
## 326 -0.52665198
## 494  0.95159006
## 349  0.98611144
## 442 -8.16438226
## 234 -2.62057398
## 95   2.10266932
## 271  1.99657126
## 345 -0.97591503
## 40   0.73512361
## 206  1.69978565
## 185  0.74326102
## 1    0.74867325
## 322 -1.07079614
## 333  2.61252570
## 188  2.11982335
## 427  0.84752904
## 469  3.00537943
## 438 -4.63180358
## 85  -1.35068733
## 311  2.04719952
## 167  1.28884366
## 71  -2.86235374
## 46   0.84713020
## 281  2.54969038
## 193 -1.45710949
## 218 -1.40853403
## 194  1.06666619
## 133  1.56117913
## 216 -0.68151473
## 244  2.54622598
## 392 -2.03602846
## 20   0.89260948
## 92   1.49985651
## 286  0.15199523
## 334  0.48445401
## 98  -0.35660546
## 298 -0.89702413
## 410 -0.57708983
## 291  0.71620073
## 49   1.18781429
## 97   0.48956871
## 66   0.96473251
## 109 -1.18863203
## 104  1.88338564
## 434  3.77715572
## 153  4.84386594
## 88  -1.16160528
## 158  1.99237026
## 324 -1.03632174
## 491 -0.12378086
## 60   0.79639867
## 264  1.34438063
## 422 -0.48547479
## 375 -1.57021392
## 108  0.49857466
## 266  3.80054138
## 157  0.39920766
## 187  0.68762361
## 466  4.36380877
## 19  -1.65892570
## 418 -4.90473934
## 33  -0.31873503
## 429 -0.81095322
## 151  0.55528664
## 368  1.36194063
## 63   1.92672809
## 120 -0.57011879
## 474  3.78559235
## 354  0.32854901
## 265  0.69876982
## 96  -1.10381058
## 454 -2.72139387
## 453 -3.71380963
## 395  0.11242812
## 222  3.87181064
## 361  0.31709207
## 424 -0.29099091
## 171 -0.64945741
## 313  2.10870093
## 293 -0.26262319
## 273 -0.40827786
## 409 -0.50598914
## 471  0.64222120
## 54   0.08882747
## 154 -0.88605841
## 47   2.37198449
## 235  2.05094617
## 24   1.77125014
## 249  0.49498090
## 69   1.37481307
## 233  2.63754281
## 38  -3.20949771
## 335  0.64063652
## 433 -1.53658797
## 125 -1.23766119
## 192  7.45341629
## 126  2.41015981
## 30  -0.15792478
## 401 -2.47651384
## 170 -3.93386158
## 114 -2.13353455
## 145  1.53113655
## 197 -3.38897695
## 476  2.29919511
## 146  1.17337480
## 53  -1.71372332
## 384  0.74930611
## 247  4.98056961
## 118 -0.89170562
## 386 -1.83171277
## 331 -0.72896109
## 398 -1.22631002
## 159  5.91515688
## 123 -0.62897739
## 300 -1.01778494
## 283  0.80584343
## 230 -1.19863512
## 437 -2.24044678
## 94   0.19419450
## 137  2.46990791
## 190  0.14641954
## 229  0.44375944
## 15  -1.61163028
## 284 -0.10637035
## 122  1.24809322
## 75  -3.37083056
## 268  1.71069626
## 226 -3.97311120
## 480 -1.15544930
## 251 -0.26394615
## 208  1.41731033
## 176  0.69259493
## 232  0.15651125
## 164 -3.48604488
## 485  4.50454280
## 227 -1.51208180
## 337 -0.73705941
## 179  0.90828649
## 342 -1.09036045
## 100 -3.57069192
## 460  2.76085448
## 470 -2.66338024
## 117  1.19281386
## 270  1.80137410
## 357 -2.64805995
## 215 -3.58791443
## 44   0.19802962
## 4    0.06259986
## 140 -6.88672359
## 14  -3.04398645
## 482  2.30910110
## 308  2.44716920
## 365  1.08988689
## 364  2.18826583
## 90  -0.25914547
## 444 -1.98812889
## 350  0.75299814
## 239  2.06332876
## 91   1.76527337
## 172 -0.40464325
## 106 -3.73837010
## 9    0.32117730
## 374 -0.09086081
## 169  1.16837163
## 447 -1.79650811
## 473  1.45979381
## 358 -1.50932009
## 383 -1.16158909
## 73  -3.01142048
## 461 -1.51384288
## 278  1.98126767
## 344  0.35544302
## 378 -0.34070632
## 347 -2.58423130
## 201 -4.24986782
## 356  2.47850017
## 317  1.87115563
## 450 -3.89963940
## 210  0.12736174
## 105  0.86150356
## 173 -4.19855735
## 425  1.13875091
## 414 -0.78902358
## 205  1.19768929
## 186  2.49336441
## 388  0.46181037
## 387  0.53275602
## 237 -2.48535996
## 346 -3.31366927
## 236 -3.75630978
## 285 -0.20490571
## 48   1.21107266
## 416 -1.90196220
## 130 -0.52324096
## 17   2.32041394
## 412 -2.82803191
## 141  7.59539114
## 160  0.12610920
## 259  0.53555253
## 380  1.14013355
## 379 -0.32247301
## 61  -0.55954514
## 110  2.02447814
## 83   0.69136052
## 287 -1.61860911
## 84  -1.75632784
## 340 -1.07747927
## 451  0.92482895
## 486 -1.60613162
## 363 -1.90473710
## 3   -1.31811106
## 306  4.21306749
## 316 -3.18995617
## 13   1.99357988
## 341 -0.06837122
## 27  -2.28503750
## 36  -2.01721177
## 223  0.53268754
## 138  0.32124438
## 431 -1.93704353
## 240  3.29414629
## 490 -0.45855308
## 446 -2.11171853
## 488  1.66485056
## 155  0.21369541
## 143  0.37257877
## 312  1.53159319
## 294 -1.20043324
## 305  0.11768553
## 127  1.92912916
## 111  0.21150178
## 455  0.93878967
## 393  0.45210788
## 289 -3.60042155
## 257 -1.56051895
## 12   2.69268675
## 432 -2.13406751
## 77  -1.41709160
## 184  1.47375707
## 87  -4.00801111
## 296  1.22281668
## 74  -2.26699862
## 231 -1.91971682
## 59   0.25938968
## 439  0.90917622
## 224 -0.49984408
## 492  1.91070821
## 309  1.44226354
## 421 -3.30410235
## 452 -1.19842887
## 10   0.47945901
## 307  2.43697493
## 499  1.74429768
## 57  -0.57890943
## 397 -1.06001438
## 328 -0.95203998
## 39  -2.25273198
## 260  1.04605936
## 394 -0.80507712
## 93  -0.25288069
## 329  1.08734017
## 302  0.78877004
## 132 -3.59563603
## 477 -0.79043345
## 135 -0.56612685
## 242  3.77990828
## 2   -0.94072490
## 178  0.17186194
## 62  -0.69155701
## 445  0.46541164
## 403  0.42669052
## 336  2.68467432
## 50   1.05407787
## 139 -1.56830166
## 116 -0.98425827
## 276 -1.63535975
## 150  3.17111914
## 129 -1.92802476
## 21  -1.35254477
## 448 -1.13648924
## 280  0.45473026
## 288 -0.31214091
## 177  1.02363677
## 390 -1.11280557
## 204  1.96940461
## 338 -1.80078691
## 303  0.79683384
## 148  0.69180639
## 29  -1.11746036
## 128  2.02632287
## 161  2.26320061
## 22  -0.40080162
## 246 -3.02096801
## 162 -3.81164454
## 406  0.93548378
## 339 -0.74527754
## 497  1.76154664
## 202  3.13420788
## 441 -1.58310651
## 325  0.51909233
## 32  -1.70535933
## 211 -2.62443539
## 275 -1.03789238
## 506 -2.05991725
## 255  0.05980935
## 267  1.03762014
## 420 -1.20722795
## 168 -0.36561210
## 245 -2.10851644
## 463 -0.12174563
## 373 -2.11959928
## 67  -0.28200599
## 217 -2.77775762
## 64   1.07900407
## 198  1.87223850
## 456 -0.65368102
## 405  0.82241851
## 203 -0.41866178
## 175 -0.37446194
## 299 -0.46883597
## 7   -2.17785490
## 258  2.86824590
## 6   -1.96793153
## 481 -0.28100573
## 478  1.70502813
## 297 -0.84343481
## 80  -0.44960040
## 321  2.11584618
## 252 -2.57035636
## 195  2.01552005
## 272 -0.32763615
## 449 -0.20916222
## 199  2.76972042
## 166  0.68971390
## 372 -0.39363260
## 41  -1.94395536
## 315 -1.32520910
## 292  1.73021309
## 56   0.72574880
## 367 -0.40513560
## 475  2.06045560
## 314  2.25244549
## 351 -1.80517513
## 462  0.34648719
## 34   0.98507552
## 35  -1.72407073
## 70  -1.77737481
## 102  0.93245981
## 436 -2.31295602
## 
## , , 18 comps
## 
##           weight
## 225 -0.259366961
## 31  -0.126431076
## 290  0.103752461
## 174 -1.844845876
## 505 -0.071367741
## 274 -2.584866460
## 493  3.197173214
## 440  4.762593311
## 385  3.268702353
## 196 -1.322511475
## 68  -1.308806509
## 55   0.614258997
## 310  2.293308595
## 319  3.347379605
## 79   0.747337234
## 238 -3.216058286
## 43  -0.785334847
## 370  4.556994527
## 362  0.011464274
## 301  2.757481406
## 65   0.536183901
## 382 -1.496967845
## 16  -0.005816167
## 355 -4.406570172
## 89   0.123325513
## 277  1.642305747
## 498  1.535469528
## 134 -3.067735337
## 152  2.631148563
## 282  2.775621954
## 112  0.813574709
## 147 -0.303629692
## 42  -0.669189372
## 489  2.939583004
## 330 -0.218436926
## 415 -3.760395513
## 207  2.118405042
## 212  3.926952556
## 78  -4.576748281
## 99   0.015384294
## 376 -1.193741417
## 163 -1.304357077
## 243  4.026006769
## 391 -0.033775599
## 221  4.957918051
## 86  -2.126166247
## 144 -0.291883053
## 327  0.682755530
## 359  4.245852499
## 200  0.827701787
## 58  -2.580315953
## 241 -2.479984356
## 25   1.496720543
## 45  -2.813138859
## 263  1.199273066
## 183 -3.433278046
## 487  0.102508871
## 326 -0.211463724
## 494  1.456819278
## 349  0.486706754
## 442 -7.959175668
## 234 -1.979289887
## 95   2.188896775
## 271  2.245571999
## 345 -0.506387678
## 40   0.619345782
## 206  1.955529870
## 185  0.448729704
## 1    0.751486943
## 322 -0.846899943
## 333  2.770362144
## 188  2.041748792
## 427  0.945048642
## 469  2.895375336
## 438 -4.631359351
## 85  -1.509569941
## 311  1.593085543
## 167  1.552133667
## 71  -3.317904764
## 46   0.698025798
## 281  2.367192057
## 193 -1.464510921
## 218 -1.279129604
## 194  0.456478549
## 133  1.839890224
## 216 -1.368865714
## 244  2.055214536
## 392 -2.010663798
## 20   1.448138110
## 92   1.957665539
## 286  0.117682504
## 334  0.067187317
## 98  -0.273667636
## 298 -1.269694950
## 410 -0.380692309
## 291  0.817254555
## 49   1.069906885
## 97   0.559547167
## 66   1.097547060
## 109 -1.243372973
## 104  2.037996865
## 434  4.359782517
## 153  4.361948283
## 88  -1.365156376
## 158  1.938617986
## 324 -0.748167510
## 491  0.346565934
## 60   0.452435847
## 264  1.863800858
## 422 -0.719279777
## 375 -1.480993015
## 108  0.678920626
## 266  3.521412287
## 157 -0.128707899
## 187  0.609437620
## 466  4.040762623
## 19  -0.904379874
## 418 -4.851904319
## 33  -0.453351521
## 429 -0.465063641
## 151  0.228990862
## 368  1.144745863
## 63   2.223750982
## 120 -0.337833940
## 474  3.616217105
## 354  0.121840682
## 265  1.242534297
## 96  -1.322157351
## 454 -2.747834390
## 453 -3.210047112
## 395 -0.217673725
## 222  3.478869325
## 361  0.398890362
## 424  0.645899670
## 171 -1.267080147
## 313  2.069393624
## 293 -0.459910638
## 273 -0.297039219
## 409 -0.868871909
## 471  0.433020957
## 54  -0.008228452
## 154 -0.957724803
## 47   2.309523401
## 235  2.918404822
## 24   1.678900036
## 249  0.180555143
## 69   0.861170515
## 233  2.457053588
## 38  -3.860512099
## 335  1.133716781
## 433 -1.155713835
## 125 -1.722877826
## 192  7.519195327
## 126  2.016393106
## 30  -0.155847521
## 401 -1.961983280
## 170 -3.433843865
## 114 -1.686631611
## 145  1.608464272
## 197 -3.387255029
## 476  2.550068510
## 146  1.158434847
## 53  -2.003633619
## 384  0.731309060
## 247  4.763179941
## 118 -0.907700809
## 386 -1.893426840
## 331 -0.225648016
## 398 -1.688776001
## 159  6.243239817
## 123 -0.906777239
## 300 -1.086829450
## 283  1.283939096
## 230 -1.900767476
## 437 -1.805741434
## 94   0.260524149
## 137  2.092668769
## 190  0.781295286
## 229  0.024412666
## 15  -1.134611266
## 284 -0.852354372
## 122  0.659965605
## 75  -3.381690820
## 268  1.170385032
## 226 -4.356263051
## 480 -1.222126144
## 251 -0.557683667
## 208  1.507465758
## 176  0.186699483
## 232  0.421002815
## 164 -3.258177746
## 485  3.867383260
## 227 -2.230873005
## 337 -0.494481898
## 179  1.442325940
## 342 -1.774773786
## 100 -3.573947444
## 460  2.963353559
## 470 -2.035053429
## 117  0.829172387
## 270  1.785837797
## 357 -2.543473793
## 215 -4.390954379
## 44   0.272762303
## 4   -0.196192325
## 140 -5.742436980
## 14  -2.799004624
## 482  2.803850948
## 308  2.604282190
## 365  1.602046467
## 364  2.070022142
## 90  -0.018927653
## 444 -1.939823148
## 350  1.361010149
## 239  2.740538604
## 91   1.734043395
## 172 -0.137024017
## 106 -4.115515145
## 9   -0.417244229
## 374  0.119040903
## 169  1.439535189
## 447 -1.973162316
## 473  1.935832520
## 358 -1.607568110
## 383 -0.969120577
## 73  -3.109495808
## 461 -1.827707863
## 278  1.655454655
## 344 -0.304831744
## 378 -0.201510790
## 347 -2.319893436
## 201 -4.213835127
## 356  1.884070378
## 317  1.835800789
## 450 -3.357623357
## 210 -0.208798741
## 105  0.895528079
## 173 -4.012619299
## 425  1.498423158
## 414 -0.729173066
## 205  1.328305506
## 186  2.627691303
## 388  0.350582459
## 387  0.741977986
## 237 -2.839597116
## 346 -3.008917872
## 236 -3.846612083
## 285 -0.290255052
## 48   0.548597698
## 416 -2.225896187
## 130  0.349195909
## 17   2.444253614
## 412 -2.761686125
## 141  8.127450136
## 160 -0.469142649
## 259  0.721396909
## 380  0.383195294
## 379 -0.435303353
## 61  -0.985449667
## 110  3.016427125
## 83   1.142477954
## 287 -2.117605515
## 84  -1.419834993
## 340 -1.063716466
## 451  0.824328437
## 486 -1.435014001
## 363 -2.321327585
## 3   -0.685874801
## 306  4.399355416
## 316 -2.342073619
## 13   2.142201699
## 341 -0.090764643
## 27  -1.822424330
## 36  -1.034115392
## 223 -0.011904031
## 138  0.656872051
## 431 -1.407436982
## 240  3.624403534
## 490 -0.069143543
## 446 -1.978321054
## 488  2.206186145
## 155  0.496755474
## 143  0.172753065
## 312  1.022933051
## 294 -1.284226395
## 305  0.151677064
## 127  1.474228204
## 111 -0.630367055
## 455  1.774813722
## 393  0.847120146
## 289 -3.949980470
## 257 -2.165044785
## 12   2.498146634
## 432 -2.199550934
## 77  -1.114733895
## 184  0.805069078
## 87  -4.590846011
## 296  1.323035513
## 74  -2.178051660
## 231 -2.430620738
## 59  -0.288468312
## 439  0.710252570
## 224 -0.895997849
## 492  2.166798686
## 309  1.576581753
## 421 -2.681523801
## 452 -0.793356867
## 10  -0.104821411
## 307  1.973020456
## 499  2.045983556
## 57  -0.460721779
## 397 -0.980210990
## 328 -0.407530338
## 39  -2.330200096
## 260  0.788278724
## 394 -1.441392601
## 93  -0.197856665
## 329  0.104242211
## 302  0.234084854
## 132 -2.808690394
## 477 -0.122625132
## 135 -0.784494123
## 242  3.505942154
## 2   -0.872051148
## 178 -0.134357831
## 62  -0.529180973
## 445  0.484326049
## 403  0.219108938
## 336  2.901993967
## 50   0.491934370
## 139 -1.384314977
## 116 -0.285515791
## 276 -1.796614885
## 150  2.922136945
## 129 -1.030997675
## 21  -0.519628977
## 448 -1.089007281
## 280  0.217806040
## 288 -0.017165271
## 177  0.806780223
## 390 -0.858927076
## 204  1.930826073
## 338 -1.926018178
## 303  0.749548024
## 148  0.197805749
## 29  -0.468298878
## 128  1.653605518
## 161  2.033848550
## 22   0.319847911
## 246 -3.138730526
## 162 -3.641374939
## 406  0.782621650
## 339 -0.940128647
## 497  1.559981428
## 202  3.337075592
## 441 -1.727998745
## 325  0.960452022
## 32  -1.862484877
## 211 -2.643356813
## 275 -0.564358715
## 506 -2.032945564
## 255  0.774127832
## 267  1.196725249
## 420 -1.015597932
## 168 -0.203173678
## 245 -2.070418097
## 463 -0.156554320
## 373 -1.945205492
## 67  -0.002418481
## 217 -3.685793874
## 64   1.278883143
## 198  1.131822482
## 456 -0.766971681
## 405  1.245249081
## 203 -0.695886788
## 175 -0.348353946
## 299 -0.522684803
## 7   -1.909686012
## 258  2.150341139
## 6   -2.434296065
## 481 -0.362061914
## 478  1.559080641
## 297 -1.204095028
## 80  -0.290439863
## 321  2.117979513
## 252 -2.669527610
## 195  2.571157890
## 272 -0.081285445
## 449 -0.831538594
## 199  2.951606561
## 166  0.420253065
## 372 -0.290821181
## 41  -1.400360574
## 315 -0.518982029
## 292  1.504727237
## 56   0.761181505
## 367  0.028644300
## 475  2.101437616
## 314  2.019084510
## 351 -1.609068889
## 462  0.044448616
## 34   0.776660434
## 35  -1.350724008
## 70  -1.901763512
## 102  1.322757323
## 436 -2.893700843
## 
## , , 19 comps
## 
##           weight
## 225  0.287576274
## 31   0.151715443
## 290  0.020360150
## 174 -1.642017362
## 505 -0.244023792
## 274 -2.782568658
## 493  2.619402258
## 440  4.277779738
## 385  2.642287329
## 196 -0.994175106
## 68  -1.018578633
## 55   0.524378234
## 310  2.088240648
## 319  3.481276465
## 79   0.692364636
## 238 -1.973484472
## 43  -1.061327739
## 370  4.020468139
## 362  0.062483737
## 301  2.986193167
## 65   0.716750015
## 382 -0.885311899
## 16  -0.647012917
## 355 -3.806807019
## 89   0.062317757
## 277  1.207313678
## 498  1.282888388
## 134 -3.555050418
## 152  2.461913221
## 282  2.160944710
## 112  0.859162740
## 147 -0.308818376
## 42   0.047913639
## 489  2.998667000
## 330  0.219115662
## 415 -3.359773637
## 207  2.275905499
## 212  3.948606837
## 78  -4.435798506
## 99  -0.651999146
## 376 -1.014617887
## 163 -1.163703136
## 243  3.910898238
## 391 -0.273373101
## 221  4.573692997
## 86  -1.517142955
## 144 -0.413849162
## 327  0.748814135
## 359  3.898186820
## 200  0.727171261
## 58  -2.566371723
## 241 -2.201797997
## 25   1.339194403
## 45  -2.850332022
## 263  0.422833045
## 183 -3.235363660
## 487  0.285165263
## 326 -0.283247695
## 494  1.897974905
## 349 -0.157682596
## 442 -8.183768415
## 234 -1.826110735
## 95   2.011706284
## 271  2.473129729
## 345 -0.016681058
## 40   1.113773245
## 206  1.014039513
## 185  0.745962927
## 1    0.563645539
## 322 -0.894768611
## 333  3.098340008
## 188  1.641891347
## 427  1.102443342
## 469  2.481392455
## 438 -3.777729619
## 85  -1.353905620
## 311  1.116385999
## 167  1.605846354
## 71  -3.235130734
## 46   0.438459299
## 281  2.278648542
## 193 -1.820692021
## 218 -1.246553803
## 194 -0.307051802
## 133  1.570894345
## 216 -1.207340598
## 244  2.531078549
## 392 -1.943301171
## 20   1.074130745
## 92   2.094568757
## 286 -0.025429659
## 334  0.431634931
## 98  -0.823418681
## 298 -0.582365669
## 410 -0.668399081
## 291  0.650930513
## 49   0.989037918
## 97  -0.181241901
## 66   0.667494186
## 109 -1.316065622
## 104  1.656710417
## 434  4.355409421
## 153  4.070445986
## 88  -1.487716471
## 158  1.590607729
## 324 -0.923596246
## 491 -0.196688450
## 60   0.340307936
## 264  2.100194721
## 422 -0.426377063
## 375 -1.553583494
## 108  0.438819676
## 266  3.391933775
## 157  0.211380142
## 187  0.357438711
## 466  5.250081952
## 19  -1.257134966
## 418 -5.255528130
## 33  -0.592596616
## 429 -0.608006535
## 151  0.314944041
## 368  0.712987324
## 63   2.162072772
## 120  0.001141274
## 474  5.350533935
## 354  0.637084314
## 265  1.118532560
## 96  -1.587278017
## 454 -2.762004758
## 453 -2.766292159
## 395 -0.540071719
## 222  3.609481182
## 361  0.202583038
## 424  0.672611831
## 171 -0.957808144
## 313  1.928117210
## 293 -0.355723345
## 273 -0.158620530
## 409 -0.647320802
## 471  0.741223329
## 54   0.321070257
## 154 -1.076819599
## 47   1.521007535
## 235  3.539415248
## 24   1.599835432
## 249  0.221216513
## 69  -0.509929740
## 233  2.093073990
## 38  -3.399200951
## 335  0.619725894
## 433 -0.913904028
## 125 -2.221817790
## 192  7.624211298
## 126  2.137357190
## 30  -0.658076796
## 401 -2.068532401
## 170 -2.568900482
## 114 -2.057122855
## 145  1.927076456
## 197 -3.168539955
## 476  2.030214362
## 146  1.491175121
## 53  -1.515186445
## 384  1.095295801
## 247  4.573132437
## 118 -1.244962330
## 386 -1.783587005
## 331 -0.139020135
## 398 -2.180379727
## 159  6.468546702
## 123 -0.752648588
## 300 -0.687471411
## 283  1.189239615
## 230 -2.532122459
## 437 -1.965833586
## 94   0.480993374
## 137  2.125820432
## 190  0.958116752
## 229  0.481506523
## 15  -1.916217861
## 284 -0.123310646
## 122  0.521001340
## 75  -3.053180897
## 268  0.453766885
## 226 -4.075612623
## 480 -0.573747512
## 251 -1.207819630
## 208  0.854138857
## 176  0.308819275
## 232  0.780740492
## 164 -3.671670746
## 485  3.857019662
## 227 -2.223251028
## 337 -0.498765226
## 179  1.148549237
## 342 -1.295660130
## 100 -3.117185216
## 460  2.604048607
## 470 -1.846224555
## 117  1.224389768
## 270  1.149683200
## 357 -2.211045354
## 215 -4.834726111
## 44  -0.097101102
## 4   -0.753488131
## 140 -4.871034188
## 14  -3.224426691
## 482  3.205036816
## 308  2.491605283
## 365  1.070239302
## 364  2.257300505
## 90   0.048962891
## 444 -1.961159600
## 350  1.557750959
## 239  3.542574762
## 91   1.391004530
## 172  0.640902823
## 106 -3.628426910
## 9   -0.295922293
## 374  0.282590743
## 169  1.703254147
## 447 -1.770533386
## 473  1.566333721
## 358 -1.485384481
## 383 -1.043697313
## 73  -3.388866235
## 461 -1.423467035
## 278  1.068874532
## 344 -0.152503534
## 378 -0.790881425
## 347 -1.981845605
## 201 -4.706955413
## 356  2.324011595
## 317  1.625506511
## 450 -2.911774561
## 210 -0.112927117
## 105  0.891942596
## 173 -3.507761759
## 425  1.238398470
## 414 -0.656776352
## 205  0.698961985
## 186  2.074024033
## 388  0.147463016
## 387  0.326661275
## 237 -2.745225110
## 346 -2.448972051
## 236 -4.287366329
## 285 -0.450921212
## 48   0.578718436
## 416 -2.338195354
## 130  0.218109275
## 17   1.638749863
## 412 -1.994160703
## 141  8.450500068
## 160 -0.864471536
## 259  0.954322911
## 380  0.411902834
## 379 -0.630682680
## 61  -1.143978387
## 110  2.825697078
## 83   1.283387668
## 287 -1.757834557
## 84  -1.411598928
## 340 -1.062009700
## 451  0.725833055
## 486 -1.418000414
## 363 -2.060386593
## 3   -1.298173270
## 306  3.963378359
## 316 -2.059053382
## 13   1.700288714
## 341 -0.117677536
## 27  -2.145896228
## 36  -0.898548244
## 223 -0.429351099
## 138  1.075760221
## 431 -1.553360144
## 240  3.907904500
## 490 -0.182355957
## 446 -2.012291097
## 488  2.549786987
## 155 -0.026380768
## 143  0.126056561
## 312  0.628132934
## 294 -1.349447954
## 305  0.544673588
## 127  1.534435626
## 111 -0.680233750
## 455  1.874408526
## 393  1.181293988
## 289 -3.697847204
## 257 -2.281611747
## 12   2.702427782
## 432 -2.052989650
## 77  -0.857395106
## 184  1.487445621
## 87  -4.153238975
## 296  1.366533156
## 74  -2.550521747
## 231 -2.058003449
## 59  -0.544669333
## 439  1.295362757
## 224 -0.306212226
## 492  2.147879304
## 309  1.093078256
## 421 -2.625594033
## 452 -0.619741005
## 10   0.008521640
## 307  2.054863889
## 499  0.926675109
## 57  -0.167615127
## 397 -0.198450185
## 328 -0.160912626
## 39  -2.420778814
## 260  0.669852772
## 394 -1.383921577
## 93  -0.036556504
## 329  0.288617714
## 302  0.438799775
## 132 -3.333905394
## 477  0.279367357
## 135 -0.195380651
## 242  3.605166896
## 2   -1.389878306
## 178  0.341288304
## 62  -1.184368001
## 445  0.573329947
## 403  0.256973500
## 336  2.914883688
## 50   0.350993947
## 139 -1.107929868
## 116  0.219028625
## 276 -2.047778748
## 150  2.497563680
## 129 -1.702285788
## 21  -0.754577538
## 448 -0.711101713
## 280  0.227232249
## 288  0.346661704
## 177  0.669148985
## 390 -0.778726983
## 204  3.008750569
## 338 -2.359264090
## 303  0.821678121
## 148 -0.086080330
## 29  -0.493469251
## 128  1.754925766
## 161  2.413076101
## 22  -0.684696319
## 246 -3.108840148
## 162 -3.068629295
## 406  0.933508070
## 339 -0.873430113
## 497  2.347776344
## 202  2.015620327
## 441 -1.024870532
## 325  0.712720491
## 32  -1.192861948
## 211 -2.271381979
## 275 -0.415058917
## 506 -1.334073101
## 255  0.113603825
## 267  1.145504735
## 420 -1.259673828
## 168  0.154971494
## 245 -2.312887468
## 463  0.164349659
## 373 -1.926584040
## 67  -0.169860195
## 217 -4.063245463
## 64   1.565965381
## 198  0.589724990
## 456 -0.308536629
## 405  1.178344478
## 203 -0.512198049
## 175 -0.011353335
## 299  0.165086107
## 7   -1.916754301
## 258  2.207692281
## 6   -2.619124440
## 481 -0.247903011
## 478  0.998740204
## 297 -1.289662592
## 80  -0.352308681
## 321  2.723884793
## 252 -1.997611855
## 195  2.781899580
## 272 -0.563515811
## 449 -1.087609808
## 199  2.312632095
## 166  0.109149282
## 372  0.094953954
## 41  -2.013049302
## 315 -0.370925630
## 292  1.208053643
## 56   0.056981061
## 367  0.404045402
## 475  2.003418980
## 314  1.913969753
## 351 -1.551856142
## 462  0.333424151
## 34   0.517419706
## 35  -1.255590368
## 70  -1.830426385
## 102  1.691416652
## 436 -3.092111386
## 
## , , 20 comps
## 
##           weight
## 225  0.471947236
## 31   0.283498091
## 290 -0.289537948
## 174 -1.445532704
## 505 -0.285264988
## 274 -2.680896942
## 493  2.428392341
## 440  4.691099687
## 385  2.624113981
## 196 -0.816923189
## 68  -1.029705352
## 55   0.621294938
## 310  2.145353041
## 319  3.298874710
## 79   0.845864553
## 238 -2.546594145
## 43  -1.217862982
## 370  4.444674333
## 362  0.023535399
## 301  2.708686179
## 65   0.656989078
## 382 -1.171340279
## 16  -0.467229666
## 355 -3.646496924
## 89   0.327645351
## 277  1.239953123
## 498  1.529813851
## 134 -3.518762573
## 152  2.099760710
## 282  2.191372944
## 112  1.363618138
## 147 -0.451390246
## 42   0.357794112
## 489  2.687452281
## 330 -0.145983777
## 415 -3.158779202
## 207  2.065774452
## 212  4.020618775
## 78  -4.635383468
## 99  -0.689359378
## 376 -1.313877550
## 163 -1.219165561
## 243  4.095049894
## 391 -0.527348448
## 221  4.721087632
## 86  -1.399531571
## 144  0.293521010
## 327  0.419278539
## 359  4.085243529
## 200  0.565676447
## 58  -2.713649690
## 241 -2.358556495
## 25   1.270462998
## 45  -3.263692260
## 263  0.309873646
## 183 -3.541886646
## 487  0.510975674
## 326 -0.305967468
## 494  2.313242882
## 349 -0.047768837
## 442 -8.032294350
## 234 -1.855098724
## 95   1.797894114
## 271  2.254719476
## 345  0.088766316
## 40   0.897827610
## 206  0.999157788
## 185  1.089818455
## 1    0.679633530
## 322 -0.846542416
## 333  3.076454821
## 188  1.674840990
## 427  1.208265936
## 469  2.461906769
## 438 -3.374821178
## 85  -1.323108984
## 311  0.930997235
## 167  1.476219915
## 71  -3.568638411
## 46   0.338429932
## 281  2.295883706
## 193 -1.856209815
## 218 -1.489745243
## 194 -0.279018729
## 133  1.580749483
## 216 -1.221914030
## 244  2.351383640
## 392 -2.145182481
## 20   0.682321418
## 92   1.930443207
## 286 -0.221066123
## 334  0.391696499
## 98  -0.754249440
## 298 -0.526071774
## 410 -0.333261668
## 291  0.342366240
## 49   0.914403467
## 97  -0.316097162
## 66   0.298447409
## 109 -1.077797885
## 104  1.580708840
## 434  4.358373326
## 153  4.151780934
## 88  -1.331239463
## 158  1.343576157
## 324 -0.689531855
## 491  0.006695875
## 60   0.586191722
## 264  2.059530235
## 422 -0.075883872
## 375 -1.837161928
## 108  0.671717666
## 266  3.291695875
## 157 -0.126323559
## 187 -0.022286094
## 466  5.269185112
## 19  -1.189400941
## 418 -4.792484108
## 33  -0.895531151
## 429 -0.474125742
## 151  0.238575656
## 368  0.871745663
## 63   2.099591310
## 120  0.458823902
## 474  4.955010299
## 354  0.615818188
## 265  1.296064843
## 96  -1.640099839
## 454 -2.446141732
## 453 -2.436860416
## 395 -1.032162782
## 222  4.233785949
## 361  0.107122590
## 424  0.657161481
## 171 -0.901299663
## 313  1.976917143
## 293 -0.783997645
## 273 -0.147668101
## 409 -0.466988807
## 471  0.824111232
## 54   0.626079118
## 154 -1.244553594
## 47   1.422515650
## 235  3.458290683
## 24   1.770205538
## 249  0.512780308
## 69  -0.700569042
## 233  2.163158489
## 38  -3.171379024
## 335  0.738502966
## 433 -0.982059778
## 125 -2.180239079
## 192  7.139911824
## 126  2.136649971
## 30  -0.933886718
## 401 -2.073720518
## 170 -2.621496532
## 114 -2.084191224
## 145  1.582757390
## 197 -2.964292679
## 476  2.173941753
## 146  1.426464598
## 53  -1.395944498
## 384  1.073323339
## 247  4.467920648
## 118 -1.115179277
## 386 -1.929967961
## 331 -0.268508945
## 398 -1.975088433
## 159  6.220037304
## 123 -0.135137772
## 300 -0.664143776
## 283  0.898273023
## 230 -2.513228403
## 437 -2.085027219
## 94   0.498425824
## 137  2.191639382
## 190  0.869216028
## 229  0.496437909
## 15  -1.672789581
## 284 -0.242508913
## 122  0.452697836
## 75  -2.979474617
## 268  0.780649417
## 226 -4.076645298
## 480 -0.416172025
## 251 -1.269428844
## 208  0.546323339
## 176  0.316973810
## 232  1.139561388
## 164 -3.709764098
## 485  3.747886683
## 227 -2.421899140
## 337 -0.380285990
## 179  1.289183400
## 342 -1.377939665
## 100 -2.921941098
## 460  2.591131529
## 470 -1.739270309
## 117  1.425119925
## 270  0.484313371
## 357 -2.304661329
## 215 -4.581244013
## 44   0.078989011
## 4   -0.613298900
## 140 -4.865726049
## 14  -3.207151039
## 482  3.347775001
## 308  2.393276166
## 365  1.177165852
## 364  2.044442570
## 90   0.488389886
## 444 -1.778117665
## 350  1.316162683
## 239  3.641581291
## 91   1.151745072
## 172  0.664662741
## 106 -4.041177810
## 9   -0.158257269
## 374  0.600117551
## 169  1.514733657
## 447 -1.862273916
## 473  1.282021713
## 358 -1.685392807
## 383 -1.123299615
## 73  -3.331869489
## 461 -1.399288554
## 278  0.713430652
## 344 -0.081122667
## 378 -0.754534878
## 347 -2.224612220
## 201 -4.658979871
## 356  1.975425940
## 317  1.576897885
## 450 -2.838338031
## 210 -0.147311560
## 105  0.934758200
## 173 -3.784250921
## 425  1.289646993
## 414 -0.882798917
## 205  0.773975392
## 186  2.084110873
## 388  0.127698199
## 387  0.503794007
## 237 -2.789211679
## 346 -2.372381461
## 236 -4.223723883
## 285 -0.424732249
## 48   0.553272064
## 416 -2.465241235
## 130  0.190452317
## 17   1.711815968
## 412 -1.651947525
## 141  8.570797609
## 160 -0.501566417
## 259  0.598391445
## 380  0.017604117
## 379 -0.743172474
## 61  -1.023235125
## 110  2.863548453
## 83   1.299981478
## 287 -1.775168647
## 84  -1.267688765
## 340 -1.103532699
## 451  0.720595660
## 486 -1.228582093
## 363 -2.130191419
## 3   -1.311433960
## 306  3.977169956
## 316 -1.951431103
## 13   1.631657239
## 341  0.032956244
## 27  -2.043557499
## 36  -0.837564213
## 223 -0.735035445
## 138  0.880787991
## 431 -1.335507463
## 240  3.439256805
## 490  0.116718407
## 446 -1.988407008
## 488  2.831897492
## 155 -0.146834153
## 143  0.219265724
## 312  0.744174779
## 294 -1.448811857
## 305  0.318348675
## 127  1.899775199
## 111 -0.860912726
## 455  1.968666052
## 393  1.297341607
## 289 -3.178447794
## 257 -2.221005419
## 12   2.839602297
## 432 -2.120303851
## 77  -0.330938790
## 184  1.255048865
## 87  -3.823979333
## 296  1.433926696
## 74  -3.051565954
## 231 -2.262496962
## 59  -0.680005137
## 439  1.287763402
## 224 -0.416107733
## 492  1.990277458
## 309  0.958443622
## 421 -2.622182752
## 452 -0.471627763
## 10   0.370421944
## 307  1.599450129
## 499  1.584637986
## 57  -0.134785739
## 397 -0.128244397
## 328  0.092339635
## 39  -2.718702597
## 260  0.450034748
## 394 -1.328232154
## 93   0.303438745
## 329  0.128554599
## 302 -0.027570644
## 132 -3.203569413
## 477  0.299398971
## 135 -0.180655747
## 242  3.551995754
## 2   -0.841526010
## 178 -0.028695749
## 62  -1.181545630
## 445  0.776060076
## 403  0.479473616
## 336  2.755935539
## 50   0.131006733
## 139 -1.244226370
## 116  0.124531173
## 276 -2.149514970
## 150  2.850696866
## 129 -2.099444421
## 21  -1.086547029
## 448 -0.694709852
## 280  0.039454352
## 288  0.185358726
## 177  0.186390475
## 390 -0.844609819
## 204  2.883558143
## 338 -2.485744372
## 303  1.100993752
## 148 -0.169613420
## 29  -0.412049363
## 128  1.477761360
## 161  2.214644793
## 22  -0.861386834
## 246 -3.189074222
## 162 -3.014349358
## 406  0.907927711
## 339 -0.876282763
## 497  2.520880067
## 202  1.963115523
## 441 -0.639763154
## 325  0.689109442
## 32  -1.101514510
## 211 -2.130910327
## 275 -0.234849900
## 506 -1.037183819
## 255 -0.425621257
## 267  0.724173119
## 420 -1.216644892
## 168  0.246487268
## 245 -2.155071196
## 463  0.663577460
## 373 -1.991912816
## 67  -0.081060101
## 217 -4.269675656
## 64   1.479213044
## 198  0.727574730
## 456 -0.351737836
## 405  0.892238194
## 203 -0.230580743
## 175  0.199609957
## 299  0.091533168
## 7   -1.723505050
## 258  2.014978910
## 6   -2.641072471
## 481  0.143022632
## 478  1.522531115
## 297 -0.872274341
## 80  -0.269630382
## 321  2.834943903
## 252 -2.097321659
## 195  2.516880436
## 272 -0.563947905
## 449 -1.141966895
## 199  2.514409304
## 166  0.137290555
## 372 -0.141480715
## 41  -2.177033210
## 315 -0.442104336
## 292  0.816448309
## 56   0.126431932
## 367  0.360252026
## 475  2.097458172
## 314  2.038044031
## 351 -1.472252794
## 462  0.482506273
## 34   0.559378748
## 35  -0.890440299
## 70  -1.850800266
## 102  1.714062422
## 436 -3.111073526
## 
## , , 21 comps
## 
##           weight
## 225  0.472662976
## 31   0.282641359
## 290 -0.289261629
## 174 -1.447783046
## 505 -0.281082405
## 274 -2.682679299
## 493  2.428994067
## 440  4.693314008
## 385  2.622521488
## 196 -0.817914965
## 68  -1.029238588
## 55   0.621983503
## 310  2.145034312
## 319  3.297758189
## 79   0.848124235
## 238 -2.549097076
## 43  -1.217983700
## 370  4.445789892
## 362  0.022478638
## 301  2.705826286
## 65   0.656425734
## 382 -1.172822044
## 16  -0.467069031
## 355 -3.646413927
## 89   0.325053234
## 277  1.237345234
## 498  1.529766339
## 134 -3.519956757
## 152  2.099949209
## 282  2.189891956
## 112  1.360505802
## 147 -0.451308127
## 42   0.355940272
## 489  2.686877929
## 330 -0.145828239
## 415 -3.157422171
## 207  2.062671067
## 212  4.021252160
## 78  -4.636454841
## 99  -0.690782879
## 376 -1.310028809
## 163 -1.223329058
## 243  4.097969199
## 391 -0.527656901
## 221  4.722102543
## 86  -1.399198327
## 144  0.294507837
## 327  0.418441533
## 359  4.083739937
## 200  0.563962039
## 58  -2.713164777
## 241 -2.360198525
## 25   1.272364249
## 45  -3.265067899
## 263  0.307550298
## 183 -3.537753975
## 487  0.510986212
## 326 -0.305316723
## 494  2.312719844
## 349 -0.046746271
## 442 -8.035147214
## 234 -1.856278658
## 95   1.798124659
## 271  2.256840338
## 345  0.089075714
## 40   0.897809254
## 206  0.999519574
## 185  1.090980799
## 1    0.682866890
## 322 -0.846586035
## 333  3.071669160
## 188  1.671853805
## 427  1.209421554
## 469  2.463471180
## 438 -3.371480319
## 85  -1.324351108
## 311  0.931691104
## 167  1.478385093
## 71  -3.570055890
## 46   0.336338361
## 281  2.296357152
## 193 -1.856737928
## 218 -1.487159221
## 194 -0.278933607
## 133  1.580927647
## 216 -1.221213450
## 244  2.353309657
## 392 -2.144363591
## 20   0.681719064
## 92   1.929455839
## 286 -0.221787188
## 334  0.390261862
## 98  -0.753590454
## 298 -0.525981416
## 410 -0.334632348
## 291  0.341378368
## 49   0.915284878
## 97  -0.313927564
## 66   0.296037436
## 109 -1.077975329
## 104  1.582417734
## 434  4.356808730
## 153  4.152346781
## 88  -1.332296748
## 158  1.341797318
## 324 -0.689570311
## 491  0.007817876
## 60   0.587554957
## 264  2.058653102
## 422 -0.076179624
## 375 -1.837027835
## 108  0.672903632
## 266  3.292041400
## 157 -0.126389044
## 187 -0.021145959
## 466  5.265696190
## 19  -1.190407340
## 418 -4.792590067
## 33  -0.893421643
## 429 -0.472968761
## 151  0.238501679
## 368  0.871025927
## 63   2.098018343
## 120  0.459940229
## 474  4.957387491
## 354  0.615870938
## 265  1.294692233
## 96  -1.641629993
## 454 -2.444746511
## 453 -2.437434484
## 395 -1.031367062
## 222  4.235216113
## 361  0.105511372
## 424  0.657257354
## 171 -0.901473771
## 313  1.978214698
## 293 -0.785288706
## 273 -0.148856530
## 409 -0.467364991
## 471  0.823354502
## 54   0.626856471
## 154 -1.245988762
## 47   1.422388466
## 235  3.456340533
## 24   1.770979442
## 249  0.512583638
## 69  -0.702004198
## 233  2.163601182
## 38  -3.174546327
## 335  0.740337563
## 433 -0.983410962
## 125 -2.180975976
## 192  7.137177618
## 126  2.136108999
## 30  -0.931534661
## 401 -2.072592233
## 170 -2.621827867
## 114 -2.081807872
## 145  1.583377396
## 197 -2.965022273
## 476  2.175348933
## 146  1.427048391
## 53  -1.394215079
## 384  1.072861842
## 247  4.469533653
## 118 -1.116574836
## 386 -1.928975002
## 331 -0.269787700
## 398 -1.975281470
## 159  6.221718047
## 123 -0.135236330
## 300 -0.664315930
## 283  0.898470193
## 230 -2.512060089
## 437 -2.084121920
## 94   0.500833004
## 137  2.190561067
## 190  0.868770219
## 229  0.499535599
## 15  -1.672791947
## 284 -0.244733767
## 122  0.454116368
## 75  -2.978419493
## 268  0.782168525
## 226 -4.078322049
## 480 -0.417279859
## 251 -1.270434627
## 208  0.545517014
## 176  0.315824095
## 232  1.139359871
## 164 -3.711797985
## 485  3.749337342
## 227 -2.417633895
## 337 -0.379948762
## 179  1.288324077
## 342 -1.376177547
## 100 -2.925210923
## 460  2.593000200
## 470 -1.737820607
## 117  1.425946544
## 270  0.484018191
## 357 -2.303291053
## 215 -4.580819674
## 44   0.076571112
## 4   -0.615178537
## 140 -4.864816694
## 14  -3.206638473
## 482  3.347478878
## 308  2.390767854
## 365  1.174915288
## 364  2.044937879
## 90   0.485905318
## 444 -1.779813443
## 350  1.317060164
## 239  3.642152968
## 91   1.155601590
## 172  0.663336871
## 106 -4.042456980
## 9   -0.158171968
## 374  0.600907649
## 169  1.516020842
## 447 -1.862732062
## 473  1.282629206
## 358 -1.683788357
## 383 -1.123904364
## 73  -3.329646813
## 461 -1.402011133
## 278  0.713702729
## 344 -0.080786043
## 378 -0.753898329
## 347 -2.222915324
## 201 -4.660085958
## 356  1.974470750
## 317  1.575946769
## 450 -2.839089224
## 210 -0.145959229
## 105  0.930993655
## 173 -3.782912156
## 425  1.292942918
## 414 -0.881553828
## 205  0.771919835
## 186  2.081556721
## 388  0.130255730
## 387  0.502734509
## 237 -2.792856351
## 346 -2.372486983
## 236 -4.227176084
## 285 -0.425572403
## 48   0.556004754
## 416 -2.465775868
## 130  0.187877269
## 17   1.709323709
## 412 -1.651852407
## 141  8.570804985
## 160 -0.502360003
## 259  0.598915668
## 380  0.019681402
## 379 -0.743072116
## 61  -1.023352883
## 110  2.864617728
## 83   1.299770614
## 287 -1.773144906
## 84  -1.267221055
## 340 -1.103594831
## 451  0.721369445
## 486 -1.228653443
## 363 -2.132580767
## 3   -1.311918877
## 306  3.977636984
## 316 -1.951208293
## 13   1.630168330
## 341  0.033457963
## 27  -2.041668330
## 36  -0.835947644
## 223 -0.734630303
## 138  0.881769839
## 431 -1.336227184
## 240  3.438160451
## 490  0.117319684
## 446 -1.986336895
## 488  2.830413953
## 155 -0.146970798
## 143  0.218233518
## 312  0.742726067
## 294 -1.449319898
## 305  0.317382264
## 127  1.899387173
## 111 -0.860247799
## 455  1.970674915
## 393  1.295485505
## 289 -3.177971319
## 257 -2.219682663
## 12   2.840154974
## 432 -2.122704633
## 77  -0.330175220
## 184  1.253715469
## 87  -3.824000487
## 296  1.433235015
## 74  -3.050670021
## 231 -2.261710337
## 59  -0.679803773
## 439  1.289365419
## 224 -0.415974024
## 492  1.987339812
## 309  0.957696249
## 421 -2.621862913
## 452 -0.472938531
## 10   0.373268727
## 307  1.597175163
## 499  1.583319438
## 57  -0.133311514
## 397 -0.127071159
## 328  0.089761893
## 39  -2.718158080
## 260  0.449721378
## 394 -1.323812604
## 93   0.303816169
## 329  0.130085539
## 302 -0.025304493
## 132 -3.198612612
## 477  0.300401419
## 135 -0.177931809
## 242  3.552901964
## 2   -0.839784867
## 178 -0.028936879
## 62  -1.181057826
## 445  0.775002705
## 403  0.479492363
## 336  2.756033875
## 50   0.130934835
## 139 -1.242984621
## 116  0.125679405
## 276 -2.149805242
## 150  2.850420620
## 129 -2.097849025
## 21  -1.086272666
## 448 -0.694993527
## 280  0.038092061
## 288  0.186688379
## 177  0.187767975
## 390 -0.843827646
## 204  2.885837696
## 338 -2.486992276
## 303  1.100209435
## 148 -0.167814845
## 29  -0.412358503
## 128  1.477705116
## 161  2.213551288
## 22  -0.859029455
## 246 -3.188107621
## 162 -3.017483753
## 406  0.907930657
## 339 -0.874559369
## 497  2.521233413
## 202  1.962849907
## 441 -0.640019863
## 325  0.690493072
## 32  -1.102596799
## 211 -2.129969266
## 275 -0.237292040
## 506 -1.039057777
## 255 -0.425612715
## 267  0.723691196
## 420 -1.216257447
## 168  0.246232282
## 245 -2.153779908
## 463  0.665163340
## 373 -1.991093596
## 67  -0.083023902
## 217 -4.269722087
## 64   1.479512910
## 198  0.729094625
## 456 -0.352043364
## 405  0.891750021
## 203 -0.229787888
## 175  0.201362924
## 299  0.090512176
## 7   -1.721976492
## 258  2.013578435
## 6   -2.641413992
## 481  0.145906336
## 478  1.522100912
## 297 -0.871982870
## 80  -0.270689928
## 321  2.833969321
## 252 -2.099738389
## 195  2.518169292
## 272 -0.563579608
## 449 -1.141767575
## 199  2.513518410
## 166  0.135546273
## 372 -0.139561247
## 41  -2.176541599
## 315 -0.444741487
## 292  0.815165847
## 56   0.126548000
## 367  0.362370276
## 475  2.098174688
## 314  2.035075820
## 351 -1.472539262
## 462  0.484461253
## 34   0.560231977
## 35  -0.890322739
## 70  -1.850604891
## 102  1.716306016
## 436 -3.112630829
## 
## , , 22 comps
## 
##           weight
## 225  0.391936620
## 31   0.411936399
## 290 -0.254126327
## 174 -1.529210695
## 505 -0.332039838
## 274 -2.654388838
## 493  2.228722149
## 440  4.695186672
## 385  2.527428838
## 196 -0.691541810
## 68  -1.045616554
## 55   0.637222911
## 310  2.152800794
## 319  3.352111594
## 79   0.996265205
## 238 -2.566573363
## 43  -1.184488355
## 370  4.557359616
## 362 -0.036805477
## 301  2.743311549
## 65   0.643830508
## 382 -1.133138559
## 16  -0.718919285
## 355 -3.670889047
## 89   0.254274196
## 277  1.195262653
## 498  1.558182738
## 134 -3.505798758
## 152  2.153964250
## 282  2.246999053
## 112  1.309343280
## 147 -0.394983937
## 42   0.361549412
## 489  2.644430628
## 330 -0.064317331
## 415 -3.123241372
## 207  2.080988555
## 212  4.029588783
## 78  -4.512195117
## 99  -0.866771371
## 376 -1.373064946
## 163 -1.203760667
## 243  4.030674519
## 391 -0.542989799
## 221  4.721677757
## 86  -1.376575555
## 144  0.298668652
## 327  0.438487841
## 359  4.251837912
## 200  0.505316368
## 58  -2.790020419
## 241 -2.337128384
## 25   1.267313793
## 45  -3.258386088
## 263  0.286210808
## 183 -3.664445129
## 487  0.451950029
## 326 -0.349003094
## 494  2.345526176
## 349  0.017795261
## 442 -8.084081975
## 234 -1.872910921
## 95   1.818639032
## 271  2.360841450
## 345  0.195985148
## 40   0.825544130
## 206  0.958488012
## 185  1.090465077
## 1    0.590960224
## 322 -0.870141890
## 333  3.211732722
## 188  1.644017737
## 427  1.110325722
## 469  2.441703682
## 438 -3.384140782
## 85  -1.235375439
## 311  0.791127027
## 167  1.333756805
## 71  -3.569012825
## 46   0.304699399
## 281  2.262422079
## 193 -1.856010168
## 218 -1.559124260
## 194 -0.394167606
## 133  1.535910770
## 216 -1.179218229
## 244  2.576010338
## 392 -1.983565890
## 20   0.680472101
## 92   1.827182330
## 286 -0.367870556
## 334  0.457386611
## 98  -0.813944024
## 298 -0.516915093
## 410 -0.289517880
## 291  0.266040807
## 49   0.859030460
## 97  -0.246757581
## 66   0.357926833
## 109 -0.927251640
## 104  1.718557379
## 434  4.440020531
## 153  3.866143626
## 88  -1.323379341
## 158  1.510669786
## 324 -0.681456194
## 491 -0.174328578
## 60   0.576099812
## 264  1.964170492
## 422  0.069839155
## 375 -1.817773900
## 108  0.706049838
## 266  3.375877157
## 157 -0.139476555
## 187  0.060238172
## 466  5.175500703
## 19  -1.223219881
## 418 -4.694515628
## 33  -0.836945356
## 429 -0.484984577
## 151  0.175830054
## 368  0.981248345
## 63   2.100219673
## 120  0.467859645
## 474  4.872932567
## 354  0.554912920
## 265  1.326780063
## 96  -1.678702570
## 454 -2.444324502
## 453 -2.326083909
## 395 -0.966193609
## 222  4.226314079
## 361  0.117847270
## 424  0.621536437
## 171 -0.902945850
## 313  1.874919879
## 293 -0.921306665
## 273 -0.169132159
## 409 -0.414616809
## 471  0.764768562
## 54   0.639881854
## 154 -1.115987882
## 47   1.436608995
## 235  3.407781433
## 24   2.000163085
## 249  0.593102144
## 69  -0.461868362
## 233  2.244873203
## 38  -3.168212079
## 335  0.753368688
## 433 -1.057299092
## 125 -2.131130189
## 192  7.121226726
## 126  2.257559611
## 30  -0.939102108
## 401 -2.073164377
## 170 -2.614582686
## 114 -1.906395735
## 145  1.552232950
## 197 -2.931982213
## 476  1.983678602
## 146  1.414891983
## 53  -1.451626363
## 384  1.122290705
## 247  4.516429843
## 118 -1.202527527
## 386 -1.811004252
## 331 -0.224000509
## 398 -2.058327973
## 159  6.267505020
## 123 -0.149688618
## 300 -0.764009862
## 283  1.006472399
## 230 -2.500331266
## 437 -2.091917635
## 94   0.644072505
## 137  2.460347658
## 190  0.779069990
## 229  0.400613447
## 15  -1.821947023
## 284 -0.209557975
## 122  0.518863397
## 75  -3.033194253
## 268  0.678682577
## 226 -4.115228253
## 480 -0.486752120
## 251 -1.268037708
## 208  0.535110931
## 176  0.245243974
## 232  1.021756485
## 164 -3.728611833
## 485  3.611671761
## 227 -2.453207747
## 337 -0.371388633
## 179  1.429342417
## 342 -1.423878798
## 100 -2.899999041
## 460  2.477288622
## 470 -1.640916982
## 117  1.295550483
## 270  0.436248402
## 357 -2.334483870
## 215 -4.614563104
## 44   0.009629299
## 4   -0.876522878
## 140 -4.999852540
## 14  -3.210359990
## 482  3.294719734
## 308  2.384394193
## 365  1.123325902
## 364  2.124869293
## 90   0.651306969
## 444 -1.749338242
## 350  1.289939374
## 239  3.711217132
## 91   1.334265709
## 172  0.604830526
## 106 -3.874391319
## 9   -0.236302972
## 374  0.542425852
## 169  1.398752265
## 447 -1.878815137
## 473  1.255601951
## 358 -1.584676294
## 383 -1.093185604
## 73  -3.357040000
## 461 -1.365809224
## 278  0.601467715
## 344 -0.035338578
## 378 -0.783880353
## 347 -2.219376682
## 201 -4.619688345
## 356  1.993655502
## 317  1.537431817
## 450 -2.768366727
## 210 -0.138160512
## 105  0.883599951
## 173 -3.725034980
## 425  1.575364501
## 414 -0.968396318
## 205  0.773937359
## 186  2.131385185
## 388  0.176643851
## 387  0.439782646
## 237 -2.671001739
## 346 -2.321628124
## 236 -4.219895702
## 285 -0.452420804
## 48   0.517816788
## 416 -2.476366711
## 130  0.221987075
## 17   1.765288714
## 412 -1.654140627
## 141  8.548640981
## 160 -0.503537017
## 259  0.694336469
## 380  0.076992285
## 379 -0.792243451
## 61  -1.051385385
## 110  2.955775432
## 83   1.342250760
## 287 -1.856180166
## 84  -1.310887925
## 340 -1.071062229
## 451  0.656541196
## 486 -1.181197925
## 363 -2.049180533
## 3   -1.189419317
## 306  3.914629259
## 316 -1.988071512
## 13   1.500378411
## 341 -0.032546127
## 27  -2.080854971
## 36  -0.748963758
## 223 -0.676272380
## 138  0.858414031
## 431 -1.277139424
## 240  3.443373827
## 490  0.073836116
## 446 -1.734281334
## 488  2.679703221
## 155 -0.136083752
## 143  0.210033809
## 312  0.791740091
## 294 -1.552735805
## 305  0.290445977
## 127  2.024895449
## 111 -0.906397085
## 455  2.088645115
## 393  1.220320672
## 289 -3.231659399
## 257 -2.166387427
## 12   3.037531423
## 432 -2.159890609
## 77  -0.163697639
## 184  1.333947215
## 87  -3.969538860
## 296  1.544723280
## 74  -3.018581069
## 231 -2.166645106
## 59  -0.646641280
## 439  1.167092838
## 224 -0.302582748
## 492  2.026049363
## 309  0.897681291
## 421 -2.565526805
## 452 -0.389540444
## 10   0.572335317
## 307  1.511153302
## 499  1.500406880
## 57  -0.263524218
## 397 -0.148991091
## 328  0.119738837
## 39  -2.511417290
## 260  0.390510423
## 394 -1.306454106
## 93   0.160168374
## 329  0.154875140
## 302 -0.126785044
## 132 -3.197505385
## 477  0.395143547
## 135 -0.216107304
## 242  3.619113652
## 2   -0.963337692
## 178 -0.197883737
## 62  -1.128940884
## 445  0.869543515
## 403  0.603018561
## 336  2.712105512
## 50   0.167360294
## 139 -1.344845736
## 116  0.076303928
## 276 -2.241637983
## 150  2.730920540
## 129 -2.027582357
## 21  -0.962466246
## 448 -0.704779242
## 280  0.018742238
## 288  0.179941702
## 177  0.112942838
## 390 -0.737842201
## 204  2.723948486
## 338 -2.487978491
## 303  1.087702445
## 148 -0.114182128
## 29  -0.281865541
## 128  1.492594247
## 161  1.950518190
## 22  -0.963595026
## 246 -3.218158735
## 162 -3.038421871
## 406  0.935876143
## 339 -0.876221799
## 497  2.477419740
## 202  1.989191339
## 441 -0.628558403
## 325  0.708695716
## 32  -1.265116103
## 211 -2.096492479
## 275 -0.344227293
## 506 -1.117377364
## 255 -0.542304075
## 267  0.743637881
## 420 -1.268768012
## 168  0.230651546
## 245 -2.077068342
## 463  0.739477814
## 373 -2.022961013
## 67   0.005586584
## 217 -4.363762301
## 64   1.473103259
## 198  0.735168527
## 456 -0.321303691
## 405  0.904568792
## 203 -0.275683316
## 175  0.154012720
## 299  0.178137417
## 7   -1.734714947
## 258  2.047283358
## 6   -2.589880662
## 481 -0.024140222
## 478  1.616775786
## 297 -0.925084576
## 80  -0.349634697
## 321  2.807524169
## 252 -2.132575330
## 195  2.503951223
## 272 -0.667870658
## 449 -1.138497675
## 199  2.490270788
## 166  0.037727281
## 372 -0.122691502
## 41  -2.149673891
## 315 -0.450422791
## 292  0.608055904
## 56   0.152832322
## 367  0.350124955
## 475  2.049326710
## 314  2.021871115
## 351 -1.432508843
## 462  0.447282758
## 34   0.685293239
## 35  -0.962991349
## 70  -1.777455451
## 102  1.921088984
## 436 -2.948581897
## 
## , , 23 comps
## 
##           weight
## 225  0.495640681
## 31   0.527793374
## 290 -0.323868703
## 174 -1.419719778
## 505 -0.256465619
## 274 -2.621090771
## 493  2.341924377
## 440  4.716946809
## 385  2.412481442
## 196 -0.567356877
## 68  -1.144158512
## 55   0.666101080
## 310  2.176523084
## 319  3.277636385
## 79   0.950899873
## 238 -2.491283949
## 43  -1.186605926
## 370  4.584105222
## 362 -0.014287446
## 301  2.696657481
## 65   0.701711416
## 382 -1.067710975
## 16  -0.797097009
## 355 -3.677671399
## 89   0.144889456
## 277  1.133801998
## 498  1.673072936
## 134 -3.494100286
## 152  2.237306526
## 282  2.313737723
## 112  1.302362313
## 147 -0.337137587
## 42   0.367551977
## 489  2.692942273
## 330 -0.085132910
## 415 -3.187670319
## 207  2.109955340
## 212  4.035779760
## 78  -4.529607356
## 99  -0.816051252
## 376 -1.277138280
## 163 -1.101317350
## 243  3.968650062
## 391 -0.559081206
## 221  4.727983061
## 86  -1.442079942
## 144  0.264629774
## 327  0.512713994
## 359  4.256432707
## 200  0.436791351
## 58  -2.736621380
## 241 -2.406213897
## 25   1.290093968
## 45  -3.249317542
## 263  0.332499117
## 183 -3.538785591
## 487  0.346712509
## 326 -0.421011594
## 494  2.343739782
## 349  0.104279294
## 442 -8.124546003
## 234 -1.807375342
## 95   1.948055906
## 271  2.330375686
## 345  0.219847878
## 40   0.995200274
## 206  1.003954738
## 185  1.144976077
## 1    0.743570052
## 322 -0.849415559
## 333  3.203383654
## 188  1.611922220
## 427  1.146224687
## 469  2.418680140
## 438 -3.335212800
## 85  -1.327438184
## 311  0.690683631
## 167  1.340608276
## 71  -3.592473063
## 46   0.393931027
## 281  2.249949734
## 193 -1.854535064
## 218 -1.495933764
## 194 -0.362819744
## 133  1.391088983
## 216 -1.202834341
## 244  2.662605419
## 392 -1.936753576
## 20   0.741783078
## 92   1.799368025
## 286 -0.298311506
## 334  0.511005712
## 98  -0.885867709
## 298 -0.510290204
## 410 -0.276810495
## 291  0.258168406
## 49   0.871009104
## 97  -0.190910339
## 66   0.316836748
## 109 -1.005300741
## 104  1.642544700
## 434  4.484900873
## 153  3.736523151
## 88  -1.365500280
## 158  1.480816748
## 324 -0.590263810
## 491 -0.156837891
## 60   0.645589209
## 264  1.980602995
## 422  0.216827729
## 375 -1.776325489
## 108  0.618977255
## 266  3.386957639
## 157 -0.141790375
## 187  0.003547839
## 466  5.101181198
## 19  -1.167395991
## 418 -4.590215492
## 33  -0.877485339
## 429 -0.572815206
## 151  0.057217752
## 368  1.055704966
## 63   2.224184509
## 120  0.421778316
## 474  4.800389962
## 354  0.542219603
## 265  1.267392734
## 96  -1.671990680
## 454 -2.468322774
## 453 -2.320421577
## 395 -0.983600387
## 222  4.272971343
## 361  0.222401603
## 424  0.637839662
## 171 -0.889163908
## 313  1.875628573
## 293 -0.954804467
## 273 -0.177595945
## 409 -0.434052528
## 471  0.689712836
## 54   0.691560569
## 154 -1.133169471
## 47   1.464542038
## 235  3.519547437
## 24   2.057062069
## 249  0.587771617
## 69  -0.444566001
## 233  2.346451089
## 38  -3.160105720
## 335  0.698250543
## 433 -1.036887034
## 125 -2.212637895
## 192  7.072586243
## 126  2.272791522
## 30  -0.957404175
## 401 -2.069157003
## 170 -2.659066498
## 114 -1.864025354
## 145  1.592736994
## 197 -2.932195651
## 476  2.002109517
## 146  1.328444561
## 53  -1.526533640
## 384  1.159816719
## 247  4.508509369
## 118 -1.168021855
## 386 -1.797635359
## 331 -0.371297218
## 398 -1.963433300
## 159  6.168382681
## 123 -0.145028498
## 300 -0.761172742
## 283  1.019471528
## 230 -2.541404306
## 437 -2.163604938
## 94   0.668995779
## 137  2.372283038
## 190  0.773853062
## 229  0.411883924
## 15  -1.837172428
## 284 -0.261140452
## 122  0.562591998
## 75  -2.976231469
## 268  0.620981197
## 226 -4.145267962
## 480 -0.397257102
## 251 -1.336737538
## 208  0.479473726
## 176  0.290637540
## 232  1.088137633
## 164 -3.730980605
## 485  3.530418752
## 227 -2.467134697
## 337 -0.314432314
## 179  1.430381708
## 342 -1.478418548
## 100 -2.872434708
## 460  2.410076655
## 470 -1.638619929
## 117  1.318334523
## 270  0.448701830
## 357 -2.292817186
## 215 -4.573397026
## 44   0.001851354
## 4   -0.852835086
## 140 -4.990121942
## 14  -3.283111957
## 482  3.449512654
## 308  2.399179977
## 365  1.135793996
## 364  2.023794737
## 90   0.621856218
## 444 -1.740564644
## 350  1.322785753
## 239  3.710735555
## 91   1.388342131
## 172  0.644570509
## 106 -3.830887157
## 9   -0.072660480
## 374  0.580745880
## 169  1.334086525
## 447 -1.950348665
## 473  1.252834343
## 358 -1.597971176
## 383 -1.135066781
## 73  -3.354592361
## 461 -1.382470624
## 278  0.600889306
## 344 -0.043623217
## 378 -0.789914076
## 347 -2.335386836
## 201 -4.629405100
## 356  1.964408064
## 317  1.469760912
## 450 -2.713476318
## 210 -0.196765766
## 105  0.900381542
## 173 -3.727790096
## 425  1.555072732
## 414 -0.952140349
## 205  0.768791882
## 186  2.170980856
## 388  0.254683701
## 387  0.534957561
## 237 -2.623240719
## 346 -2.354801555
## 236 -4.124691864
## 285 -0.514916266
## 48   0.441563200
## 416 -2.415313170
## 130  0.287954955
## 17   1.869053270
## 412 -1.801381202
## 141  8.517260514
## 160 -0.516709929
## 259  0.751653800
## 380  0.104895717
## 379 -0.645221493
## 61  -1.158394100
## 110  2.653531270
## 83   1.300742821
## 287 -1.829619939
## 84  -1.360663098
## 340 -1.125592727
## 451  0.550232632
## 486 -1.274591184
## 363 -2.093025383
## 3   -1.314856657
## 306  3.984486230
## 316 -1.982385367
## 13   1.475770166
## 341  0.062095304
## 27  -2.032551014
## 36  -0.772358762
## 223 -0.564907826
## 138  0.976055346
## 431 -1.196319025
## 240  3.495277977
## 490  0.011182286
## 446 -1.761397488
## 488  2.700908597
## 155 -0.126770788
## 143  0.170835531
## 312  0.887818826
## 294 -1.582217912
## 305  0.252838228
## 127  1.896302474
## 111 -0.945194999
## 455  2.146870609
## 393  1.255396630
## 289 -3.203155319
## 257 -2.184783448
## 12   3.075957248
## 432 -2.116384675
## 77  -0.251612257
## 184  1.369008963
## 87  -4.028052082
## 296  1.364527024
## 74  -3.014110501
## 231 -2.292250166
## 59  -0.673078902
## 439  1.027874479
## 224 -0.293688948
## 492  1.966537210
## 309  0.802421850
## 421 -2.572329725
## 452 -0.297191653
## 10   0.581108337
## 307  1.461816417
## 499  1.404476086
## 57  -0.427521588
## 397 -0.120697763
## 328  0.023356755
## 39  -2.565392320
## 260  0.410466193
## 394 -1.406024070
## 93   0.031108319
## 329  0.143507605
## 302 -0.199639274
## 132 -3.287375972
## 477  0.395247908
## 135 -0.263385867
## 242  3.555246997
## 2   -0.929525194
## 178 -0.090717051
## 62  -1.115554400
## 445  0.809417959
## 403  0.642595778
## 336  2.716201998
## 50   0.148705625
## 139 -1.363346863
## 116 -0.034976544
## 276 -2.296531914
## 150  2.805008239
## 129 -2.011828708
## 21  -1.022503997
## 448 -0.876781538
## 280 -0.056543101
## 288  0.245535596
## 177  0.174264724
## 390 -0.599376098
## 204  2.768943114
## 338 -2.380075975
## 303  1.083824795
## 148 -0.135274273
## 29  -0.285780658
## 128  1.425427568
## 161  1.895809181
## 22  -0.876042461
## 246 -3.274167464
## 162 -3.012590976
## 406  0.884301954
## 339 -0.713493797
## 497  2.480278500
## 202  1.904097087
## 441 -0.572756758
## 325  0.759610647
## 32  -1.305483050
## 211 -2.098096673
## 275 -0.312210056
## 506 -1.121887409
## 255 -0.553034162
## 267  0.763275632
## 420 -1.257098105
## 168  0.296309567
## 245 -2.206400163
## 463  0.770999167
## 373 -1.953974360
## 67  -0.108679216
## 217 -4.245149504
## 64   1.421358943
## 198  0.763400389
## 456 -0.299613623
## 405  0.887264823
## 203 -0.223685354
## 175  0.152531335
## 299  0.258622941
## 7   -1.592181860
## 258  2.086493004
## 6   -2.672964254
## 481  0.090648737
## 478  1.619895042
## 297 -1.062597037
## 80  -0.484290351
## 321  2.822462972
## 252 -2.167482325
## 195  2.507801508
## 272 -0.671759823
## 449 -1.117917292
## 199  2.549480828
## 166 -0.022064830
## 372 -0.107911312
## 41  -2.104926938
## 315 -0.453640579
## 292  0.549882919
## 56   0.139890895
## 367  0.376494281
## 475  2.098184623
## 314  2.038267855
## 351 -1.401745734
## 462  0.423097053
## 34   0.702096046
## 35  -0.824233470
## 70  -1.802418755
## 102  1.999063115
## 436 -3.067595778

Calculo de R-cuadrado para análisis de componentes principales.

coefd <- R2(modelolm3, ncomp = 13, intercept = FALSE)
coefd
## [1]  0.9687

Cálculo de R-cuadrado ajustado

coefdnum <- as.numeric(coefd[[1]])
numerador <- (1 - coefdnum) * (nrow (data_training) - 1)
denominador <- (nrow (data_training) - (ncol(data_training) - 1))
R2ajustado <- 1 - (numerador / denominador)
R2ajustado
## [1] 0.9668812
residuosmodelo313comp = residuosmodelo3 [,,13]

residuosmodelo313comp.stand = (residuosmodelo313comp-mean(residuosmodelo313comp))/sd(residuosmodelo313comp)

valores.ajustados3=data.frame(fitted(modelolm3))

valores.ajustados313comp= valores.ajustados3[,13]
plot(valores.ajustados313comp, residuosmodelo313comp, xlab = "Valores ajustados", ylab = "Residuos estandarizados", col = 'green', main = 'Distribución de residuos utilizados 13 componentes')

Entender la normalidad de residuos con gráfico de histograma incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection.

x=seq(-4,4,0.01)

hist(residuosmodelo313comp.stand, col = "green", main="Histograma de residuos", xlab="Residuos",prob = TRUE, ylim = c(0,0.5))
theo.res=dnorm(x, mean = 0, sd = 1)
lines(theo.res ~ x, col="orange", lwd = 2 )
lines(density(residuosmodelo313comp.stand), col="violet", lwd = 2)

Entender la normalidad de residuos con gráfico de QQ-plot incluyendo curva de distribución empírica y teórica para el método de selección de variables mixed selection

qqnorm(residuosmodelo313comp.stand, main = 'QQ plot residuos - componentes principales')
qqline(residuosmodelo313comp.stand, col="green", lwd = 2)

  1. Comparar el primer modelo utilizando el comando predict () sobre el segundo conjunto de datos data.body2 y calculando el error cuadrático medio para el caso de método de selección de variables de mixed selection
prediccion3 = predict(modelolm3, ncomp = 13, newdata = data_test)
prediccion3
## , , 13 comps
## 
##        weight
## 5    78.99250
## 8    80.71268
## 11   79.08964
## 18   69.82355
## 23   69.09613
## 26   89.88562
## 28   73.79119
## 37   71.06397
## 51   75.33331
## 52   83.31154
## 72   77.11092
## 76   64.96217
## 81   96.93187
## 82   80.66615
## 101  86.24698
## 103  55.83876
## 107  84.10844
## 113  62.14339
## 115  83.20583
## 119  82.58590
## 121  82.61561
## 124 106.43816
## 131  75.36220
## 136  77.31425
## 142  84.77339
## 149  71.74536
## 156  67.36020
## 165  70.41981
## 180  82.10919
## 181  69.86927
## 182  81.72756
## 189  78.29949
## 191  80.04390
## 209  72.88804
## 213  93.51790
## 214  67.98783
## 219  78.84356
## 220  81.89716
## 228  77.22901
## 248  50.70654
## 250  46.26964
## 253  55.51272
## 254  44.08843
## 256  69.41785
## 261  40.16608
## 262  49.60882
## 269  83.75974
## 279  54.61523
## 295  49.99194
## 304  62.99001
## 318  46.33040
## 320  51.32229
## 323  55.67755
## 332  52.45393
## 343  48.77523
## 348  51.54317
## 352  58.90693
## 353  57.35700
## 360  52.95002
## 366  41.18437
## 369  61.86465
## 371  58.79459
## 377  55.14328
## 381  38.87844
## 389  54.11732
## 396  65.00981
## 399  56.45117
## 400  64.59893
## 402  74.08800
## 404  55.42645
## 407  89.10492
## 408  56.13909
## 411  76.91659
## 413  68.01905
## 417  60.98648
## 419  61.19109
## 423  63.07545
## 426  57.95397
## 428  80.58313
## 430  54.51957
## 435  59.30819
## 443  63.63091
## 457  79.73377
## 458  69.39135
## 459  60.19132
## 464  48.37826
## 465  65.43916
## 467  67.36109
## 468  65.17165
## 472  57.88589
## 479  74.08501
## 483  62.91988
## 484  55.54147
## 495  56.21704
## 496  63.91993
## 500  68.84966
## 501  65.48560
## 502  74.73369
## 503  71.21565
## 504  57.68403
## 507  72.71986

Valores verdaderos conjunto de datos testeo

data_test[,1]
##   [1]  78.8  78.4  76.6  70.0  66.2  89.6  76.4  67.2  75.6  86.2  78.9  63.9
##  [13]  93.0  80.9  86.4  53.9  83.2  65.0  84.1  82.7  79.5 116.4  75.0  76.4
##  [25]  86.4  72.7  68.6  65.9  80.5  70.0  81.8  73.6  82.7  72.3  91.1  67.3
##  [37]  76.6  85.0  77.3  51.6  49.2  59.0  47.6  66.8  42.0  50.0  82.5  55.0
##  [49]  50.2  60.7  48.7  50.0  55.7  52.8  48.6  53.6  58.4  56.2  51.8  45.0
##  [61]  60.2  58.8  54.4  43.2  54.6  63.6  56.8  64.1  72.3  55.9  84.5  55.9
##  [73]  76.4  65.9  58.6  59.1  60.0  54.1  75.9  57.3  58.6  62.0  80.9  70.5
##  [85]  60.9  52.7  62.7  66.4  67.3  57.7  72.3  63.6  53.4  57.3  64.1  68.2
##  [97]  61.4  76.8  71.8  55.5  67.3

Cálculo suma errores total método componentes principales

Error3=sum((data_test[,1]-prediccion3)^2)
Error3
## [1] 573.973

Cálculo error medio

ME3.test = mean((data_test[,1]-prediccion3)^2)
ME3.test
## [1] 5.682901

Cálculo error cuadrático

ME3C.test = mean((residuosmodelo313comp.stand )^2)
ME3C.test
## [1] 0.9975369

Gráfico valores verdaderos vs calculados utilizando componentes principales.

plot(data_test[,1], prediccion3, main = 'Predicción valores verdaderos vs calculados - componentes principales' , xlab = "Valores verdaderos - weight", 
     ylab = "Valores calculados - weight", col = "red")
abline(0,1, col = "green", lwd = 2)

Cálculo del mínimo error

RSSE_v = vector ()
for (i in 1:23) {
  prediccion3 = predict (modelolm3, ncomp = i, newdata = data_test)
  RSSE_v = rbind(RSSE_v, mean ((data_test[,1]-prediccion3)^2))
}
indice = c (1:23)
qplot (x = indice, y = RSSE_v, geom = 'point',  xlab = 'Cantidad de componentes', ylab = 'Errores', main = 'Error mínimo considerando cada componente')