library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.1.0 ✓ dplyr 1.0.5
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(here)
## here() starts at /cloud/project
library(performance)
library(lme4)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
library(glmmTMB)
library(see)
library(ggrepel)
library(qqplotr)
##
## Attaching package: 'qqplotr'
## The following objects are masked from 'package:ggplot2':
##
## stat_qq_line, StatQqLine
ElviaModel <-
"convergente =~ i1 + i2 + i3 + i4
divergente =~ i5 + i6 + i7 +i8
acomodador =~ i9 + i10 + i11 + i12
asimilador =~ i13 + i14 + i15 + i16
rend_ac =~ i17
rend_ac =~ convergente + divergente + acomodador + asimilador"
elvia_raw <-
read_csv(here("SEM lavaan/data_sem",
"elvia_1.csv"))
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## i1 = col_double(),
## i2 = col_double(),
## i3 = col_double(),
## i4 = col_double(),
## i5 = col_double(),
## i6 = col_double(),
## i7 = col_double(),
## i8 = col_double(),
## i9 = col_double(),
## i10 = col_double(),
## i11 = col_double(),
## i12 = col_double(),
## i13 = col_double(),
## i14 = col_double(),
## i15 = col_double(),
## i16 = col_double(),
## i17 = col_double()
## )
elvia_LM <-
elvia_raw %>%
rowwise() %>%
mutate(convergente = mean(c(i1, i2, i3, i4)),
divergente = mean(c(i5, i6, i7, i8)),
acomodador = mean(c(i9, i10, i11, i12)),
asimilador = mean(c(i13, i14, i15, i16)),
rend_aca = i17) %>%
select(rend_aca, convergente, divergente, acomodador, asimilador)
head(elvia_LM)
elvia_LM %>%
keep(is.numeric) %>%
gather() %>%
ggplot(aes(value)) +
facet_wrap(~ key, scales = "free") +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Construimos el modelo
elvia_model_LM <-
lm(rend_aca ~ convergente + divergente + acomodador + asimilador,
data = elvia_LM)
Revisamos el modelo
summary(elvia_model_LM)
##
## Call:
## lm(formula = rend_aca ~ convergente + divergente + acomodador +
## asimilador, data = elvia_LM)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.94359 -0.41972 0.02011 0.40613 2.05454
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.16946 0.12153 1.394 0.163
## convergente 0.13760 0.03341 4.118 4.10e-05 ***
## divergente 0.23722 0.03669 6.465 1.53e-10 ***
## acomodador 0.20770 0.03516 5.907 4.64e-09 ***
## asimilador 0.28059 0.03331 8.423 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.644 on 1095 degrees of freedom
## Multiple R-squared: 0.3151, Adjusted R-squared: 0.3126
## F-statistic: 126 on 4 and 1095 DF, p-value: < 2.2e-16
Que por cada unidad incrementada en asimilador el desempeño aumentará en un 2.40 unidades.
check_model(elvia_model_LM)