## Yo. 91 species (94.7916666666667% of total) don't make the cut.
Ends at PASM; more species than the proportion filter
StSp.MDSe <- metaMDS(StrSpeHREC, k=3, trymax=50, distance="euclidean")
## Wisconsin double standardization
## Run 0 stress 0.04709878
## Run 1 stress 0.04705197
## ... New best solution
## ... Procrustes: rmse 0.005707212 max resid 0.03255237
## Run 2 stress 0.04726615
## ... Procrustes: rmse 0.002897145 max resid 0.01774475
## Run 3 stress 0.04705185
## ... New best solution
## ... Procrustes: rmse 0.0001171594 max resid 0.0008180187
## ... Similar to previous best
## Run 4 stress 0.04771956
## Run 5 stress 0.07093041
## Run 6 stress 0.04709875
## ... Procrustes: rmse 0.005841537 max resid 0.03316322
## Run 7 stress 0.04709936
## ... Procrustes: rmse 0.005903207 max resid 0.03326123
## Run 8 stress 0.04705174
## ... New best solution
## ... Procrustes: rmse 5.663672e-05 max resid 0.000339995
## ... Similar to previous best
## Run 9 stress 0.04771885
## Run 10 stress 0.0477194
## Run 11 stress 0.04709879
## ... Procrustes: rmse 0.005812296 max resid 0.03288403
## Run 12 stress 0.04705203
## ... Procrustes: rmse 0.0001052325 max resid 0.000637019
## ... Similar to previous best
## Run 13 stress 0.04695249
## ... New best solution
## ... Procrustes: rmse 0.004099961 max resid 0.03189478
## Run 14 stress 0.0477194
## Run 15 stress 0.04709916
## ... Procrustes: rmse 0.003587646 max resid 0.02255251
## Run 16 stress 0.04695265
## ... Procrustes: rmse 6.40907e-05 max resid 0.000500904
## ... Similar to previous best
## Run 17 stress 0.04695266
## ... Procrustes: rmse 6.835673e-05 max resid 0.0005469457
## ... Similar to previous best
## Run 18 stress 0.04709869
## ... Procrustes: rmse 0.003539348 max resid 0.02245626
## Run 19 stress 0.04709895
## ... Procrustes: rmse 0.003523929 max resid 0.0224036
## Run 20 stress 0.04709871
## ... Procrustes: rmse 0.003571174 max resid 0.02258866
## *** Solution reached
StSp.MDSe #0.04695249
##
## Call:
## metaMDS(comm = StrSpeHREC, distance = "euclidean", k = 3, trymax = 50)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(StrSpeHREC)
## Distance: euclidean
##
## Dimensions: 3
## Stress: 0.04695249
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation
## Species: expanded scores based on 'wisconsin(StrSpeHREC)'
#StSp.MDSc <- metaMDS(StrSpeHREC, k=3, trymax=50, distance="canberra")
#StSp.MDSc #0.08123532
#StSp.MDSb <- metaMDS(StrSpeHREC, k=3, trymax=50, distance="bray")
#StSp.MDSb #0.06333051
StSp.cape <- capscale(StrSpeHREC ~ 1, metaMDSdist = "true", dist="euclidean")
## Wisconsin double standardization
summary(StSp.cape) #0.5772, 0.7787, 0.9193
##
## Call:
## capscale(formula = StrSpeHREC ~ 1, distance = "euclidean", metaMDSdist = "true")
##
## Partitioning of squared Euclidean distance:
## Inertia Proportion
## Total 3.578 1
## Unconstrained 3.578 1
##
## Eigenvalues, and their contribution to the squared Euclidean distance
##
## Importance of components:
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## Eigenvalue 2.0651 0.7209 0.5032 0.17374 0.07216 0.04275
## Proportion Explained 0.5772 0.2015 0.1406 0.04856 0.02017 0.01195
## Cumulative Proportion 0.5772 0.7787 0.9193 0.96788 0.98805 1.00000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores: 4.293758
##
##
## Species scores
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## BGCover -1.8858 -0.3917 -1.10656 0.03948 -0.04529 -0.02165
## GCover -1.8738 0.6556 0.93236 0.14335 0.13690 -0.02512
## LitCover 1.3588 0.5252 -0.26281 0.71463 -0.05378 -0.03152
## LitMean 0.4253 0.8360 0.01222 -0.46178 -0.39175 0.01510
## MaxDead 0.9914 0.3761 -0.35089 -0.35391 0.43125 0.09285
## MaxLive 0.2926 -1.0821 0.44210 0.06060 -0.09205 0.30835
## VOR_Mean 0.6916 -0.9190 0.33356 -0.14238 0.01473 -0.33802
##
##
## Site scores (weighted sums of species scores)
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## 1 -0.857335 0.666057 0.74758 -0.089129 -0.294833 -0.150751
## 2 0.044742 0.546772 -0.01177 -0.050910 -0.115995 0.347521
## 3 0.023869 0.560305 0.14427 0.314837 -0.183274 -0.312453
## 4 0.210366 0.638966 -0.04201 0.343882 -0.380207 -0.349125
## 5 -0.613784 0.446971 0.21835 -0.133080 0.334566 -0.087516
## 6 -0.019021 0.544552 0.29080 0.214010 0.446564 -0.108505
## 7 0.139730 0.418818 0.03411 0.291317 0.050833 -0.305535
## 8 0.004813 0.499316 0.09701 -0.008279 0.352505 -0.582154
## 9 -0.696471 0.073637 -0.23223 -0.111851 -0.640787 -0.187345
## 10 0.239744 0.360552 -0.12921 0.038991 -0.916953 0.030340
## 11 0.323629 0.466135 -0.22433 0.501851 -0.813275 -0.087006
## 12 0.208697 0.373445 0.02544 0.672422 -0.095266 0.226549
## 13 -0.144504 0.569166 0.49748 0.805081 -0.103998 0.174467
## 14 0.387046 0.371559 -0.17570 0.253356 -1.056364 0.132643
## 15 0.339542 0.259067 -0.06938 0.472990 0.061512 0.296905
## 16 0.128158 0.479637 0.03514 0.122081 -0.274585 -0.012525
## 17 -0.562624 0.090069 -0.02158 0.259387 -0.286135 0.276082
## 18 0.312904 0.045052 -0.15247 0.254676 -0.175486 -0.167718
## 19 0.229073 0.384679 -0.18944 0.524018 0.457125 0.279091
## 20 0.132525 -0.071673 -0.12333 -0.355449 -0.058329 -0.001844
## 21 -0.563006 0.609907 0.64547 -0.103879 -0.093850 -0.245777
## 22 0.123129 0.619501 0.12681 0.515536 -0.673136 0.449622
## 23 0.164790 0.443163 0.14081 0.277648 -0.041325 0.192653
## 24 0.330595 0.280841 -0.42372 0.283165 0.541541 0.428035
## 25 -0.355097 -0.288719 0.03055 -0.055167 0.050089 0.018462
## 26 -0.518116 -0.283678 -0.26238 -0.085043 -0.254035 0.524518
## 27 -0.074173 -0.137545 -0.27856 0.213966 -0.204849 0.330243
## 28 -0.055823 0.095604 -0.16660 0.268754 -0.439527 0.330120
## 29 -0.404211 -0.304525 -0.21933 0.010188 -0.381381 -0.079945
## 30 -0.690113 -0.315122 -0.82834 0.127386 -0.401256 -0.131003
## 31 -0.316638 0.148148 0.73887 -0.233418 -0.002449 0.066443
## 32 -0.060226 -0.223839 0.47090 -0.322711 0.064261 0.003956
## 33 -0.300713 -0.621058 -1.03240 -0.084263 -0.109327 -0.167043
## 34 -0.329926 -0.493898 0.26033 -0.373845 -0.145890 -0.514052
## 35 0.088824 0.123545 0.40765 -0.601355 -0.840055 0.522034
## 36 -0.132277 -0.090339 0.02251 0.003634 0.281615 0.403555
## 37 -0.175786 -0.165440 0.45869 -0.438192 0.095418 0.144013
## 38 -0.716989 0.044846 0.05959 0.099147 0.291130 -0.161593
## 39 0.226020 0.074789 0.08046 0.073193 -0.466681 0.116790
## 40 0.235362 0.050464 0.12524 0.039581 -0.962623 0.131114
## 41 -0.292516 -0.525942 -0.39477 -0.017941 -0.193465 1.217067
## 42 -0.762682 -0.163486 0.21152 0.142859 0.035677 0.298194
## 43 0.261975 -0.557953 -0.05442 -0.288544 -0.085238 -0.631051
## 44 0.329876 -0.615905 -0.25066 -0.245846 -0.358809 -0.740361
## 45 -0.404876 -0.368567 0.30115 -0.059382 0.241140 0.834433
## 46 -0.822377 -0.524926 -1.12261 -0.066622 -0.362921 -0.038631
## 47 -0.237609 -0.061324 0.15320 -0.052025 -0.315949 0.416612
## 48 0.034606 -0.084765 0.38902 -0.162748 -0.133656 -0.304772
## 49 0.620635 -0.747383 -0.05658 -0.063601 -0.078832 -0.520362
## 50 0.206378 -0.236917 0.20796 0.530177 -0.381728 -0.385703
## 51 -0.210188 -0.264648 0.54760 0.206628 0.773005 -0.389455
## 52 0.583329 -0.095263 -0.11178 0.950924 -0.711456 -0.583770
## 53 0.173119 -0.135002 -0.05073 0.512343 0.135519 -0.276658
## 54 0.466713 -0.615952 -0.05750 0.386595 -0.039866 -0.222113
## 55 -0.427468 -0.283000 0.53848 0.077807 0.932025 -0.901045
## 56 0.368362 -0.270925 0.02952 0.217431 0.072192 0.253539
## 57 0.588520 -0.831627 -0.03821 -0.181570 0.430411 0.078495
## 58 0.258997 -0.409031 0.44902 -0.092630 0.537613 -0.529809
## 59 -0.330666 -0.233437 0.58404 0.180436 0.348232 0.718131
## 60 0.197895 -0.443350 0.61431 0.012053 0.316921 0.076502
## 61 0.130639 -0.294004 0.02870 0.234979 0.487484 0.267173
## 62 0.408732 -0.529486 0.15266 0.338226 0.389113 0.537535
## 63 -0.209310 -0.711191 0.66098 -0.078096 -0.019565 1.270961
## 64 0.461812 -0.003395 0.14074 0.680080 -0.250848 -0.112028
## 65 0.598261 -0.873493 -0.02452 -0.325718 0.355371 0.114720
## 66 -0.063149 0.085809 0.11801 0.805942 0.370331 0.119670
## 67 0.139987 -0.531265 0.69011 0.306321 0.050037 -0.838995
## 68 0.597166 -1.312024 0.36480 -0.978800 -0.571432 -1.150494
## 69 -0.017584 -0.209761 0.78043 0.791208 0.363616 -0.446294
## 70 0.100480 -0.583466 -0.37632 0.493133 0.171136 0.449945
## 71 -0.282191 -0.875042 0.66320 -0.284424 -0.223984 0.910153
## 72 0.230082 -0.535499 0.23328 0.312443 0.069375 0.027520
## 73 0.461475 0.230864 -0.35825 -0.332819 0.019669 -0.145961
## 74 -0.078616 0.090143 -0.50861 -0.360403 -0.391203 -0.328453
## 75 -0.169158 0.477735 0.41495 -1.149025 -0.286980 -0.357862
## 76 -0.967376 -0.412377 -1.19365 -0.101721 -0.447719 -0.609174
## 77 0.013856 0.497306 0.55247 -0.982139 0.079813 -0.258723
## 78 0.110917 0.384246 0.17439 -0.884956 0.342500 -0.334057
## 79 0.700656 0.293481 -0.47700 0.820327 0.199963 -0.369767
## 80 -1.377842 0.218189 -0.75419 0.319681 0.509934 -1.042736
## 81 0.255039 0.442686 0.23454 -0.940101 -0.099033 -0.352308
## 82 0.352340 0.098885 -0.29098 -0.117752 0.984836 0.305753
## 83 0.810052 0.281401 -0.65189 0.406845 0.990935 -0.017614
## 84 -0.982482 0.313291 0.30278 0.479907 0.835243 -0.218491
## 85 0.299200 0.902782 -0.17384 -0.959397 -0.136326 -0.037251
## 86 0.771651 0.155574 -0.49846 -0.557881 0.417347 0.280716
## 87 0.264165 0.529355 -0.35812 -0.862772 0.318155 0.187220
## 88 -0.107259 0.469957 0.50082 0.140426 0.033340 -0.470656
## 89 -0.268888 0.016291 -1.25330 -0.409236 0.720729 0.230009
## 90 -0.043960 0.483583 0.22373 -0.666315 -0.151310 0.486530
## 91 0.706178 0.132215 -0.43102 -0.559393 0.290529 0.389555
## 92 -0.242862 -0.313848 0.23082 -0.196852 -0.656130 0.746803
## 93 0.077248 0.516650 -0.37834 -0.617587 1.011405 0.315492
## 94 0.419782 0.361460 -0.19233 -0.410144 0.464320 0.411929
## 95 0.804513 0.379614 -0.58798 -0.176106 -0.274178 -0.136453
## 96 -0.812300 0.003012 -0.92248 -0.098750 0.257421 0.033116
#StSp.capc <- capscale(StrSpeHREC ~ 1, metaMDSdist = "true", dist="canberra")
#summary(StSp.capc) #0.3781, 0.5531, 0.6419
#StSp.capb <- capscale(StrSpeHREC ~ 1, metaMDSdist = "true", dist="bray")
#summary(StSp.capb) #0.4977, 0.6981, 0.77056
#E > B > C
StSp.fit <- envfit(StSp.MDSe ~ TSF + Management, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)
StSp.fit
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2 NMDS3
## TSF2yr3yr 0.0803 -0.0040 0.0075
## TSF1yr2yr 0.0173 -0.0309 0.0142
## TSF3yr4yr 0.1736 0.0727 0.0532
## TSFRB -0.1822 -0.0164 -0.0123
## TSFUnburned 0.0571 0.0157 -0.0102
## ManagementCattle 0.0040 -0.0147 0.0042
## ManagementSheep -0.0040 0.0147 -0.0042
##
## Goodness of fit:
## r2 Pr(>r)
## TSF 0.3879 0.002 **
## Management 0.0073 1.000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
StSp.M <- envfit(StSp.MDSe ~ Management, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)
StSp.M
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2 NMDS3
## ManagementCattle 0.0040 -0.0147 0.0042
## ManagementSheep -0.0040 0.0147 -0.0042
##
## Goodness of fit:
## r2 Pr(>r)
## Management 0.0073 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
StSp.TSF <- envfit(StSp.MDSe ~ TSF, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)
StSp.TSF
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2 NMDS3
## TSF2yr3yr 0.0803 -0.0040 0.0075
## TSF1yr2yr 0.0173 -0.0309 0.0142
## TSF3yr4yr 0.1736 0.0727 0.0532
## TSFRB -0.1822 -0.0164 -0.0123
## TSFUnburned 0.0571 0.0157 -0.0102
##
## Goodness of fit:
## r2 Pr(>r)
## TSF 0.3879 0.002 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
pairwise.factorfit(StSp.MDSe, fac=EnvPatchHREC2$TSF, perm = 499, strata=EnvPatchHREC2$YearLoc)
##
## Pairwise comparisons using factor fitting to an ordination
##
## data: StSp.MDSe by EnvPatchHREC2$TSF
## 999 permutations
##
## 2yr3yr 1yr2yr 3yr4yr RB
## 1yr2yr 0.2000 - - -
## 3yr4yr 0.1038 0.0080 - -
## RB 0.0025 0.0025 0.0025 -
## Unburned 0.5750 0.0586 0.0117 0.0025
##
## P value adjustment method: fdr
pairwise.factorfit(StSp.MDSe, fac=EnvPatchHREC2$Management, perm = 499, strata=EnvPatchHREC2$YearLoc)
##
## Pairwise comparisons using factor fitting to an ordination
##
## data: StSp.MDSe by EnvPatchHREC2$Management
## 999 permutations
##
## Cattle
## Sheep 0.43
##
## P value adjustment method: fdr
HSP10.MDSe <- metaMDS(SpHRECProp10, k=3, trymax=50, distance="euclidean")
## Wisconsin double standardization
## Run 0 stress 0.09874177
## Run 1 stress 0.1009084
## Run 2 stress 0.1013264
## Run 3 stress 0.1220569
## Run 4 stress 0.1109768
## Run 5 stress 0.1013264
## Run 6 stress 0.1102391
## Run 7 stress 0.1206641
## Run 8 stress 0.1117762
## Run 9 stress 0.1144179
## Run 10 stress 0.1152592
## Run 11 stress 0.1031501
## Run 12 stress 0.1142247
## Run 13 stress 0.1013264
## Run 14 stress 0.1126032
## Run 15 stress 0.1206735
## Run 16 stress 0.09811849
## ... New best solution
## ... Procrustes: rmse 0.01398754 max resid 0.08536636
## Run 17 stress 0.1227299
## Run 18 stress 0.1184068
## Run 19 stress 0.1008262
## Run 20 stress 0.1013264
## Run 21 stress 0.1156634
## Run 22 stress 0.1124027
## Run 23 stress 0.1135355
## Run 24 stress 0.0987417
## Run 25 stress 0.1225732
## Run 26 stress 0.1000241
## Run 27 stress 0.116061
## Run 28 stress 0.1167743
## Run 29 stress 0.1101064
## Run 30 stress 0.1007496
## Run 31 stress 0.1098418
## Run 32 stress 0.1214391
## Run 33 stress 0.1024203
## Run 34 stress 0.1191736
## Run 35 stress 0.09885749
## Run 36 stress 0.1055897
## Run 37 stress 0.1156633
## Run 38 stress 0.1218162
## Run 39 stress 0.1196952
## Run 40 stress 0.1156866
## Run 41 stress 0.1060681
## Run 42 stress 0.1111502
## Run 43 stress 0.1206568
## Run 44 stress 0.1013264
## Run 45 stress 0.112403
## Run 46 stress 0.1102393
## Run 47 stress 0.1009084
## Run 48 stress 0.1031501
## Run 49 stress 0.1009084
## Run 50 stress 0.1200164
## *** No convergence -- monoMDS stopping criteria:
## 2: no. of iterations >= maxit
## 46: stress ratio > sratmax
## 2: scale factor of the gradient < sfgrmin
HSP10.MDSe #Stress 0.09811858 for k=3
##
## Call:
## metaMDS(comm = SpHRECProp10, distance = "euclidean", k = 3, trymax = 50)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(SpHRECProp10)
## Distance: euclidean
##
## Dimensions: 3
## Stress: 0.09811849
## Stress type 1, weak ties
## No convergent solutions - best solution after 50 tries
## Scaling: centring, PC rotation
## Species: expanded scores based on 'wisconsin(SpHRECProp10)'
HSP10.cape <- capscale(SpHRECProp10 ~ 1, metaMDSdist = "true", dist="euclidean")
## Wisconsin double standardization
summary(HSP10.cape) #0.7315 through third axis
##
## Call:
## capscale(formula = SpHRECProp10 ~ 1, distance = "euclidean", metaMDSdist = "true")
##
## Partitioning of squared Euclidean distance:
## Inertia Proportion
## Total 10.23 1
## Unconstrained 10.23 1
##
## Eigenvalues, and their contribution to the squared Euclidean distance
##
## Importance of components:
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6 MDS7
## Eigenvalue 3.2375 3.0753 1.1724 0.8257 0.7551 0.50848 0.39737
## Proportion Explained 0.3164 0.3006 0.1146 0.0807 0.0738 0.04969 0.03884
## Cumulative Proportion 0.3164 0.6170 0.7315 0.8122 0.8860 0.93574 0.97457
## MDS8
## Eigenvalue 0.26018
## Proportion Explained 0.02543
## Cumulative Proportion 1.00000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores: 5.583712
##
##
## Species scores
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## AGCR -0.2174 -0.08773 1.687616 -0.2528 0.13113 -0.12634
## BRIN 1.1490 1.18725 -0.425820 -0.6319 -0.60663 -0.16078
## COAR 0.2019 0.01250 0.002302 -0.1678 -0.39216 0.84846
## DISP 0.3709 0.70460 -0.240579 -0.1530 0.43495 -0.71223
## ELIN -1.3622 -2.01199 -0.557198 -0.5892 -0.02917 -0.18114
## ELTR 0.3631 0.24263 -0.391268 0.3054 1.11707 0.36730
## MEOF 0.2927 -0.05968 0.046901 -0.2165 0.12531 0.24116
## MESA -2.1206 1.29970 -0.138092 0.6808 -0.34667 -0.04792
## POPR 1.3225 -1.28727 0.016138 1.0249 -0.43384 -0.22850
##
##
## Site scores (weighted sums of species scores)
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## 1 -0.256746 -0.011889 1.634126 -0.39755 0.302945 -0.30500
## 2 -0.216636 0.287018 1.182467 0.29874 -0.094356 -0.26896
## 3 -0.262326 0.399943 1.579682 0.36130 0.013957 -0.22642
## 4 -0.695140 0.412315 1.024096 0.84460 -0.054211 -0.15413
## 5 -0.450821 -0.509301 0.553319 0.05130 0.163414 -0.38922
## 6 -0.412576 -0.295461 -0.193025 -0.58334 -0.144624 -0.38534
## 7 -0.657384 -0.355952 0.389718 -0.21622 0.162157 -0.32754
## 8 -0.348435 -0.709555 -0.209488 0.04682 -0.072332 -0.47010
## 9 -0.120507 0.866394 -0.436353 -0.06583 0.330488 -0.52252
## 10 -0.080973 1.127130 -0.495279 -0.17344 0.743662 -0.23296
## 11 -0.426446 1.143930 -0.310031 0.07097 0.221455 -0.64926
## 12 -0.433198 0.311891 -0.118612 1.15921 -0.553418 -0.28558
## 13 -0.706426 0.763825 -0.055405 0.47625 -0.303979 -0.34009
## 14 -0.468366 0.880599 -0.465867 -0.20078 0.229820 -0.91224
## 15 -0.875725 0.002173 -0.577450 -0.51811 -0.109764 -0.30229
## 16 -0.225055 1.059359 0.305021 -0.33355 0.540238 -1.00667
## 17 -0.683179 1.072119 -0.347286 -0.05158 -0.722653 -0.07556
## 18 -0.039353 -1.374738 -0.463602 0.61405 0.464452 -0.39467
## 19 -0.268628 1.266928 -0.485073 -0.14285 -0.205266 -0.09973
## 20 0.115836 -0.945031 -0.420988 1.01305 1.156611 0.12988
## 21 -0.767988 0.304968 -0.373430 0.60827 -0.454709 -0.20532
## 22 -0.479488 0.608800 -0.383847 0.24971 -0.144722 0.04882
## 23 -0.266543 0.602955 -0.448697 0.16353 -0.388838 -0.07750
## 24 -0.552785 0.944877 -0.319142 0.67294 -0.273627 -0.39455
## 25 0.014512 0.177677 1.667375 -0.92678 0.138128 0.45024
## 26 0.072038 -0.176239 1.686902 0.41195 0.116973 0.35428
## 27 0.074706 0.280388 0.762865 -0.28449 -0.346048 0.56513
## 28 0.049866 0.014152 1.574939 0.48936 0.004669 0.11859
## 29 -0.382497 -0.582029 0.752999 -0.70757 0.325083 -0.36087
## 30 -0.334188 -0.801557 0.089966 -0.24511 0.098225 -0.30920
## 31 -0.005479 -0.595586 -0.456668 -0.59412 -0.303411 -0.27195
## 32 -0.396048 -0.631278 -0.297064 -1.01415 0.004099 -0.33605
## 33 0.463435 0.659156 -0.372894 -0.13197 1.046486 0.30761
## 34 0.501459 0.560376 -0.150984 -0.24240 -0.372044 0.05920
## 35 0.774035 0.200023 -0.205007 0.37640 -0.486889 -0.49848
## 36 -0.057369 0.369989 -0.096965 0.96188 -0.704415 -0.01673
## 37 0.339626 -0.368059 0.205667 0.71590 -0.485458 -0.03104
## 38 0.636104 0.473542 -0.041243 -0.01265 0.531367 -1.71978
## 39 0.593321 0.152637 -0.453516 -0.17358 0.357489 -0.27137
## 40 0.149880 -0.403401 -0.171716 0.02054 -0.401556 0.37865
## 41 0.590783 0.254932 -0.165169 -0.49363 -0.942335 1.83048
## 42 0.722761 0.566837 -0.415165 -0.39248 -0.215807 0.36975
## 43 -1.723760 0.222717 -0.475905 0.43536 0.027984 0.20337
## 44 -1.651710 0.143628 -0.465135 0.52264 -0.012896 0.13867
## 45 0.048009 -0.662767 -0.253883 0.23140 -0.368674 0.80987
## 46 0.433908 0.146436 -0.455009 0.97212 2.604588 0.94529
## 47 0.315518 -0.560803 -0.292899 0.59948 -0.552544 -0.19107
## 48 0.358411 -0.160851 -0.310041 0.28346 -0.576874 0.17654
## 49 -0.266812 0.127590 0.587427 -0.69509 0.395827 0.70208
## 50 -0.093103 -0.033688 1.090096 -0.10737 0.369891 0.42970
## 51 -0.119125 -0.008514 0.547773 -0.41376 -0.095368 0.43887
## 52 -0.154375 0.335680 1.382905 0.07834 0.055271 0.26684
## 53 -0.144094 -0.742749 0.966801 -0.35485 0.429571 -0.32187
## 54 -0.062251 -0.687115 0.045125 -0.38959 0.223426 -0.05534
## 55 -0.026841 -0.597943 -0.227881 -1.14737 0.097842 -0.12085
## 56 0.126272 -0.594875 -0.168097 -0.05478 -0.306529 -0.45982
## 57 0.479186 0.724312 -0.084442 -0.68880 0.952365 0.25123
## 58 0.731714 0.483006 -0.116952 -0.85769 -0.344344 0.20892
## 59 0.730240 0.284640 -0.076815 -0.16324 0.035712 -0.54046
## 60 -0.127681 0.238497 -0.257530 0.58577 -0.644235 0.09908
## 61 0.616710 0.166265 0.298450 -0.38488 -0.601382 -0.36580
## 62 0.681226 0.534974 0.001133 -0.44607 0.679381 -1.69475
## 63 0.621046 0.213182 -0.321833 -0.30611 0.460139 -0.41850
## 64 0.312329 -0.617232 -0.400776 0.02556 -0.496595 -0.22348
## 65 0.524070 0.164993 -0.127141 -0.35051 -0.670308 1.51445
## 66 0.817306 0.441979 -0.273290 -0.41517 -0.503415 0.34354
## 67 -1.398443 -0.374897 -0.568695 -0.46996 0.160679 0.67427
## 68 -1.353339 -0.182887 -0.500271 -0.36191 0.166361 0.69611
## 69 -0.121942 -0.988702 -0.406308 -0.21837 0.014269 0.24717
## 70 0.570452 0.138393 -0.397870 0.47836 2.231779 0.98809
## 71 0.409574 -0.330454 -0.310911 -0.02669 0.033940 0.23533
## 72 0.286476 -0.774897 -0.348603 0.18648 -0.334158 -0.19219
## 73 0.037531 -0.214126 0.575822 0.50025 -0.091660 0.09069
## 74 -0.139243 0.194937 0.013562 -0.05929 -0.426484 0.33318
## 75 0.217672 -0.148379 -0.211652 -0.04472 -0.577738 0.74066
## 76 0.087809 0.181017 0.490001 0.67631 -0.260089 0.65748
## 77 -0.127209 -0.794342 -0.364965 -0.74161 0.036060 -0.30893
## 78 -0.438094 -0.904967 -0.513876 -1.44522 0.197306 -0.38067
## 79 -0.367555 -0.756751 0.729413 -0.87250 0.468175 -0.35084
## 80 0.428424 -0.573689 -0.106223 0.41458 -0.474562 -0.56850
## 81 0.568733 0.441217 -0.407827 -0.85471 -0.602559 0.36431
## 82 0.784684 0.184479 -0.167272 0.19746 -0.241385 -0.59883
## 83 0.524879 0.603286 -0.293288 -0.95819 0.398245 0.24536
## 84 -0.352503 0.230897 -0.170381 1.04699 -0.550603 -0.16953
## 85 1.016028 -0.094763 0.250405 0.81930 -0.796822 -0.39081
## 86 0.615377 0.086309 -0.361276 -0.23732 0.334873 -0.52019
## 87 0.753645 -0.066361 0.275960 0.13803 -0.595784 0.19619
## 88 0.409763 -0.474022 -0.149401 -0.18172 -0.455704 -0.21207
## 89 0.943054 -0.156034 -0.045865 1.07290 -0.208382 0.34887
## 90 -0.968226 0.044477 -0.385546 0.37739 0.407647 1.04698
## 91 0.531029 0.298943 -0.148096 -0.75105 -0.580762 1.38152
## 92 -1.154916 -0.208186 -0.412933 0.05385 -0.032778 0.79733
## 93 0.705636 -0.186608 -0.220861 1.08296 1.461269 0.78517
## 94 0.451357 -0.443191 -0.330671 0.23235 0.314644 0.06766
## 95 0.007832 -1.104820 -0.513923 -0.08064 -0.100881 -0.54680
## 96 0.417262 -1.192099 -0.089712 1.36325 -0.224985 -0.56503
This is where things get frustrating!
Using Year+Pasture shows TSF is not significant and VOR almost is depending on the iteration.
SpHREC.fit <- envfit(HSP10.MDSe ~ TSF + Management + BGCover + GCover + LitCover + LitMean +
MaxDead + MaxLive + VOR_Mean, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)
SpHREC.fit
##
## ***VECTORS
##
## NMDS1 NMDS2 NMDS3 r2 Pr(>r)
## BGCover 0.54611 -0.30014 0.78210 0.0533 0.188
## GCover -0.41249 -0.73745 0.53481 0.0215 0.574
## LitCover -0.46636 0.76059 0.45168 0.0048 0.842
## LitMean -0.11714 -0.67266 0.73062 0.0018 0.930
## MaxDead 0.63809 -0.41944 0.64568 0.0530 0.554
## MaxLive -0.18139 -0.31987 0.92994 0.0528 0.342
## VOR_Mean -0.62449 -0.49040 0.60788 0.0612 0.094 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2 NMDS3
## TSF2yr3yr 0.1043 -0.0652 -0.0328
## TSF1yr2yr 0.0747 -0.0211 -0.0101
## TSF3yr4yr 0.0768 -0.0671 -0.0430
## TSFRB -0.0122 0.0066 0.0166
## TSFUnburned -0.0767 0.0390 0.0121
## ManagementCattle -0.0083 0.0758 -0.0385
## ManagementSheep 0.0083 -0.0758 0.0385
##
## Goodness of fit:
## r2 Pr(>r)
## TSF 0.0813 0.132
## Management 0.0862 1.000
## Blocks: strata
## Permutation: free
## Number of permutations: 499
SpHREC.V <- envfit(HSP10.MDSe ~ VOR_Mean, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)
SpHREC.V
##
## ***VECTORS
##
## NMDS1 NMDS2 NMDS3 r2 Pr(>r)
## VOR_Mean -0.62449 -0.49040 0.60788 0.0612 0.112
## Blocks: strata
## Permutation: free
## Number of permutations: 499
SpHREC.TSF <- envfit(HSP10.MDSe ~ TSF, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)
FGHREC.MDSe <- metaMDS(FGFineHREC, k=3, trymax=50, distance="euclidean")
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.06718037
## Run 1 stress 0.06718037
## ... Procrustes: rmse 2.998206e-05 max resid 0.0001540773
## ... Similar to previous best
## Run 2 stress 0.0671804
## ... Procrustes: rmse 1.243658e-05 max resid 6.458118e-05
## ... Similar to previous best
## Run 3 stress 0.06718037
## ... New best solution
## ... Procrustes: rmse 1.941414e-05 max resid 0.0001071447
## ... Similar to previous best
## Run 4 stress 0.06718039
## ... Procrustes: rmse 1.203618e-05 max resid 6.088047e-05
## ... Similar to previous best
## Run 5 stress 0.06718038
## ... Procrustes: rmse 1.466033e-05 max resid 7.964794e-05
## ... Similar to previous best
## Run 6 stress 0.06718046
## ... Procrustes: rmse 6.00107e-05 max resid 0.0003723789
## ... Similar to previous best
## Run 7 stress 0.06718037
## ... Procrustes: rmse 2.071349e-05 max resid 0.0001187834
## ... Similar to previous best
## Run 8 stress 0.06718038
## ... Procrustes: rmse 2.204872e-05 max resid 0.0001552741
## ... Similar to previous best
## Run 9 stress 0.06718038
## ... Procrustes: rmse 1.74935e-05 max resid 0.0001198375
## ... Similar to previous best
## Run 10 stress 0.0671804
## ... Procrustes: rmse 3.89994e-05 max resid 0.000203137
## ... Similar to previous best
## Run 11 stress 0.06718037
## ... Procrustes: rmse 9.480631e-06 max resid 6.826528e-05
## ... Similar to previous best
## Run 12 stress 0.0671804
## ... Procrustes: rmse 3.347634e-05 max resid 0.0001738259
## ... Similar to previous best
## Run 13 stress 0.06718038
## ... Procrustes: rmse 2.458315e-05 max resid 0.0001326934
## ... Similar to previous best
## Run 14 stress 0.06718043
## ... Procrustes: rmse 4.774093e-05 max resid 0.0003369434
## ... Similar to previous best
## Run 15 stress 0.06718037
## ... New best solution
## ... Procrustes: rmse 1.006937e-05 max resid 5.474446e-05
## ... Similar to previous best
## Run 16 stress 0.06718037
## ... Procrustes: rmse 8.341003e-06 max resid 4.469793e-05
## ... Similar to previous best
## Run 17 stress 0.06718038
## ... Procrustes: rmse 1.913665e-05 max resid 0.0001156102
## ... Similar to previous best
## Run 18 stress 0.06718038
## ... Procrustes: rmse 2.062709e-05 max resid 0.0001376011
## ... Similar to previous best
## Run 19 stress 0.06718042
## ... Procrustes: rmse 4.620799e-05 max resid 0.0002531826
## ... Similar to previous best
## Run 20 stress 0.06718038
## ... Procrustes: rmse 1.105055e-05 max resid 5.091e-05
## ... Similar to previous best
## *** Solution reached
FGHREC.MDSe #Stress 0.06718037
##
## Call:
## metaMDS(comm = FGFineHREC, distance = "euclidean", k = 3, trymax = 50)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(sqrt(FGFineHREC))
## Distance: euclidean
##
## Dimensions: 3
## Stress: 0.06718037
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation
## Species: expanded scores based on 'wisconsin(sqrt(FGFineHREC))'
FGHREC.cape <- capscale(FGFineHREC ~ 1, metaMDSdist = "true", dist="euclidean")
## Square root transformation
## Wisconsin double standardization
summary(FGHREC.cape) #through third axis: 0.8501
##
## Call:
## capscale(formula = FGFineHREC ~ 1, distance = "euclidean", metaMDSdist = "true")
##
## Partitioning of squared Euclidean distance:
## Inertia Proportion
## Total 6.019 1
## Unconstrained 6.019 1
##
## Eigenvalues, and their contribution to the squared Euclidean distance
##
## Importance of components:
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## Eigenvalue 3.0661 1.1770 0.8735 0.46913 0.24285 0.19024
## Proportion Explained 0.5094 0.1956 0.1451 0.07794 0.04035 0.03161
## Cumulative Proportion 0.5094 0.7050 0.8501 0.92804 0.96839 1.00000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores: 4.890002
##
##
## Species scores
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## IntC3 -2.4731 -0.2543 1.06134 0.06392 0.11493 -0.02362
## IntForb -0.1379 -1.5656 -0.74876 -0.43517 -0.04260 0.22391
## IntLeg -1.3494 1.2416 -1.10903 -0.15768 -0.05811 -0.07125
## NatC3 1.3249 0.4974 0.71298 -0.86517 -0.31638 -0.07917
## NatC4 1.1877 0.3491 0.08691 0.09796 0.78965 0.21589
## NatForb 0.6490 0.1926 0.13472 0.80202 -0.47173 0.42022
## NatLeg 0.7988 -0.4608 -0.13816 0.49411 -0.01576 -0.68597
##
##
## Site scores (weighted sums of species scores)
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## 1 -0.341993 0.6051149 0.39013 0.757366 -0.94508 0.5187434
## 2 -0.536279 0.7095063 -0.12759 0.426088 -0.48025 0.0773518
## 3 0.067280 0.5670771 0.02267 -0.068251 -0.78091 -1.0197337
## 4 -0.276454 1.0236701 -0.34805 0.264361 -0.71830 0.1022614
## 5 -0.635617 -0.0559180 -0.11060 -0.079964 0.06351 0.0953846
## 6 -0.581047 0.6396176 0.56463 -0.198788 -0.21643 -0.5234182
## 7 -0.759011 0.7399395 0.13194 0.168823 0.80558 -0.4695825
## 8 -0.984300 0.5168476 0.58367 0.223929 0.41745 -0.6244371
## 9 0.491600 0.3580297 -0.08599 0.127921 0.21994 0.2544129
## 10 0.630378 0.1749447 -0.16617 -0.085462 0.02348 0.0701837
## 11 0.520042 0.2968650 -0.37345 0.440425 0.23432 -0.3815938
## 12 -0.503027 0.9698960 -0.38633 0.456131 0.16799 0.0000225
## 13 -0.117834 0.8303065 -0.54944 0.395875 0.78345 -0.2340117
## 14 0.297058 0.7448917 -0.19601 0.446339 0.92435 0.4614374
## 15 -0.384212 0.8268156 -0.02028 0.314440 0.34272 0.0546839
## 16 0.576865 0.6942891 0.08626 -0.583725 0.55364 0.2333310
## 17 0.124296 0.4889522 -0.41342 0.458770 -0.85902 0.6701000
## 18 -0.215750 -0.1180199 1.60924 -0.187161 -0.45086 0.2142310
## 19 0.542917 0.5318792 -0.01450 -0.203891 -0.27540 0.6298422
## 20 0.297101 0.2850012 1.10806 -0.558823 -0.52990 0.3757562
## 21 -0.771941 1.0571836 -0.49256 0.129801 -0.02256 -0.5810300
## 22 -0.188023 0.8717125 -0.08145 -0.400368 -0.65932 -0.2265570
## 23 -0.003138 0.7850481 0.04156 0.330633 -0.50139 0.0750763
## 24 0.402863 0.8588293 -0.14585 0.946180 -0.31975 1.4452557
## 25 -0.611582 -0.6192263 -0.18497 -0.528708 0.31500 0.1877130
## 26 0.200324 -0.2603956 -0.38964 -0.017394 0.66516 0.0729258
## 27 -0.498730 -0.3648123 -0.63806 -0.495860 0.05633 0.2690918
## 28 0.053993 0.0611570 -0.25737 -0.402260 -0.82240 -0.4420439
## 29 -0.422921 -0.0683632 0.22375 0.188431 0.86319 0.4590286
## 30 -0.804446 -0.1635934 0.19700 -0.255499 0.44082 -0.2259464
## 31 -0.296735 -0.3103547 0.61369 -0.752940 -0.10242 -0.7368265
## 32 -0.772690 -0.2127296 0.35141 -0.082892 0.33106 -0.0602091
## 33 0.655068 0.0004515 0.14158 -0.283542 0.47782 -0.1899863
## 34 0.685720 -0.5069318 -0.37133 0.378176 0.91469 -0.3417527
## 35 0.609553 -0.3154842 -0.08661 0.696437 0.40488 0.1776708
## 36 -0.046863 0.2795777 -0.65703 0.345588 -0.73283 -0.7464413
## 37 -0.482409 -0.3445529 -0.29600 -0.133146 -0.11497 0.4707992
## 38 0.808637 0.4239693 0.53606 -0.429577 1.15975 0.0576825
## 39 0.639728 -0.2106303 0.42037 -0.195377 0.37069 -1.0770764
## 40 -0.217463 -0.6226966 -0.26131 -0.160637 0.82720 0.0049138
## 41 0.104539 -1.1178552 -0.35646 -0.231464 -0.49913 -0.0337727
## 42 0.634693 -0.1398666 0.29618 -0.422882 -0.40983 0.0795968
## 43 -0.405579 0.5455805 -0.95021 -0.381250 0.25604 -0.0931178
## 44 -0.011095 0.4196978 -0.43011 -0.941113 -0.10516 -0.0489303
## 45 -0.205934 -0.8683528 -0.35487 0.004607 -0.07562 -0.3859660
## 46 0.763106 0.2386042 0.42869 -1.507209 -0.07024 -0.4969199
## 47 -0.175080 -0.8479240 -0.39163 0.051425 -0.04252 -0.7162420
## 48 -0.120080 -0.3619792 -0.09188 -0.328495 -0.36633 -0.5684727
## 49 -0.559791 0.3102937 -0.73591 -0.453724 -0.01545 -0.2037724
## 50 0.069029 0.2028950 -0.42695 -0.250188 0.33647 0.2153155
## 51 -0.450493 -0.3518767 -0.55318 -0.302315 -0.10272 0.4425461
## 52 0.172260 0.1397124 -0.51620 0.176599 0.40132 -0.4573540
## 53 -0.340574 -0.4507948 0.20746 0.198308 -0.27270 0.0861674
## 54 -0.368670 -0.2858370 -0.09453 0.331286 -0.04473 -0.7985738
## 55 -0.614625 -0.6617656 0.29348 -0.551757 0.31261 0.0998312
## 56 -0.295979 -0.2585083 0.45387 -0.755590 -0.31969 0.0354145
## 57 0.762509 -0.0924416 0.07438 0.429343 0.02837 -0.4568527
## 58 0.621492 -0.4370494 -0.24850 0.867218 0.39534 -0.6434456
## 59 0.773856 -0.2490458 -0.06295 0.858356 -0.08177 -0.0615950
## 60 0.040191 -0.0388397 -0.60291 0.511713 -0.85010 -0.3787544
## 61 0.001430 -0.3669964 0.26509 0.595872 0.03053 0.8530154
## 62 0.852609 0.1517898 0.50791 -0.178671 0.73662 0.8124049
## 63 0.722137 0.0358966 0.29243 0.409910 0.01884 -0.1003637
## 64 -0.395115 -0.8685471 0.22932 0.133332 -0.25394 1.0137572
## 65 0.337436 -0.6687207 -0.35666 -0.113710 0.08144 -0.1186864
## 66 0.559140 -0.4593730 -0.15335 0.173727 -0.77538 0.4263524
## 67 -0.378557 -0.2036229 -0.69881 -0.614667 -0.16424 0.2324834
## 68 -0.030379 0.1109524 -0.48745 -0.606261 0.55965 0.3734686
## 69 -0.052172 -0.8512435 -0.21996 0.477022 -0.44359 -0.1822968
## 70 0.783550 0.0232023 0.34895 -0.637837 -0.20497 -0.3246039
## 71 0.307471 -0.3032227 0.21305 0.150177 -0.29248 -0.4645646
## 72 -0.019452 -0.7497475 0.12557 0.213942 -0.47353 -0.4366402
## 73 0.142729 0.0813114 -0.34989 -0.262625 1.19568 0.8001565
## 74 -0.544781 0.0545525 -0.67244 -0.305511 -0.02785 0.0797486
## 75 -0.493600 -0.5981283 -0.46853 -0.510164 0.10284 0.3862695
## 76 0.100635 -0.0531337 -0.86255 -0.199301 0.22974 -0.1618693
## 77 -0.768989 0.0267100 0.75860 0.480134 0.05759 0.1130958
## 78 -1.075928 -0.0522426 1.17099 0.117472 0.73537 -0.5511507
## 79 -0.658898 0.1423695 0.78106 0.674970 0.17232 0.2967840
## 80 -0.068476 -0.2997077 0.39073 -0.362665 0.78981 0.5982514
## 81 0.640014 -0.3646344 -0.04117 0.477906 0.23063 -0.0353483
## 82 0.669428 -0.0914799 0.01635 1.101283 0.41440 -0.5837211
## 83 0.561039 0.1799911 0.38281 -0.049724 0.09129 0.1284834
## 84 0.007799 0.2658708 -0.75243 0.725035 -0.39688 0.1474089
## 85 0.693022 0.0341143 0.74864 -0.136552 -0.87883 0.1981773
## 86 0.610852 0.2207671 0.56764 0.006362 0.47211 -0.2292890
## 87 -0.264749 -0.5657137 0.20621 0.291604 -0.62163 1.0892554
## 88 -0.541137 -0.7491189 0.81214 0.268203 0.33799 0.7296627
## 89 0.732792 -0.3039675 -0.04354 0.127339 -0.49306 0.3423739
## 90 -0.118637 0.0855776 -0.54018 -1.172021 -0.54488 -0.0837805
## 91 -0.113812 -0.5667304 -0.46206 0.037576 -0.55556 1.2157959
## 92 0.095953 -0.1046620 -0.61113 -0.356795 0.14265 0.4516980
## 93 0.639481 0.6154209 0.72799 -1.201755 -0.49576 -0.3596943
## 94 0.104587 0.2577686 0.73117 -0.373982 -0.65614 0.3818273
## 95 -0.666490 -0.0367072 1.26587 1.109518 -0.06526 -0.3886937
## 96 0.084332 -0.8911059 -0.12815 0.816541 -0.36094 -1.3621231
MaxDead and LitCover are the only two even close to significant
FGHREC.fit1 <- envfit(FGHREC.MDSe ~ TSF + Management + BGCover + GCover + LitCover + LitMean +
MaxDead + MaxLive + VOR_Mean, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)
FGHREC.fit1
##
## ***VECTORS
##
## NMDS1 NMDS2 NMDS3 r2 Pr(>r)
## BGCover 0.61016 -0.72926 -0.30965 0.0276 0.528
## GCover -0.96480 -0.02107 -0.26214 0.0385 0.686
## LitCover 0.00501 0.71259 -0.70156 0.0875 0.074 .
## LitMean -0.18004 0.59739 -0.78148 0.0980 0.140
## MaxDead 0.10794 0.23776 -0.96531 0.0950 0.044 *
## MaxLive 0.20292 -0.92070 0.33338 0.1217 0.994
## VOR_Mean -0.05782 -0.94687 0.31637 0.0657 0.966
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2 NMDS3
## TSF2yr3yr 0.0650 -0.0342 -0.0210
## TSF1yr2yr 0.0234 -0.0397 0.0007
## TSF3yr4yr -0.1017 -0.0501 -0.0551
## TSFRB 0.0178 -0.0059 0.0133
## TSFUnburned -0.0283 0.0435 0.0070
## ManagementCattle 0.0408 -0.0008 0.0462
## ManagementSheep -0.0408 0.0008 -0.0462
##
## Goodness of fit:
## r2 Pr(>r)
## TSF 0.0643 0.182
## Management 0.0745 1.000
## Blocks: strata
## Permutation: free
## Number of permutations: 499
FGHREC.v <- envfit(FGHREC.MDSe ~ LitCover + MaxDead, data = EnvPatchHREC2, choices = c(1:3), perm=499,
strata=EnvPatchHREC2$YearLoc)