transform to time series object
library(itsmr)
wave1ts=ts(wave1Data$New_cases/1000,start=c(03/01/2020,1),frequency = 1)
wave2ts=ts(wave2Data$New_cases/1000,start=c(01/01/2021,1),frequency = 1)
Lets check how 1st wave look like after 1st difference
autoplot(diff(log(wave1ts)))

Lets check how 2nd wave look like after 1st difference
wave2_transform<-diff(log(wave2ts))
autoplot(diff(log(wave2ts)))

check ACF/PACF of 1st wave data after first difference
library(astsa)
acf2(diff(wave1ts))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
ACF -0.03 -0.33 0.02 -0.03 -0.30 0.03 0.78 0.00
PACF -0.03 -0.33 0.00 -0.16 -0.35 -0.09 0.72 0.19
[,9] [,10] [,11] [,12] [,13] [,14] [,15]
ACF -0.33 0.02 -0.02 -0.29 0.04 0.73 0.02
PACF 0.03 -0.04 0.05 -0.06 -0.10 0.25 0.12
[,16] [,17] [,18] [,19] [,20] [,21] [,22]
ACF -0.31 -0.03 -0.01 -0.31 0.06 0.74 -0.05
PACF 0.09 -0.15 0.02 -0.12 -0.01 0.26 -0.09
[,23] [,24] [,25] [,26] [,27] [,28] [,29]
ACF -0.30 0 -0.06 -0.27 0.05 0.69 -0.06
PACF 0.03 0 -0.08 -0.02 -0.10 0.02 -0.08
[,30]
ACF -0.27
PACF 0.07

check ACF/PACF of 2nd wave data after first difference
library(astsa)
acf2(diff(wave2ts))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
ACF 0.03 0.22 0.27 0.28 0.20 0.20 0.44 0.10 0.17
PACF 0.03 0.22 0.27 0.27 0.14 0.07 0.35 0.02 -0.05
[,10] [,11] [,12] [,13] [,14] [,15] [,16]
ACF 0.13 0.19 0.05 0.12 0.30 0.06 0.08
PACF -0.14 -0.09 -0.16 -0.10 0.15 0.11 0.07
[,17] [,18] [,19] [,20] [,21]
ACF 0.09 0.01 0.04 0.07 0.19
PACF 0.05 -0.15 -0.10 -0.08 0.06

Arima model fitting to 1st and 2nd wave data
library(forecast)
wave1.at = auto.arima(diff(wave1ts))
wave2.at = auto.arima(diff(wave2ts))
summary of wave1 model
summary(wave1.at)
Series: diff(wave1ts)
ARIMA(1,0,3) with zero mean
Coefficients:
ar1 ma1 ma2 ma3
-0.6971 0.6621 -0.4154 -0.2053
s.e. 0.1453 0.1550 0.0503 0.0813
sigma^2 estimated as 10.32: log likelihood=-936.86
AIC=1883.71 AICc=1883.88 BIC=1903.18
Training set error measures:
ME RMSE MAE MPE MAPE
Training set 0.09108937 3.194107 1.82331 NaN Inf
MASE ACF1
Training set 0.6860682 0.002073331
summary of wave2 model
summary(wave2.at)
Series: diff(wave2ts)
ARIMA(1,1,2) with drift
Coefficients:
ar1 ma1 ma2 drift
0.3117 -1.7923 0.8924 0.1626
s.e. 0.1154 0.0644 0.0596 0.0876
sigma^2 estimated as 41.98: log likelihood=-365.02
AIC=740.04 AICc=740.61 BIC=753.58
Training set error measures:
ME RMSE MAE MPE
Training set 0.0711554 6.332794 3.823477 260.6101
MAPE MASE ACF1
Training set 302.9949 0.6043404 -0.01700619
30 days forcasting plot of wave1
plot(forecast(wave1.at,30))

30 days forcasting plot of wave2
plot(forecast(wave2.at,30))

LS0tDQp0aXRsZTogIkNvdmlkIFdhdmUxLVdhdmUyIG1vZGVsIGNvbXBhcmlzb24iDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojIyBSZXRyaWV2ZSAxc3Qgd2F2ZSBkYXRhIGZyb20gY3N2DQpgYGB7cn0NCndhdmUxRGF0YSA8LSByZWFkLmNzdigiRTpcXERhdGEgU2NpZW5jZVxcU3RhdGlzdGljc1xcVGltZSBTZXJpZXMtRm9yZWNhc3RpbmdcXGZ3ZHBsZWFzZXNoYXJlaXRcXFdITy1DT1ZJRC0xOS1JbmRpYS1kYXRhXzIwMjAuY3N2IiwNCiAgICAgICAgICAgICAgICAgICAgaGVhZGVyID0gVFJVRSkNCmBgYA0KIyMgVmlldyAxc3Qgd2F2ZSBkYXRhDQpgYGB7cn0NClZpZXcod2F2ZTFEYXRhKQ0KYGBgDQoNCiMjIFJldHJpZXZlIDJuZCB3YXZlIGRhdGEgZnJvbSBjc3YNCmBgYHtyfQ0Kd2F2ZTJEYXRhIDwtIHJlYWQuY3N2KCJFOlxcRGF0YSBTY2llbmNlXFxTdGF0aXN0aWNzXFxUaW1lIFNlcmllcy1Gb3JlY2FzdGluZ1xcZndkcGxlYXNlc2hhcmVpdFxcV0hPLUNPVklELTE5LUluZGlhLWRhdGFfMjAyMS5jc3YiLA0KICAgICAgICAgICAgICAgICAgICBoZWFkZXIgPSBUUlVFKQ0KDQpgYGANCg0KIyMgVmlldyAybmQgd2F2ZSAgZGF0YQ0KYGBge3J9DQpWaWV3KHdhdmUyRGF0YSkNCmBgYA0KDQojIyB0cmFuc2Zvcm0gdG8gdGltZSBzZXJpZXMgb2JqZWN0DQpgYGB7cn0NCmxpYnJhcnkoaXRzbXIpDQp3YXZlMXRzPXRzKHdhdmUxRGF0YSROZXdfY2FzZXMvMTAwMCxzdGFydD1jKDAzLzAxLzIwMjAsMSksZnJlcXVlbmN5ID0gMSkgDQp3YXZlMnRzPXRzKHdhdmUyRGF0YSROZXdfY2FzZXMvMTAwMCxzdGFydD1jKDAxLzAxLzIwMjEsMSksZnJlcXVlbmN5ID0gMSkNCmBgYA0KDQojIyMgUGxvdCAxc3QgV2F2ZSBkYXRhIGJlZm9yZSB0cmFuc2Zvcm1hdGlvbg0KDQpgYGB7cn0NCnBhcihtZnJvdz1jKDEsMikpDQpwbG90LnRzKHdhdmUxdHMsdHlwZT0ncCcseWxhYj0iRGFpbHkgbmV3IGNhc2VzIGluIFRob3VzYW5zIikgICAgICAgIA0KDQpgYGANCiMjIyBQbG90IDFzdCBXYXZlIGRhdGEgYWZ0ZXIgbG9nIHRyYW5zZm9ybWF0aW9uDQoNCmBgYHtyfQ0KcGxvdC50cyhsb2cod2F2ZTF0cyksdHlwZT0ibyIseWxhYj0iTG9nKHdhdmUxdHMpIikNCmBgYA0KIyMjIFBsb3QgMm5kIHdhdmUgZGF0YSBiZWZvcmUgbG9nIHRyYW5zZm9ybWF0aW9uIA0KYGBge3J9DQpwYXIobWZyb3c9YygxLDIpKQ0KcGxvdC50cyh3YXZlMnRzLHR5cGU9J3AnLHlsYWI9IkRhaWx5IG5ldyBjYXNlcyBpbiBUaG91c2FucyIpICAgICAgICANCmBgYA0KIyMjIFBsb3QgMm5kIHdhdmUgZGF0YSBhZnRlciBsb2cgdHJhbnNmb3JtYXRpb24NCmBgYHtyfQ0KcGxvdC50cyhsb2cod2F2ZTJ0cyksdHlwZT0ibyIseWxhYj0iTG9nKHdhdmUydHMpIikgDQpgYGANCmBgYHtyfQ0KbGlicmFyeShnZ2ZvcnRpZnkpDQpgYGANCg0KIyMjIExldHMgY2hlY2sgaG93IDFzdCB3YXZlIGxvb2sgbGlrZSBhZnRlciAxc3QgZGlmZmVyZW5jZQ0KYGBge3J9DQphdXRvcGxvdChkaWZmKGxvZyh3YXZlMXRzKSkpDQoNCmBgYA0KIyMjIExldHMgY2hlY2sgaG93IDJuZCB3YXZlIGxvb2sgbGlrZSBhZnRlciAxc3QgZGlmZmVyZW5jZQ0KYGBge3J9DQphdXRvcGxvdChkaWZmKGxvZyh3YXZlMnRzKSkpDQpgYGANCiMjIyAgY2hlY2sgQUNGL1BBQ0Ygb2YgMXN0IHdhdmUgZGF0YSBhZnRlciBmaXJzdCBkaWZmZXJlbmNlIA0KDQpgYGB7cn0NCmxpYnJhcnkoYXN0c2EpDQphY2YyKGRpZmYod2F2ZTF0cykpICAgICAgDQoNCmBgYA0KDQojIyMgIGNoZWNrIEFDRi9QQUNGIG9mIDJuZCB3YXZlIGRhdGEgYWZ0ZXIgZmlyc3QgZGlmZmVyZW5jZQ0KDQpgYGB7cn0NCmxpYnJhcnkoYXN0c2EpDQphY2YyKGRpZmYod2F2ZTJ0cykpICAgICAgICAgICAgICANCg0KYGBgDQoNCiMjIyBBcmltYSBtb2RlbCBmaXR0aW5nIHRvIDFzdCBhbmQgMm5kIHdhdmUgZGF0YQ0KYGBge3J9DQpsaWJyYXJ5KGZvcmVjYXN0KQ0Kd2F2ZTEuYXQgPSBhdXRvLmFyaW1hKGRpZmYod2F2ZTF0cykpDQp3YXZlMi5hdCA9IGF1dG8uYXJpbWEoZGlmZih3YXZlMnRzKSkNCg0KYGBgDQoNCiMjIyBzdW1tYXJ5IG9mIHdhdmUxIG1vZGVsDQoNCmBgYHtyfQ0Kc3VtbWFyeSh3YXZlMS5hdCkNCmBgYA0KIyMjIHN1bW1hcnkgb2Ygd2F2ZTIgbW9kZWwNCg0KYGBge3J9DQpzdW1tYXJ5KHdhdmUyLmF0KQ0KYGBgDQojIyMgMzAgZGF5cyBmb3JjYXN0aW5nIHBsb3Qgb2Ygd2F2ZTENCmBgYHtyfQ0KcGxvdChmb3JlY2FzdCh3YXZlMS5hdCwzMCkpDQpgYGANCg0KDQojIyMgMzAgZGF5cyBmb3JjYXN0aW5nIHBsb3Qgb2Ygd2F2ZTINCmBgYHtyfQ0KcGxvdChmb3JlY2FzdCh3YXZlMi5hdCwzMCkpDQpgYGANCg0KDQo=